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Abstract— Tracking the pose of an object while it is being
held and manipulated by a robot hand is difficult for vision-
based methods due to significant occlusions. Prior works have
explored using contact feedback and particle filters to localize
in-hand objects. However, they have mostly focused on the static
grasp setting and not when the object is in motion, as doing so
requires modeling of complex contact dynamics. In this work,
we propose using GPU-accelerated parallel robot simulations
and derivative-free, sample-based optimizers to track in-hand
object poses with contact feedback during manipulation. We
use physics simulation as the forward model for robot-object
interactions, and the algorithm jointly optimizes for the state
and the parameters of the simulations, so they better match
with those of the real world. Our method runs in real-time
(30Hz) on a single GPU, and it achieves an average point cloud
distance error of 6mm in simulation experiments and 13mm in
the real-world ones.

I. INTRODUCTION

Performing dexterous manipulation policies benefits from
a robust estimate of the pose of the object held in-hand.
Despite recent advances in pose estimation and tracking
using vision feedback [1]–[3], in-hand object pose tracking
still presents a challenge due to significant occlusions. As
such, works that require in-hand object poses are currently
limited to experiments where the object is mostly visible or
rely on multiple cameras [4], or the hand-object transform
is fixed or known [5], [6]. To mitigate the issue of visual
occlusions, previous works have studied object pose estima-
tion via contacts or tactile feedback, often by using particle
filters and knowledge of the object geometry and contact
locations. These techniques have been mostly applied to the
static-grasp setting, where the object is stationary and in-
grasp. Extending these techniques to tracking object poses
during in-hand manipulation is difficult, requiring modeling
of complex object-hand contact dynamics.

To tackle the problem of in-hand object tracking dur-
ing robot manipulation, we propose combining a GPU-
accelerated, high-fidelity physics simulator [7] as the forward
dynamics model with a sample-based optimization frame-
work to track object poses with contacts feedback (Figure 1).
First, we initialize a concurrent set of simulations with the
initial states of the real robot and the initial pose of the
real object, which may be obtained from a vision-based
pose registration algorithm assuming the object is not in
occlusion in the beginning. The initial poses of the simulated
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Fig. 1. The proposed in-hand object pose tracking framework. Robot
controls are sent to an GPU-accelerated physics simulator that runs many
robot simulations in parallel, each with different physics parameters and
perturbed object poses. Costs based on observations, such as contact
feedback from the real world and from the simulations, are passed to a
sample-based derivative-free optimizer that periodically updates the states
and parameters of all simulations to better match that of the real world. At
any point in time, the pose of the simulation with the lowest cost is chosen
as the current object pose estimate.

objects are slightly perturbed and reflect the uncertainty
of the vision-based pose registration algorithm. The GPU-
accelerated physics simulator runs many concurrent simu-
lations in real-time on a single GPU. As a given policy
controls the real robot to approach, grasp, and manipulate
the object in-hand, we run the same robot control commands
on the simulated robots. We collect observations of the
real robot and the simulated robots, which include terms
like the magnitude and direction of contacts on the robot
hand’s contact sensors. Then, a sample-based optimization
algorithm periodically updates the states and parameters of
all simulations according to a cost function that captures how
well the observations of each simulation matches with those
of the real world. In addition, the algorithm also updates
simulation parameters, such as mass and friction, to further
improve the simulations’ dynamics models of the real world.
At any point in time, the object pose estimate is the pose of
the robot-object system.

To evaluate the proposed algorithm, we collected a total of
24 in-hand manipulation trajectories with 3 different objects
in simulation and in the real world. For experiments, we
use the Kuka IIWA7 arm with the 4-finger Wonik Robotics
Allegro hand as the end-effector, with each finger outfitted
with a SynTouch BioTac contact sensor. Object manipulation
trajectories are human demonstrations collected via a hand-
tracking teleoperation system. Because we have ground-truth
object poses in simulation, we performed detailed ablation
studies in simulation experiments to study the properties of



the proposed algorithm. For real-world experiments, we use
a vision-based algorithm to obtain the object pose in the first
and last frame of the collected trajectories, where the object
is not in occlusion. The pose in the first frame is used to
initialize the simulations, and the pose in the last frame is
used to evaluate the accuracy of the proposed contact-based
algorithm.

II. RELATED WORKS

Prior works have studied identifying in-hand object-pose
with vision only, usually by first segmenting out the robot
or human hand in an image before performing pose esti-
mation [8], [9]. However, vision-only approaches degrade in
performance for larger occlusions. Another approach is to
use tactile feedback to aid object pose estimation. Tactile
perception can identify object properties such as materials
and pose [10], as well as provide feedback during object
manipulation [11]–[13].

For the task of planar pushing where the object is visible,
prior works have studied tracking object poses using par-
ticle filtering with contacts and vision feedback [14]. The
authors of [15] compared a variety of dynamics models
and particle filter techniques, and they found that adding
noise to applied forces instead of the underlying dynamics
yielded more accurate tracking results. One work combined
tactile feedback with a vision-based object tracker to track
object trajectories during for planar pushing tasks [16], and
another applied incremental smoothing and mapping (iSAM)
to combine global visual pose estimations with local contact
pose readings [17].

For in-hand object pose estimation with tactile feedback,
many prior works have explored this problem in the “static-
grasp” context, where the robot hand grasps an object and
localizes the object pose without moving. These works can be
separated into two groups: 1) using point contact locations
and 2) using a full tactile map to extract local geometry
information around the contacts.

To use contact location feedback for pose estimation, many
methods use a variation of Bayesian or particle filtering [18]–
[26]. In [27] the authors perform filtering jointly over visual
features, hand joint positions, force-torque readings, and
binary contact modes. Similar techniques can be applied to
pose estimation when the object is not held by the robot hand
as well by using force probes [28], [29].

To use tactile maps for pose estimation, earlier works used
large, low-resolution tactile arrays to sense contacts in a
grid [11], [30], while more recent works use high-resolution
tactile sensors mounted on robot finger tips. For example,
the algorithm in [31] searches for similar local patches on
an object surface to localize the object with respect to the
contact location, and the one in [32] fuses GelSight data with
a point cloud perceived by a depth sensor before performing
pose estimation.

By contrast to the case of static-grasps, our work tackles
the more challenging problem of tracking in-hand object
pose during manipulation. Prior works have also explored
this context. In [33] the authors propose an algorithm that

combines contact locations with Dense Articulated Real-time
Tracking (DART) [34], a depth image-based object tracking
system, while in [35] the algorithm fuses contact locations
with color visual features, joint positions, and force-torque
readings. The former algorithm is sensitive to initialization
of the object poses, especially when the object appears small
in the depth image. The latter work conducted experiments
where the objects were mostly visible, so matching visual
features alone would give reasonable pose estimates. In
addition, neither work explicitly models the dynamics of the
robot-object interaction, which limits the type of manipu-
lation tasks during which the object pose can be tracked.
To address these challenges, our approach does not assume
access to robust visual features during manipulation. Instead,
it uses a physics simulator to model both the kinematics and
the dynamics of the robot-object system.

III. METHOD
A. Problem Statement

We consider the problem of tracking the pose of an object
held in-hand by a robot manipulator during object manipula-
tion. At some time t, let the object pose be pt ∈ SE(3). We
define a physics dynamics model st+1 = f(st, ut, θ), where
st is the state of the world (position and velocities of rigid
bodies and of joint angles in articulated bodies), ut ∈ RM the
robot controls (we use desired joint positions as the action
space), and θ ∈ RN the fixed parameters of the simulation
(e.g., mass and friction).

For a simulation model f that exactly matches reality
given the perfect initializations of p0, s0, and θ, pose
estimation requires only playing back the sequence of actions
ut applied to the robot in the simulation. However, given our
imperfect forward model and noisy pose initializations, pose
estimation using our method can be improved via observation
feedback.

Let D be the number of joints the robot has and L the
number of its contact sensors. We define the observation vec-
tor ot as the concatenation of the joint position configuration
of the robot qt ∈ RD, the position and rotation of the robot’s
contact sensors P (l)

t ∈ R3, R
(l)
t ∈ SO(3) (located on the

fingertips), the force vectors of the sensed contacts c(l)t ∈ R3,
the unit vector in the direction of the translational slippage
on the contact surface d(l)

t ∈ R2, and the binary direction of
the rotational slippage on the contact surface r(l)

t ∈ {0, 1},
where l indexes into the lth contact sensor. The general in-
hand pose estimation problem is given the current and past
observations o1:t, robot controls u1:t, and the initial pose p0,
find the most probable current object pose pt.

B. Proposed Approach

In this work, we leverage a GPU-accelerated physics
simulator as the forward dynamics model to concurrently
simulate many robot-object environments to track the in-
hand object pose, and we use derivative-free, sample-based
optimizers to jointly tune the state and parameters of these
simulations to improve tracking performance (Algorithm 1).
First, we obtain an estimate of the initial object pose via



a vision-based object pose estimator. We assume this pose
estimator can give reliable initial pose estimate p0 when the
robot is not in contact with the object and when the object
is not occluded, i.e., before grasping. Then, given the initial
object pose estimate and robot configuration, we initialize
K concurrent simulations, and at every timestep we copy
the real robot actions ut to all K simulations. Note that the
object pose can change when the hand establishes contact,
and this will be modeled by the simulator. Let the object pose
and the observation of the ith simulation be p(i)

t and o(i)
t , the

ground truth observations be o(gt)
t . Given a cost function C,

we say the current best pose estimate at time t is the pose
of the i∗th simulation, p(i∗)

t , where the i∗th simulation is the
one that incurs the lowest average cost across some past time
window T :

Ci =
1

T

T−1∑
∆t=0

C(o(i)
(t−∆t), o

(gt)
(t−∆t)) (1)

i∗ = arg min
i

Ci (2)

The costs are used to periodically update the simulations and
their parameters. This enables better alignment with the real
robot-object system.

C. Cost Function

The desired cost function sufficiently correlates with ob-
ject pose differences during in-hand object manipulation such
that a lower cost corresponds to better pose estimations. The
cost function we use has the form of:

C(o(i)
(t−∆t), o

(gt)
(t−∆t)) = w1||q(i)

t − q
(gt)
t ||2

+

L∑
l=1

(w2||P (i,l)
t − P (gt,l)

t ||2 + w3|∆(R
(i,l)
t , R

(gt,l)
t )|

+ w4(1− α(i,l)) + w5α(i,l)|∆M(c
(i,l)
t , c

(gt,l)
t )|

+ w6α(i,l)|∆φ(c
(i,l)
t , c

(gt,l)
t )|

+ w7(1− β(i,l)) + w8β(i,l)|∆φ(d
(i,l)
t , d

(gt,l)
t )|

+ w9(1− γ(i,l)) + w10γ(i,l)|r
(i,l)
t − r(gt,l)

t |)

(3)

For the first term in the cost function, comparing qt’s
between the simulated and real-world robots is useful even if
they share the same ut, because qt can be different depending
on the collision constraints imposed by the current pose of
the object in contact with the robot hand, which might make
it physically impossible for a joint to reach a commanded
target angle.

A contact sensor is in contact if its force magnitude is
greater than a threshold. α(i,l) is 1 when the binary contact
state of the lth contact sensor of the ith simulation agrees
with that of the real contact sensor and 0 otherwise. Similarly,
β(i,l) is 1 when the lth contact sensor of the ith simulation
agrees with the real contact sensor in whether or not the
sensor is undergoing translational slippage, 0 otherwise; γ(i,l)

is the same but for rotational slippage.
For any two vectors, ∆M(·, ·) gives the difference of their

magnitudes, and ∆φ(·, ·) gives the angle between them. For

any two rotations Ra and Rb, ∆(Ra, Rb) gives the angle of
the axis-angle representation of R−1

a Rb.
The weights of the cost terms, wis, are determined such

that the corresponding mean magnitude of each term is
roughly normalized to 1.

D. Addressing Uncertainty and the Sim-to-Real Gap
There are two sources of uncertainty regarding object pose

estimation via simulation: 1) the initial pose estimation p0

from the vision-based pose estimator is noisy and 2) there is
a mismatch between the simulated and real-world dynamics,
partly caused by imperfect modeling and partly caused by
the unknown real-world physics parameters θ.

To address the first issue of initial pose uncertainty, 1)
we perturb the initial pose estimations across the different
simulations by sampling from a distribution centered around
the vision-based estimated pose p

(i)
0 ∼ N (p0,Σp), and 2)

we increase the number of simulations K (K = 40 in
our experiments). If K is arbitrarily large, then it is with
high probability that the true initial pose will be sufficiently
represented in the set of simulations, and a well-designed
cost function will select the correct simulation with the cor-
rect pose. To perform sampling over initial object poses, we
sample the translation and rotation separately. Translation is
sampled from an isotropic normal distribution, while rotation
is sampled by drawing zero-mean, isotropic tangent vectors
in so(3) and then applying it to the mean rotation [36].

To address the second issue of mismatch between sim-
ulated and real-world physics (the “sim-to-real” gap), we
propose using derivative-free, sample-based optimization al-
gorithms to tune θ during pose tracking. Specifically, af-
ter every T time steps, we pass the average costs of all
simulations during this window along with the simulation
state and parameters to a given optimizer. The optimizer
determines the next set of simulations with their own updated
parameters. The simulations in the next set are sampled
from simulations from the current set, with some added
perturbations to the simulation parameters and object pose.
Such exploration maintains the diversity of the simulations,
preventing them from getting stuck in sub-optimal simulation
parameters or states due to noisy observations.

Although it is desirable to have θ(i∗) converge to the true
θ(gt), this is not necessary to achieve good pose estimation.
In addition, due to differences in simulated and real-world
dynamics, we do not expect the optimal θ for reducing C to
be their corresponding real-world values.

To optimize the parameters of the K simulations and
make their simulated states more closely track that of the
real world, we evaluate three derivative-free, sample-based
optimizers:

1) Weighted Resampling (WRS): WRS forms a probability
mass function (PMF) over the existing simulation states
s(1:K) and samples K times with replacement from that
distribution to form the next set of simulations. To form the
PMF, WRS applies softmax over the simulation costs:

P (i) =
exp−λ(Ci −minj Cj)∑K
i=1 exp−λ(Ci −minj Cj)

(4)



Here, λ is a temperature hyperparameter that determines the
sharpness of the distribution. After resampling, we perform
exploration on all simulations by perturbing 1) the simulation
parameters θ and 2) the object pose.

Simulation parameters are perturbed by sampling from an
isotropic normal distribution around the previous parameters:
θ

(i)
τ+1 ∼ N (θ

(i)
τ ,Σθ), where Σθ is predefined. The subscript

τ denotes the optimizer update step (after τ update steps the
simulation has ran for a total of τT time steps).

For object pose perturbation, adding noise to the pose
directly while the object is held in-hand is impractical;
most delta poses would result in mesh penetration and are
hence invalid. This issue was noted in [15], [37], and like
those works we perturb the objects by applying perturbation
forces to the object in each simulation, with each force
sampled from a zero-mean isotropic normal distribution
v(i) ∼ N (0,Σv).

2) Relative Entropy Policy Search (REPS): Unlike [38],
which also uses REPS [39] to tune simulation parameters to
address the sim-to-real gap, we use a sample-based variant
of REPS that computes weights for each simulation and
samples from a distribution formed by the softmax of those
weights. Whereas WRS uses a fixed λ parameter to shape
the distribution, REPS solves for an adaptive temperature
parameter η that best improves the performance of the overall
distribution subject to ε, a constraint on the KL-divergence
between the old and updated sample distributions.

To use REPS, we reformulate the costs as rewards by
setting Ri = maxj Cj + minj Cj − Ci. We compute η at
every step by optimizing the dual function g(η), and then
we use η to form the PMF:

η∗ = arg min
η

ηε+ η log
1

K

K∑
i=1

exp
Ri
η

(5)

P (i) =
exp Ri

η∗∑K
j=1 exp

Rj

η∗

(6)

After resampling, every simulation is perturbed in the same
manner as in WRS.

3) Population-Based Optimization (PBO): Inspired by
Population-Based Training (PBT) [40], this algorithm first
ranks all simulations by their average costs and finds the top
Kbest simulations with the lowest costs. Then, it 1) exploits
by replacing the remaining K−Kbest simulations with copies
of the Kbest ones, sampled with replacement, and 2) explores
by perturbing the Kbest simulations in the same way as WRS.

PBO effectively uses a shaped cost that depends only on
the relative ordering of the simulation costs and not their
magnitudes, potentially making the optimizer more robust to
noisy costs.

E. Hyperparameters

Each of the proposed optimizers has a distribution-shaping
hyperparameter used to balance exploration with exploita-
tion. There are 5 additional hyperparameters for our proposed
framework:

• T - the time steps the algorithm waits for every update.

• K - the number of concurrent simulations.
• θ0θ0θ0 - the initial normal distribution over simulation

parameters.
• Σp - the diagonal covariance matrix for the normal

distribution over initial pose perturbation.
• Σθ and Σv - the diagonal covariances of normal distri-

butions of perturbations used for exploration.
A larger K is generally better than a smaller K, with the
caveat that the resulting simulation is slower and may not be
practical in application. Σp should be large enough such that
the actual initial pose is well represented in the initial pose
distribution. However, K should be increased with a larger
Σp and the covariance of θ0θ0θ0 to ensure that the density of the
samples is high enough to capture a wider distribution.

We note two additional trade-offs with these hyperparam-
eters. One is the exploration-exploitation trade-off in the
context of optimizing for θ, and the other is the trade-off
between optimizing for θ and for p(i∗)

t . Making Σθ or Σv
wider will increase the speed at which the set of simulation
parameters “move,” and the optimizer will explore more
than it exploits. Increasing T improves the optimization
for θ as the optimizer has more samples to evaluate each
simulation. However, updating the simulation parameters too
slowly might lead to drift in pose estimation if the least-
cost simulation is sufficiently different from the real world,
potentially leading to divergent behavior. The worst-case
divergent behavior occurs when force perturbation or some
simulation parameters lead to an irrecoverable configuration,
where the object falls out of the hand or brings the object
into a pose such that small force perturbations cannot bring
it back to the correct pose. It is acceptable if a few samples
become divergent. Their costs will be high, so they will be
discarded and replaced by ones that are not divergent during
optimizer updates.

There are connections between our approach and previous
works that use particle filtering. However, prior works were
mostly applied in the static-grasp setting where the forward
model of the particle filter is a constant model. Instead, we
track the object during manipulation and use a physics simu-
lator as the forward model. In addition to tracking the object
pose, the proposed algorithm also identifies the context of
the forward model by tuning the simulation parameters θ,
which are not affected by the forward or observation models.
We focus on optimizers based on discrete samples and not
continuous distributions, such as the popular Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [41], because
we cannot easily sample in-hand object poses from some
distribution due to complicated mesh-penetration constraints
imposed by contacts.

IV. EXPERIMENTS

We evaluate the performance of our proposed approach
with both simulation and the real-world experiments using
an Allegro Hand mounted on a Kuka IIWA7 robot arm. In-
hand object manipulation trajectories are first collected with
a hand-tracking teleoperation system, and we evaluate pose
estimation errors by running our proposed algorithms offline



Algorithm 1 Sample-Based Optimization for In-Hand Object
Pose Tracking via Contact Feedback
Input: C, T , K, s0, p0, Σp, θ0θ0θ0, Σθ, Σv , opt

1: Initialize K simulations with s0, p(i)
0 ∼ N (p0,Σp), and

θ0 ∼ θ0θ0θ0

2: Initialize index of current best pose estimate i∗ ← 0
3: while TRUE do
4: for t ∈ {1, . . . , T} do
5: Obtain ut and o(gt)

t from real robot
6: for i ∈ {1, . . . ,K} do
7: Step simulation s(i)

t+1 = f(s
(i)
t , ut, θ

(i)
τ )

8: Obtain simulation observation o(i)
t

9: Compute average cost across time window:
Ci = 1

t

∑t−1
∆t=0 C(o

(i)
t−∆t, o

(gt)
t−∆t)

10: end for
11: Update index of best pose estimate:

i∗ ← arg mini Ci
12: end for
13: Update simulations according to optimizer:

s(1:K), θ(1:K)
τ+1 ← opt(s(1:K), θ(1:K)

τ , C1:K ,Σθ,Σv)
14: end while

against the collected trajectories. These trajectories start and
end with the object not in the hand and not in occlusion.
Because we have access to ground truth object poses in
simulation experiments, we perform detailed ablation studies
in simulation to study the effects of different hyperparameters
on algorithm performance. While we can compare pose
estimation errors during the entire trajectory in simulation
experiments, this is not possible in the real world. For real-
world experiments, we use PoseRBPF [3], a recent RGB-
D, particle-filter based pose estimation algorithm to obtain
initial and final object poses. We treat these initial and final
object poses as ground truth and compare the final pose with
the one predicted by our proposed algorithm.

We mount the 4-finger 16-DoF Allegro hand on the 7-
Dof Kuka IIWA7 robot arm. To obtain contact feedback
in the real world, we attach SynTouch BioTac sensors to
each of the finger tips. While BioTac sensors does not
explicitly give force or slippage information, past works have
studied how to extract such information from the sensor’s raw
electrode readings to predict contact force [42], [43], slip
direction [44], and grasp stability [45]–[47]. For real-world
experiments, we use the trained model from [43] to estimate
force vectors ct, but currently we do not estimate slippage
from the BioTac sensors, so the cost function in real-world
experiments do not contain the slippage terms. Simulations
were conducted on a computer with an Nvidia GTX 1080 Ti
GPU, Intel i7-8700K CPU, and 16GB of memory.

We use 3 objects from the Yale-Columbia-Berkeley (YCB)
objects dataset (the spam can, foam brick, and toy banana),
with models, textures, and point clouds obtained from the
dataset published in [1]. These objects were chosen because
they fit the size of the Allegro hand and are light enough so
that robust precision grasps can be formed (we emptied the
spam can to reduce its weight).

Fig. 2. Pose tracking error comparison across different optimizers for initial
pose noise levels in all simulation experiments. The length of the black
vertical lines denote 1 standard deviation. Optimizer methods generally have
lower mean and variance of ADD, but their relative ordering varies depends
on the amount of initial pose noise. REPS and PBO achieve the best ADD
performance in the medium noise case - 5.8mm and 5.9mm respectively.

For each object, in both simulation and real-world experi-
ments, we give 2 demonstrations of 2 types of manipulation
trajectories: 1) pick and place with finger-grasp and in-hand
object rotation, and 2) the same but with finger tips breaking
and re-establishing contact during the grasp (finger gaiting).
This gives a total of 24 trajectories for analysis for both
simulation and real-world experiments. In both trajectory
types the object undergoes translational and rotational slip-
page from both inertial forces and push-contacts with the
table. Each trajectory lasts about a minute. Given that we
can run the pose estimation algorithm at about 30Hz, we
obtain a total of about 2k frames per trajectory.

The teleoperation system is described in detail in a con-
current work under review. The input to the system is a point
cloud of the hand of the human demonstrator. Then, a neural
network based on PointNet++ [48] maps the point cloud
to an estimate of the hand’s pose relative to the camera as
well as the joint angles of the hand. These estimates along
with an articulated hand model [49] and the original point
cloud are then given to DART, which performs tracking
by refining upon the neural network estimates. Finally, to
perform kinematic retargetting, we solve an optimization
problem that finds the Allegro hand joint angles that result
in finger tip poses close to those of the human hand.

In addition to our proposed optimizers (WRS, REPS,
PBO), we also evaluate the following two baselines: Open
Loop (OLP) and Identity (EYE). OLP tracks the object
pose with 1 simulation. EYE is initialized with a set of
noisy initial poses and always picks the pose of the lowest-
cost simulation, but it does not perform any resampling or
optimizer updates.

Similar to previous works [1]–[3], we use Average Dis-
tance Deviation (ADD) [50] as the evaluation metric. ADD
computes the average distance between corresponding points
in the object point cloud situated at the ground truth pose
and at the predicted pose. Unlike [1]–[3], we do not use
its symmetric variant, ADD-S, which does not penalize
pose differences across object symmetries (e.g. for poses
of a sphere that share the same translation, any rotation
difference gives 0 error). This is desirable for resolving visual
ambiguities for pose registration but not for tracking.

A. Simulation Experiments
For simulation experiments we build upon our previous

work in GPU-Accelerated robotics simulation [51]. The arm



Fig. 3. Ablation studies in simulations across different initial pose noise levels. Exploring too little or too much (how wide the Σθ and Σv are.) typically
result in higher mean and variance of ADD. In all other experiments we use the “med” level of exploration. Increasing the number of simulations tend to
reduce mean and variance of ADD. Contacts feedback help reduce the mean and variance of ADD, especially as noise level increases. While using slip
detection helps in the case of low and medium initial pose noise, the advantage disappears when the noise is high.

and hand in the simulation is controlled via a joint-angle PD
controller, and we tuned the controller’s gains so that the joint
angle step responses are similar to those of the real robot. To
speed up simulation, we simplify the collision meshes of the
robot and objects. This is done first by applying TetWild [52]
which gives a mesh with triangles that are more equilateral,
then with Quadric Edge Collapse Decimation 1. Each sim-
ulation generates at most 200 contacts during manipulation,
and we run K = 40 simulations at 30Hz.

We performed simulation experiments with varying
amounts of initial pose noise. Three levels were tested:
“Low” has a translation standard deviation of 1mm and a
rotation standard deviation of 0.01 radians. “Med” is 5mm
and 0.1 radians, and “High” is 10mm 1 radian.

See Figure 2 for a comparison of the optimizers on
tracking in-hand object poses across all the simulation tra-
jectories. ADD increases as the initial pose error increases,
and the mean ADD for the optimizer-based methods tends
to be lower. While EYE sometimes achieves comparable
mean ADD with the optimizer methods, the latter ones
generally have much smaller error variance and max error.
This result is expected as the optimizers focus the distribution
of simulations towards better performing ones over time. In
the medium noise case, REPS and PBO achieve the best
ADD with a mean of 5.8mm and 5.9mm respectively.

See Figure 3 for results of ablation studies in simulation
performed over the hyperparameters governing exploration
distance (how much simulations are perturbed), the number
of parallel simulations, and whether or not contact and slip
detection feedback is used in the cost function.

B. Real-World Experiments

We evaluate our algorithm on real-world trajectories simi-
lar to those collected in simulation. We use PoseRBPF to reg-
ister the object pose in the first and last frames of a trajectory.
The initial pose estimate is used to initialize the simulations,
while the last one is used to evaluate the accuracy of our
contacts-based pose tracking algorithm. Unlike simulation
experiments, the real-world experiments initialize the object
pose by sampling from the distribution over object poses
from PoseRBPF, so the initial pose samples correspond to the
uncertainties of the vision-based pose estimation algorithm.

1https://help.sketchfab.com/hc/en-us/articles/
205852789-MeshLab-Decimating-a-model

Fig. 4. Real-world object pose tracking experiments across 3 objects. The
adaptive optimizers generally perform better than the baselines, although
all methods struggle on the banana. Due to the banana’s long moment arm,
precision grasps with the fingertips tend to be very unstable, and the banana
undergoes significant rotational slippage or can slip out of hand in ways
that are sensitive to initial conditions. The best ADD achieved with Foam
is 14.1mm by PBO, and with Spam is 12.2mm by REPS.

See Figure 4 for real-world experiment results. The ADDs
are higher than those from simulation experiments. This is
due to both that the real-world dynamics is more dissimilar
with simulations than are simulations with different parame-
ters, and that real-world observations are noisier than those in
simulations. We observe that no optimizer is able to track the
toy banana for the real-world data. The object’s long moment
arm and low friction coefficient makes its slippage behavior
difficult to model precisely. This is a failure mode of our
algorithm, where if all of the simulations become divergent
(e.g. the banana rotates in the wrong direction, or falls out
of hand), then the algorithm cannot recover in subsequent
optimizer updates. The best ADD achieved with Foam is
14.1mm by PBO, and with Spam is 12.2mm by REPS.

V. CONCLUSION

We introduce a sample-based optimization algorithm for
tracking in-hand object poses during manipulation via con-
tact feedback and GPU-accelerated robotic simulation. The
parallel simulations concurrently maintains many beliefs
about the real world and model object pose changes that
are caused by complex contact dynamics. The optimization
algorithm tunes simulation parameters during object pose
tracking to further improve tracking performance. In future
work, we plan to integrate contact sensing with vision-based
pose tracking in-the-loop.
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