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ABSTRACT
This work extensively studies and analyses several unsuper-
vised clustering methods for hyperspectral data. We look at
unsupervised classification solutions that accomplish adap-
tive cluster formation in anticipation for new data discoveries.
We provide qualitative and quantitative answers to significant
problems like high-dimensionality of hyperspectral datasets,
multiple sources and relative amounts of existing noise in
data and low class separability. The effectiveness of various
clustering techniques is illustrated on diverse hyperspectral
datasets by intensive experimentation, comparison between
techniques and analysis.

Index Terms— Unsupervised, classification, hyperspec-
tral, diffusion, learning

1. INTRODUCTION

Most traditional classification methods used by the imaging
spectroscopy community compare features present in each
pixel with spectral signatures of materials from a known or
likely to be present exhaustive library of all materials dis-
covered so far [1]. This poses a problem for scenarios like
planetary exploration where specific materials have not been
conclusively discovered and their proportions are yet to be de-
termined. Unsupervised classification is therefore an obvious
solution where test pixels are assigned to clusters without us-
ing expert labels. Clustering enables the discovery of new ma-
terials and their signatures in unexplored environments. Our
paper extensively analyses such methods for available low-
resolution and high-resolution hyperspectral datasets.

Classification of hyperspectral images is a challenging
task due to the large size of each of these images. Each pixel
in a hyperspectral image is a high-dimensional vector and
any dataset will at least have several thousand pixels. With
the advancement in imaging spectroscopy and measurement
devices, we now have hyperspectral images with a higher
spectral and spatial resolution [2]. These high-resolution
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Fig. 1. Visualization of a high-dimensional hyperspectral im-
age in the form of a hyperspectral cube for the (a) Salinas-A,
(b) Pavia University, (c) Cuprite and (d) Indian Pines datasets.

high-dimensional hyperspectral images necessitate computa-
tionally faster and memory efficient algorithms. There is also
a lack of generalizable algorithms that deal with the inherent
noise and non-linearities present in hyperspectral datasets.

Clustering techniques focus on grouping pixels by itera-
tively updating the centroid of a group, where the centroid
represents the mean spectral signature of all the pixels in a
group. These techniques perform equally well if the assump-
tion that most of the pixels are governed by a single endmem-
ber holds true i.e. are pure pixels [3]. Such a scenario arises
often in high-resolution hyperspectral images.

There are several machine learning methods for cluster-
ing [4]. Many of these methods have been applied on hy-
perspectral images with varying success [3, 5]. Some ap-
proaches reduce high-dimensional hyperspectral images to a
low-dimensional coordinate space using methods like Princi-
pal Component Analysis (PCA), and Independent Component
Analysis (ICA) before clustering [6, 7]. Deep learning meth-
ods have also been employed. Supervised deep classification
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of hyperspectral images [8, 9] produces almost 100 percent
accurate results for most datasets. Several semi-supervised
deep learning classification algorithms use auto-encoders [10,
11] to achieve high performances.

This paper addresses the need for automated analysis of
spectral data and provides analysis of unsupervised solutions
for clustering hyperspectral datasets into constituent classes.

2. METHODS

All methods considered in this paper are provided with an
input image I ∈ Rh×w×d , where h and w are the height
and width of the spatial dimensions, respectively, and d is the
number of spectral bands. Let k be the number of classes
present in I for every dataset considered.

In this work, we evaluate several clustering techniques on
multiple datasets. We look at k-means clustering and mul-
tiple variants of k-means clustering. All methods which are
based on k-means clustering should fail if the k-means as-
sumptions are not valid. Most noticeable failures occur when
the variance of the distribution of each variable is not spher-
ical. Methods also do not fair well due to the inherent noise
and curse of dimensionality. The techniques analyzed in this
work which are direct variants of k-means mainly employ a
two-stage process where first, the data dimensionality is re-
duced followed by k-means clustering in the low-dimensional
feature space. PCA followed by k-means performs linear
dimensionality reduction on the input image whereas auto-
encoder followed by k-means clustering and Deep Embedded
Clustering (DEC) [12] perform non-linear dimensionality re-
duction.

Auto-encoder is a deep learning network that learns a low-
dimensional representation or encoding of a given image data
by trying to reconstruct it in the output stage [13] and is a
useful deep dimensionality reduction tool. Spectral Cluster-
ing (SC) [14] uses spectral techniques to learn a low dimen-
sional representation of the image data. It does so by con-
structing similarities between individual data points and for-
malising them as a weight matrix. Then, eigen values of the
weight matrix are used for dimensionality reduction, followed
by clustering in thus obtained low-dimensional space. How-
ever, spectral clustering is known to be sensitive to irrela-
vant data dimensions and noise. DEC [12] defines a cluster-
ing loss which updates parameters of the deep dimensional-
ity reduction network and the cluster centers simultaneously.
This deep method outperforms traditional clustering methods
for high-dimensional RGB datasets but shows limited perfor-
mance when tested on high-dimensional hyperspectral data.

The state-of-the-art clustering methods considered are
sparse manifold clustering and embedding (SMCE) [15],
non-negative matrix factorization (HNMF) [3], fast search
and find of density peaks clustering (FSFDPC) [16] algo-
rithm, nonlocal total variation (NLTV) [17] , diffusion learn-
ing (DL) and spatial-spectral diffusion learning (DLSS) [18]

algorithms. SMCE works somewhat like SC but it computes
the neighborhood graph and the weights for the weight ma-
trix simultaneously by solving a sparse optimization problem.
FSFDPC makes the assumption that centroids of clusters have
higher density than data points in the cluster and they are also
quite distant from other high density centroids. This assump-
tion is used again in the DL and DLSS algorithms. DL and
DLSS algorithms use this assumption in a low dimensional
embedding of the input data to then successfully find cen-
troids or modes of data clusters whereas FSFDPC does so in
the high dimensional space.

3. EXPERIMENTS AND RESULTS

3.1. Hyperspectral Datasets

The clustering methods were tested on the following datasets:

• Salinas-A dataset: The Salinas-A dataset was acquired
by the AVIRIS sensor 204 bands and has 86 samples
and 83 lines with 6 unique classes.

• Pavia University dataset: The Pavia University dataset
was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor with 9 material classes.
This dataset contains 115 bands and 103 clean bands
(used for clustering) with a spatial resolution of 1.3 m.
The dataset size is 1096 samples by 715 lines. In this
work, we use a subset of the Pavia University dataset
with 6 unique classes, as in [18], for better comparative
analysis.

• Cuprite dataset: The Cuprite dataset was collected by
AVIRIS-Next Generation (NG) sensor and is the most
diverse geologic dataset with more than 200 mineral
classes. It has more than 200 bands and we used 97
bands for clustering. We employ a subset of the Cuprite
dataset for our experiments with the 10 most dominant
classes.

• Indian Pines dataset: The Indian Pines dataset was ac-
quired by AVIRIS sensor with 200 clean spectral bands
and 16 classes. The dataset has 145 samples by 145
lines.

The Pavia University and the Salinas-A datasets have very
distinct spectral classes that are spread out homogeneously
in the hyperspectral image. These datasets also have com-
paratively lesser number of classes. On the other hand, the
Indian Pines and the Cuprite datasets have more number of
classes (although only 10 dominant classes of the Cuprite
dataset were used for experimentation). There is consider-
able amount of overlap between classes in these datasets. It
is immensely more difficult to cluster the latter two datasets
than the former which can clearly be seen in Table 1. Figure 2
depicts the differences between the former and the latter type
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Table 1. Comparison of overall clustering accuracy in percentages for each algorithm implemented on different hyperspectral
datasets

Datasets Number of
Classes

Clustering Accuracy (OA) (in percentages)

k-means PCA +
k-means

Auto +
k-means

DEC SMCE HNMF FSFDPC DL DLSS

Salinas-A 6 62.5 62.5 60.67 40.6 46.62 63.20 63.22 83.13 84.76
Pavia 6 77.6 77.55 70.36 63.54 83.52 72.17 77.83 84.9 93.6
Cuprite 10 24.42 24.39 24.00 23.55 20.98 40.65 25.48 29.30 29.12
Indian Pines 16 39.6 39.42 42.24 46.74 33.89 36.36 39.16 35.78 41.82

Table 2. Comparison of run time in seconds for each algorithm implemented on different hyperspectral datasets
Datasets Time (in seconds)

k-means PCA + k-means Auto + k-means DEC SMCE HNMF FSFDPC DL DLSS
Salinas-A 0.69 0.01 16.37 31.34 180.86 0.45 3.42 4.44 6.11
Pavia 2.71 0.01 50.01 946.15 313.60 0.53 10.74 14.76 30.69
Cuprite 0.99 0.35 22.02 19.00 93.44 0.48 1.56 1.85 4.93
Indian Pines 27.59 0.01 15.00 6.06 270.56 1.29 28.79 49.84 41.82

of datasets where the former has fewer number of classes and
lower amounts of classes overlap.

(a) Salinas-A dataset (b) Indian Pines dataset
Fig. 2. The t-SNE representation of the Salinas-A dataset and
the Indian Pines datasets along with the ground truth classes,
which depicts the differences in the number of classes and
class separability that in turn affect the clustering accuracies.

3.2. Implementation

The algorithms implemented in this work use the hyperpa-
rameters and parameters as stated in their original works.
Specifically for autoencoder along with k-means and DEC
methods, we employ the autoencoder used for pretraining
in [12]. For the rest of the techniques, the hyperparameters
stated in [18] were used.

3.3. Analysis of Performance of Hyperspectral Datasets
on Various Clustering Algorithms

From Table 1, we see that DEC, SMCE, and DLSS perform
equally well, however DLSS gives more consistent results for
all the datasets. DEC falls short for Salinas-A and Cuprite
datasets and this can be attributed to DEC using a feed-
forward artificial neural network instead of a convolutional
neural network which is also noted by the authors in [19](for

RGB datasets). SMCE does not perform well for the Cuprite
and the Indian Pines dataset and takes longer times to con-
verge to a solution. DEC and SMCE also take longer to
compute results, and on being compared to DLSS, the two
fall short in computation time.

As is in shown in [17], the number of clusters affects the
clustering accuracy negatively. Therefore, Indian Pines and
Cuprite datasets show worse accuracies compared to Pavia
and Salinas-A datasets due to having more number of classes.

Another notable anomaly observed is in the case of
Salinas-A dataset where DEC performs the worst. A pos-
sible reason for this is the stopping criteria used in [12]. The
authors stop the procedure when less than δ percentage of
the points change cluster assignments between any two suc-
cessive iterations. We also observe that for certain runs of
the algorithm, DEC produces lesser number of clusters than
that present in the ground truth data. This is seen for the
Salinas-A, the Indian Pines and the Cuprite datasets.

Figure 3 shows the t-SNE representations [20] for the
Pavia University dataset when clustered using k-means clus-
tering, autoencoder along with k-means clustering, DEC and
DLSS. The cluster labels obtained from each algorithm are
depicted in color. For autoencoder along with k-means, we
use the feature embedding obtained at the last iteration and
visualize those using t-SNE. Similarly, for DEC we use the
latent feature representation obtained during the last iteration.
In the case of DLSS, we first obtained the weighted eigen
vectors and then employ t-SNE.

Finally, we see that linear techniques like k-means and
PCA along with k-means clustering take less computational
time and memory than deep methods like autoencoder along
with k-means and DEC. Furthermore, the deep methods im-
plemented in this work do not provide better accuracies than
that by the former two linear techniques.
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(a) k-means (b) Autoencoder +
k-means

(c) DEC (d) DLSS
Fig. 3. The t-SNE representations for the Pavia University
dataset for (a) k-means clustering, (b) Autoencoder + k-means
clustering, (c) DEC and (d) DLSS algorithms.

4. CONCLUSIONS

This work is a first hand examination of high-resolution
Cuprite dataset. We implement and study how various state-
of-the-art clustering algorithms perform on it. We also ex-
amine the performance of these state-of-the-art clustering
techniques on multiple other hyperspectral datasets. Quan-
titative results show that the DLSS algorithm consistently
outperforms other algorithms. We also observe and identify
the shortcomings of the other techniques.

In future efforts, the authors would like to combine the
feature representation learnt from DEC with the clustering
technique from DLSS and also analyse the Cuprite dataset
using the NLTV algorithm.
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