Surface micromachined microelectromechanical systems (MEMS) integrating multi-domain sensors and actuators with conventional microelectronic batch fabrication processes are becoming increasingly complex. In order to design systems with large numbers of multi-domain components, we need to use a hierarchical structured design approach, with design at the schematic level instead of the traditional layout representation used in MEMS design. However, since fabrication can only be done from a layout representation, an automatic or manual layout generation from schematic is necessary. It is essential to be able to translate from the layout representation back to the schematic to reason about layout correctness in meeting the schematic’s function as well as to extract geometric parameters for functional simulation. An extraction module is developed which reads in the geometric description of the layout structure and reconstructs the corresponding schematic. This schematic can then be fed to an ordinary differential equation solver or can be compared with the design schematic to validate the correctness of the designed layout. The extraction module also minimizes the number of nodes required to represent the schematic as a netlist.

Displaying 0 Publications