
Attention-based Hierarchical Deep Reinforcement Learning for Lane Change

Behaviors in Autonomous Driving

Yilun Chen1, Chiyu Dong2, Praveen Palanisamy3, Priyantha Mudalige3,

Katharina Muelling1 and John M. Dolan1 ∗†‡

Abstract

Performing safe and efficient lane changes is a crucial

feature for creating fully autonomous vehicles. Recent ad-

vances have demonstrated successful lane following behav-

ior using deep reinforcement learning, yet the interactions

with other vehicles on road for lane changes are rarely con-

sidered. In this paper, we design a hierarchical Deep Rein-

forcement Learning (DRL) algorithm to learn lane change

behaviors in dense traffic. By breaking down overall behav-

ior to sub-policies, faster and safer lane change actions can

be learned. We also apply temporal and spatial attention

to the DRL architecture, which helps the vehicle focus more

on surrounding vehicles and leads to smoother lane change

behavior. We conduct our experiments in the TORCS sim-

ulator and the results outperform the state-of-art deep re-

inforcement learning algorithm in various lane change sce-

narios.

1. Introduction

Deep reinforcement learning (DRL) has recently

emerged as a new way to learn driving policies. With

a deep reinforcement learning algorithm, the autonomous

agent can obtain driving skills by learning from trial and er-

ror without any human supervision. Previous work [24, 20]

mostly focused on applying Deep Q Network (DQN) [17] or

Deep Deterministic Policy Gradient (DDPG) [14] to learn

to drive. These works successfully demonstrated that a car

can learn to drive without leaving the road boundary. How-

ever, most of these works focus on the task of lane following

while the interactions with the surrounding vehicles are of-

ten ignored. In real traffic scenarios, we need to consider

more complex interactive behaviors such as lane chang-

∗1 The Robotics Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA 15213, USA yilunc, katharam,

jdolan@andrew.cmu.edu
†2 Department of Eletrical and Computing Engineer-

ing, Carnegie Mellon University, Pittsburgh, PA 15213, USA

chiyud@andrew.cmu.edu
‡3 General Motor Global R&D Center, Warren, MI 48090 USA

Figure 1: Illustration of the algorithm. Our algorithm is based

on deep reinforcement learning with actor and critic. The actor

network is for policy learning and the critic network is for pol-

icy evaluation. We propose hierarchical actions and an attention

mechanism to generate lane change behavior. We use simulation

environment from TORCS.

ing for various driving purposes. Previously, rule-based

lane change maneuvers [2, 16] have been developed and

researched, but less effort has been made to consider lane

change with deep reinforcement learning algorithms.

In this paper, we propose to use a deep reinforcement

learning-based method that can learn sub-policies for lane

changing behavior. The structural overview of our algo-

rithm is shown in Figure 1. Lane change is a fundamen-

tal behavior in on-road driving for overtaking or navigation

purposes. It requires high-level reasoning about surround-

ing vehicles’ intentions and behavior to form an effective

driving strategy. At the same time, it requires low-level rea-

soning to plan what exact path to follow under the safety

requirements, generally known as the path planning prob-

lem. Each of these parts has been researched separately in

previous literature [23], but they are rarely optimized to-

gether. Our method combines these two levels of reason-

ing in one network with a hierarchical structure, which can

still be trained in an end-to-end fashion. By designing a

hierarchical action space, our network can maintain a high-

1137

level strategy and a low-level control command at the same

time, while being differentiable end-to-end. This encour-

ages shared computation and optimizes for the overall per-

formance.

The concept of attention is also applied to autonomous

driving. Normally, human drivers do not usually pay equal

attention to all available sensory information. People se-

lect the information based on a higher level of cognition

for determining the current maneuver and ignore the un-

related information. Here we incorporate the concept of

attention from recent advances in image captioning tasks

[26] to explicitly model this behavior. We show that during

the training of deep reinforcement learning, our attention

mechanism will automatically focus on feasible paths or

surrounding on-road vehicles that may influence our driving

behavior. This can eventually help promote the quality of

the learned lane change behavior. The attention-enhanced

network can make better use of perception information and

lead to shorter convergence time and better performance. It

also leads to better explainability of the network.

We summarize our contribution as follows. First, we

propose a hierarchical deep reinforcement learning algo-

rithm that can deal with lane change behaviors on road.

Our method can be easily extended to learn multiple driv-

ing policies in one model. Second, we develop an atten-

tion mechanism that is suitable for learning driving policies

with images. This helps improve compositionality of net-

work: learn better performance with fewer examples. Fi-

nally, we report experimental results and analysis in lane

change behaviors with a comparison of state-of-the-art deep

reinforcement learning algorithms.

2. Related Work

Traditional lane change maneuvers use rule-based de-

signs without learning. In DARPA challenge, the CMU

Boss self-driving vehicle [2] made lane change decisions

by checking empty slots. More recent methods ap-

ply sampling-based or optimization-based methods [13,

16]. All these methods include intensive hand-engineering

where we have to set up lots of hand-designed parameters

and spend large amounts of time tuning them. We can avoid

this by learning lane change behaviors with data.

There are currently two main approaches to learning for

self-driving vehicles: supervised learning and reinforce-

ment learning.

One of the earliest supervised learning approaches was

ALVINN [18], which used a neural network to directly

map front-view camera images to steering angle. Recently,

Nvidia [3, 6, 19] extended it with deep neural networks to

demonstrate lane following with more complex real-world

scenarios. [25] scaled this effort to a larger crowd-sourced

dataset and proposed the FCN-LSTM architecture to derive

a generic driving model. [28] extended the concept of learn-

ing steering angle to learning to control speed. [4] and [1]

map images to a number of key perception indicators, which

are called affordance. The affordance is later associated

with actions by hand-designed rules. All these works tar-

get the task of steering the vehicle to achieve lane-keeping

behavior but do not consider interactive scenarios such as

lane changes.

Supervised learning requires a high amount of human-

labeled driving data, which makes it expensive and hard to

scale in reality. Deep reinforcement learning avoids massive

human-labeled driving data and has the potential to learn

to recover from unseen or unsuccessful states, which is a

well-known limitation in supervised learning or imitation

learning. A number of attempts used deep reinforcement

learning to learn driving policies: [21] learned a safe multi-

agent model for autonomous vehicles on the road and [9]

learned a driving model for racing cars.

In this work, A deep reinforcement learning (DRL) with

a novel hierarchical structure for lane changes is developed.

Hierarchical actions for multi-scale tasks have been actively

studied in DRL [12, 27]. [8] developed a parameterized

action space for the agent to learn to play soccer in the

RoboCup competition. We take the idea of parameterized

action space and design a hierarchical action structure suit-

able for lane change behavior.

Attention mechanism also contributes to the interactive

behavior generation. Attention models are widely used in

domains such as image captioning [26] and machine trans-

lation [15]. Concurrent research introduces attention to au-

tonomous driving. [5] investigated attention in driving from

a cognitive perspective and [10]interpreted driving behavior

learning with attention. We adopt the idea of temporal and

spatial attention to encourage lane change behaviors.

3. Method

In this section, we first introduce the hierarchical action

space designed for lane change behaviors and describe our

overall approach to learning a driving model. We then dive

into the attention mechanism that helps improve the learn-

ing both in efficiency and performance. Finally, we discuss

the reward signal design for the DRL algorithm.

3.1. Hierarchical Action Space for Lane Change

The lane change behaviors in driving policies requires

high-level decisions (whether to make a lane change) and

low-level planning (how to make the lane change). Based

on the parameterized action space [8], we create a hierar-

chical action space for autonomous driving lane changes

as shown in Figure 2. We define three mutually exclusive

discrete high-level actions: Left Lane Change, Lane Fol-

lowing and Right Lane Change. At each time step, the

agent must choose one of the three high-level actions to

138

Figure 2: Illustration of the hierarchical action space for lane

change behavior.

Figure 3: The Actor-Critic architecture used in deep reinforcement

learning, first introduced in [14]. On the left is the data flow dur-

ing inference (forward pass) and on the right is the gradient flow

during training (back-propagation).

execute. Each action requires two continuous-valued pa-

rameters that must be specified. The first parameter is the

steering angle with the value in the range of [−60, 60] de-

grees. Large steering angles are intentionally prevented

for safe driving. The second parameter is the acceleration

brake rate (ABR) applied to the vehicle control module.

This parameter is a real value in the range of [−10, 10].
A positive value means accelerating and a negative value

means braking. Formally, the high-level discrete actions

are defined as Ad = {astraight, aleft, aright}. Each dis-

crete action a ∈ Ad contains a set of continuous parameters

Pa = {pa1 , ..., p
a
n}. The overall hierarchical action space is

defined as

A ={straight, pstraightangle , pstraightABR }

∪ {left, pleftangle, p
left
ABR}

∪ {right, prightangle, p
right
ABR}).

The three sets of actions represent three different types of

driving behaviors. During training, the system will learn to

choose from the three high-level action decisions and apply

proper parameters specific to that action.

3.2. Actor­critic Based DRL Architecture

We develop our algorithm based on Deep Deterministic

Policy Gradient (DDPG) [14], a deep reinforcement learn-

ing algorithm for continuous control. For better training

stability, the actor-critic architecture with two neural net-

works is used. This architecture decouples the action evalu-

ation and selection process into two separate deep neural

networks: actor-network and critic-network, as shown in

Figure 3. The actor-network µ, parameterized by θµ, takes

as input state s and outputs hierarchical actions a along with

its parameter pa. The critic-network Q, parameterized by

θQ, takes as input state s and hierarchical actions a along

with its parameter pa and outputs a scalar Q-Value Q(s, a).
The hierarchical action a is represented as a vector of

the probability of action choices p and the parameters Pa

coupled to each discrete action. The discrete high-level ac-

tion is chosen to be the output with maximum value among

the choices of action probabilities. Then it is coupled with

the corresponding parameters from the parameter outputs.

Though the parameters of all actions are outputted, only the

parameters of the chosen action are used. In this way, the

actor-network simultaneously outputs which discrete action

to execute and how to choose parameters for that action.

The critic-network receives as input all the values of the out-

put layer in the actor. We do not indicate which exact action

is applied for execution or which parameters are associated

with which action during training. In the back-propagation

stage, the critic-network only provides gradients for the se-

lected action and the corresponding parameters. This en-

sures that we update the policy only in the direction where

we explore.

For training stability, we use a standalone target network

[17] for the critic-network and the actor-network, which

updates at a slower rate for a more stable iterative step in

the Bellman equation. We also use replay memory [17]

to store experiences, which can break the dependency be-

tween experiences. The exploration strategy has to deal

with both discrete actions and continuous parameters. We

use ǫ− greedy exploration to randomly explore among the

given set of discrete actions. Then we sample uniformly for

the continuous parameters. That means we choose a random

discrete action a ∈ Ad with probability ǫ and associate it

with continuous parameters {pa1 , p
a
2 , ...}, each sampled uni-

formly over the range of its possible values.

3.3. Attention Mechanism for DRL

Human drivers can consider a series of historical obser-

vations to make driving decisions. They weight importance

according to the time and location of the observations. To

achieve this capability, we introduce an ”Attention Mech-

anism” in our deep reinforcement learning algorithm, as

shown in Figure 4. We first discuss how to add recurrence

to the DDPG algorithm to include temporal dependencies

139

Figure 4: The architecture of the actor network in the Attention

Deep Recurrent Deterministic Policy Gradient algorithm. We con-

sider two kinds of attention: Temporal Attention and Spatial At-

tention. Temporal Attention learns to weight the importance of

previous frames, while Spatial Attention learns the importance of

different locations in the image.

in driving. Next, we introduce two streams of attention we

consider: Temporal Attention and Spatial Attention. The

Temporal Attention weights the past few frames with re-

spect to importance to decide the current driving policy. The

Spatial Attention detects the most important and relevant

regions in the image for driving. The attention module is

added to the actor network for better action selection. The

critic network is set to be a fully convolutional network for

action evaluation. Note that the attention architecture we

propose can also apply to other neural-network-based se-

quential prediction problems, not just to learning for driving

behaviors of self-driving cars. It can be used as an auxiliary

task to enhance the performance of the original algorithm

since the new information needed is limited in our method.

3.3.1 Recurrence in DDPG

The driving task often features incomplete and noisy per-

ception information due to the partial observability from

sensors. Given only one frame of input, the autonomous

driver cannot collect sufficient environment information to

generate the right driving behavior. For example, one ig-

nored piece of information is the velocities of surrounding

vehicles, which are crucial when making lane changes. This

makes driving a Partially-Observable Markov Decision Pro-

cess (POMDP).

To deal with partial observability, recurrence is intro-

duced to better estimate the underlying environment state.

As adding recurrence to DQN improved performance in

Atari games [7], we introduce recurrence into DDPG for

the driving task. The idea is to add an additional recurrent

neural network module (RNN) to the output of the convo-

lutional neural network in the actor network in DDPG. The

RNN module processes the temporal information in the net-

work instead of just having stacked historical observations

as input. Also, a longer sequence of history information

can be incorporated and considered due to the connectiv-

ity through time via RNN, which can help generate more

complex driving strategies. In practice, we choose LSTM

as the basic RNN structure, with the implementation based

on [29]. We refer to this recurrent version of the DDPG

algorithm as Deep Recurrent Deterministic Policy Gradient

(DRDPG).

As compared to the original DDPG, DRDPG offers sev-

eral advantages, including the ability to handle longer input

sequences, exploration of temporal dependencies and better

performance in case of partially observable experiences.

3.3.2 Temporal Attention

We wish to go further by deciding which frames matter most

in past observations. We add temporal attention over the

output of the LSTM layer in the DRDPG model, as shown

in Figure 4. The temporal attention mechanism learns scalar

weights for LSTM outputs at different time steps. The

weight of each LSTM output wi is defined as an inner prod-

uct of the feature vector vi and LSTM hidden vector hi,

followed by a softmax function to normalize the sum of

weights to 1. By this definition, each learned weight is de-

pendent on the previous time step’s information and current

state information.

wT+1−i = Softmax(vT+1−i · hT+1−i) i = 1, ..., T

Then we compute the combined context vector CT . The

context vector CT is a weighted sum of LSTM outputs

through T time steps.

CT =

T
∑

i=1

(wT+1−ihT+1−i)

The derived context vector CT is passed by a fully con-

nected layer FC before calculating the hierarchical actions

of the actor network. The learned weights {wT+1−i}
T
i=1

here can be interpreted as the importance of the LSTM out-

put at a given frame. Therefore, the optimizing process can

be seen as learning to choose which observations are rela-

tively more important for learning the correct actions.

Temporal attention works in the sense that it explicitly

considers the past T frames’ LSTM output features for

computing the action output, while this information is only

passed implicitly by plain LSTM. By increasing the value

of T , the model can consider a longer sequence of history

frames and thus can make a better action choice.

140

3.3.3 Spatial Attention

Human drivers pay special attention to certain objects when

performing specific tasks. For example, drivers care more

about the direction of the road when traversing curvy roads

and pay more attention to surrounding vehicles when mak-

ing lane changes. This intuition can be enforced in the al-

gorithm by adding importance to different locations in the

image, which we call spatial attention.

With spatial attention, the network learns weights for dif-

ferent areas in an image. The context feature used by LSTM

is a weighted sum combination of spatial features multiplied

by the learned weights. According to how the combination

is modeled, previous spatial attention models are divided

into hard attention and soft attention [26]. Inspired by [22],

we use a soft version of attention, which means learning a

deterministic weighted context in the system.

The spatial attention, as shown in Figure 4, occurs af-

ter convolution layers and before recurrent layers. At time

step t, suppose the convolutional layers produce a set of

d feature maps with size m × n. These feature maps can

also be seen as a set of region vectors with length d :

{vit}
L
i=1, v

i
t ∈ ℜD, L = m × n. Each region vector cor-

responds to the features extracted by the CNN in a different

image region. In the soft attention mechanism, we assume

the context vector zt is represented by a weighted sum of

all-region vectors {vit}
L
i=1.

zt =
L
∑

i=1

git · v
i
t

The weights in this sum are chosen in proportion to the im-

portance of this vector (i.e. the extracted feature in this im-

age region), which is learned by the attention network g.

The attention network git has region vector vit and hidden

state ht−1 produced by the LSTM layer as input and outputs

the corresponding importance weight for the region vector

vit. The attention network git here is represented as a fully

connected layer followed by a softmax function:

git = Softmax(wv · v
i
t + wh · ht−1) i = 1, ..., T

The context vector zt is fed into the LSTM layer. The output

of the LSTM layer is concatenated with action vector AT

and then used to compute the actions.

The attention network can be interpreted as a mask over

the CNN feature maps, where it reweights the region fea-

tures to get the most informative features for computing the

actions. Thus, the spatial attention acquires the ability to se-

lect and focus on the more important regions when selecting

the action. This helps to reduce the total number of param-

eters in the network for more efficient training and testing.

3.4. Reward Signal Design

Tabel 1 shows the five components that constitute the re-

ward function. r1, r2, r3 encourage the car to stay in the

lane; r4, r5 encourage the car to run efficiently and make a

proper lane change. Specifically, r5 encourages the car to

overtake if the front vehicle is within a distance of 100 me-

ters. Here x means the distance to the front vehicle in the

same lane. If no vehicle is found, then x has a default value

of 100 meters.

Rewards Term Reward Functions

Road Alignment r1 = cos θ − sinθ

Lane Centering r2 = −|d|

Out-of-Bound Penalty r3 = −✶{OutofBoundary}

Prefer Speed Limit r4 =

{

v v ≤ 35m/s

70− v v > 35m/s

Encourage Overtake r5 = −max(0, 100− x)

Table 1: Terms in the reward function. Where θ is the yaw angle

w.r.t. the road direction; d is the offset to the lane center; v is the

speed; x is the distance to the leading vehicle.

The overall reward function is a linear combination of

terms in Table 1 with assigned weights w: R =
∑5

i=1
wiri.

Here we first normalize the rewards to the range (0, 1) and

then search on the different weighting coefficients to find

the best combination that generates a good result.

4. Experiments

The algorithm is evaluated in the open source car sim-

ulation environment TORCS. To ensure the model is not

limited to a particular road configuration or car type, five

tracks and ten types of cars are used to generate our eval-

uation sets. Each track has two to three lanes with various

brightness levels of the sky. The selected tracks have dif-

ferent surrounding environments and route shapes so that

the training agent can confront all circumstances of driv-

ing, which ensures the complexity of the driving scenarios.

For example, in the Corkscrew scenario, the road has more

curves and fewer straight sections, and there is a sharp high-

speed corner. To successfully traverse the selected tracks,

the car has to learn various skills like U-turn, hill climb-

ing, overtaking and throttling before a large-angle turn. All

these challenges are posed to the training agent with no hu-

man supervision.

We add traffic cars in different locations on every track in

each trial of the training to ensure the density and complex-

ity of the traffic. The traffic cars’ behaviors are controlled

by the internal AI of the TORCS environment, which is de-

signed to mimic human behaviors when driving. We add

141

Figure 5: One example of the five tracks used for training. From

left to right: the map of the example track Street-1, image top view

when starting a new episode, a screenshot of the front view camera

during training.

diversity to the traffic cars’ behavior by changing the in-

ternal parameters like average speed, acceleration limit and

chances of lane changes in the car simulation AI. This will

change the car’s driving style, e.g., being more aggressive

when turning. In this way, we would like to mimic the real

traffic patterns on the road. We set the speed limit of traf-

fic cars to 30 m/s and set the speed limit of our ego vehicle

to 35 m/s. We do this to encourage the overtaking and lane

changing behavior of our vehicle. An example of the envi-

ronment used is shown in Figure 5.

We use images of the car front view as perception sen-

sor input. The raw images are collected at 5 HZ frequency

to avoid feeding near-duplicate images into the model. The

images are then down-sampled to 320× 240 from the orig-

inal video frames. Other measurements used for reward

design like car direction, speed direction, distance to lane

boundaries, etc. are collected along with the images. For

each model tested, we train the agent on all five tracks in

TORCS for a fixed 5-hour period. This allows the agent to

collect around 100,000 frames for each scenario. To avoid

overfitting in one track and add diversity in training, we ran-

domized the sequence of tracks encountered in training. For

each model, the training starts an episode by automatically

selecting one of the five tracks. Every time the car goes

outside of the road boundary or experiences a collision that

causes failure, the episode will end and the program will

restart to generate a new episode. In sum, the agent updates

its network while testing it in the environment for 15 hours

before we evaluate its performance.

We use CNN networks for both the actor and critic net-

works. The feature extraction from images is done by a

standard AlexNet [11] with the first five layers. We train

the LSTM layers sequentially on the video sets from sim-

ulation with an unrolling size of 8 frames during training.

Specifically, the LSTM we use has 64 hidden units. For

optimization, we train our model using stochastic gradient

descent (SGD) with an initial learning rate of 10−3, mo-

mentum of 0.99 and a batch size of 10. The learning rate

is decayed by half whenever training loss plateaus. We run

our training in parallel on 4 Nvidia Titan X GPUs.

Figure 6: Final DRDPG model with hierarchical actions, Spatial

and Temporal attention tested on different trials in TORCS game.

We obtain the result of each map by running 100 episodes.

5. Evaluation

We first evaluate the success rate of our final model with

both temporal and spatial attention on all five tracks in

TORCS. We calculate the success rate by testing the agent’s

ability to drive along the entire track and see if it can suc-

cessfully finish a loop. As shown in Figure 6, the model

shows overall good performance in all five trials with a suc-

cess rate between 60 and 80 percent to complete a runway

circle on the map. The failure cases mainly come from col-

lision or out-of-bounds cases, about half of each. One ex-

ample of out-of-boundary comes from the case in which a

high-speed car fails to turn at a sharp curve since the agent

does not learn to decelerate ahead of time. Another case

occurs when a front vehicle blocks the view of a turn, and

the agent doesn’t have enough time to react to a turn that

suddenly appears. For the collision issue, most collisions

happen when trying to overtake a vehicle or being forced to

do a lane change. Some of these cases are difficult: occlu-

sions can arise when entering a corner or the front vehicle

suddenly slows down due to the road geometry.

We further investigate the performance of our method

compared to the original DDPG baseline, as shown in Fig-

ure 7. All models are evaluated based on average values

over 100 episodes after 15 hours of training. We first com-

pare the version which has hierarchical action space (the

”hier” configuration in Figure 7) with the original DDPG

algorithm. We observe an obvious boost of 2 m/s in average

speed and 3 more lane change behaviors after we apply our

hierarchical action space. The results show that the orig-

inal DDPG algorithm tends to drive more conservatively

and stays behind other vehicles more often without trying

142

Figure 7: A comparison of the performance improvements with

respect to the baseline (DDPG), obtained by introducing the hier-

archical actions (Hier), recurrence (Rec), spatial attention (Spat)

and temporal attention (Temp) from left to right. The final com-

bined model (Comb) applies all of above. The performance evalu-

ation is based on average speed, the number of lane changes, total

reward during an episode and percentage of successful episodes.

to overtake. In comparison, our model with hierarchical

actions is designed to learn separate policies for left lane

change and right lane change, so it tends to act more ag-

gressively and maintain higher speed to make lane changes

whenever possible. Although the method encourages over-

take behavior, it still guarantees safety at the same time, as

the success rate of finishing a loop increases by 3 percent.

This is due to the fact that more overtake behaviors are able

to avoid getting too close to or colliding with the leading ve-

hicle. Our method achieves higher rewards and fewer colli-

sions with other vehicles, thus resulting in a higher success

rate for a complete episode compared to the original DDPG

algorithm.

We next show the improvements of adding recurrence

(”rec”), temporal attention (”temp”) and spatial attention

(”spat”) to the DDPG algorithm with hierarchical actions in

Figure 7. We find that adding recurrence can actually speed

up the training curve and achieve higher rewards and per-

formance as evaluated by the success rate. It also results in

higher average speed due to smoother and more stable driv-

ing behavior. For the attention mechanism, we can observe

that both temporal and spatial attention improve the metrics

compared to the recurrence model. This can be attributed

to the better utilization of the images as input and finally

results in safer and more stable lane change behavior. With

the final combined model (”comb”), we see an increase in

the average speed from 16.7 to 23.2 m/s and the number of

lane changes increase from 13.2 to 17.2 while also improv-

ing the success rate from 67.2% to 73.5% compared to the

original DDPG model.

6. Visualization

Figure 8 and 9 give two examples to illustrate the effect

of attention mechanism in turning and overtaking scenar-

ios. In the turning scenario (Figure 8), the agent has learned

to change lane in order to perform a more efficient turn at

a sharp right curve. At the top-left corner in each figure,

different weights wi in temporal attention are assigned to

the input images. Notice that although the weights gener-

ally increase through time, there are exceptions where the

agent thinks a certain situation that needs special attention.

For example, in frame 5, the car is just crossing the lane

marker on the road, which could be more dangerous and

need greater attention. In this case, a single last frame helps

less than a sequence of frames. By looking back into the

past at the weighted sum of features of several frames be-

fore, the agent can determine the best trajectory for turning

at the corner.

In the overtaking scenario depicted in Figure 9, the re-

gions of lane end and front vehicle are highlighted by the

Spatial Attention. The attention model gives large weight

to the region where the neighboring vehicle appears, which

helps the agent figure out when and how to launch the

proper lane change behavior. As the result, the agent has

learned to approach the front vehicle, slow down to keep

distance, perform a lane change and then speed up to over-

take the front vehicle. By learning a mask over the input

image (i.e., the CNN features correspond to the input im-

age), the agent can extract the relevant context to the task

and learn the proper behavior more efficiently.

7. Conclusion

We introduce an attention-based hierarchical deep rein-

forcement learning algorithm for learning lane change be-

haviors in dense traffic with an end-to-end trainable archi-

tecture. The proposed hierarchical action space for learn-

ing driving behaviors can generate sub-policies for lane

change behaviors in addition to the lane following behav-

ior. This model simplifies the work of deliberately design-

ing a sophisticated lane change maneuver and introduces a

data-oriented approach that can learn the lane change policy

through trial and error. We also investigate how an attention

mechanism can help in the task of driving with deep rein-

forcement learning. The two streams of temporal attention

and spatial attention are proven in experiments to boost the

performance in deep reinforcement learning. The attention

model also helps to explain what is learned in the driving

model.

143

Figure 8: A turning scenario to illustrate Temporal Attention. In this scenario, the agent has learned to do a right lane change for a more

efficient right turn. The number at the top left of each image is the weight assigned to that image frame for temporal attention (higher

weight indicates more importance).

Figure 9: An overtaking scenario to illustrate Spatial Attention. A mask over the input image is learned by the Spatial Attention. Brighter

colors indicate higher weights assigned to that region. The weights are smoothed with a Gaussian kernel for visualization.

References

[1] Mohammed Al-Qizwini, Iman Barjasteh, Hothaifa Al-

Qassab, and Hayder Radha. Deep learning algorithm for

autonomous driving using googlenet. In Intelligent Vehicles

Symposium (IV), 2017 IEEE, pages 89–96. IEEE, 2017. 2

[2] Christopher R Baker and John M Dolan. Traffic interaction

in the urban challenge: Putting boss on its best behavior. In

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ

International Conference on, pages 1752–1758. IEEE, 2008.

1, 2

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016. 2

[4] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong

Xiao. Deepdriving: Learning affordance for direct percep-

tion in autonomous driving. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2722–

2730, 2015. 2

[5] Shitao Chen, Songyi Zhang, Jinghao Shang, Badong Chen,

and Nanning Zheng. Brain-inspired cognitive model with at-

tention for self-driving cars. IEEE Transactions on Cognitive

and Developmental Systems, 2017. 2

[6] Zhilu Chen and Xinming Huang. End-to-end learning for

lane keeping of self-driving cars. In Intelligent Vehicles Sym-

posium (IV), 2017 IEEE, pages 1856–1860. IEEE, 2017. 2

[7] Matthew Hausknecht and Peter Stone. Deep recur-

rent q-learning for partially observable mdps. CoRR,

abs/1507.06527, 7(1), 2015. 4

[8] Matthew Hausknecht and Peter Stone. Deep reinforce-

144

ment learning in parameterized action space. arXiv preprint

arXiv:1511.04143, 2015. 2

[9] Maximilian Jaritz, Raoul de Charette, Marin Toromanoff,

Etienne Perot, and Fawzi Nashashibi. End-to-end race

driving with deep reinforcement learning. arXiv preprint

arXiv:1807.02371, 2018. 2

[10] Jinkyu Kim and John Canny. Interpretable learning for self-

driving cars by visualizing causal attention. In Int. Conf.

Comput. Vis.(ICCV), pages 2961–2969, 2017. 2

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 6

[12] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and

Josh Tenenbaum. Hierarchical deep reinforcement learning:

Integrating temporal abstraction and intrinsic motivation. In

Advances in neural information processing systems, pages

3675–3683, 2016. 2

[13] Sang-Hyun Lee and Seung-Woo Seo. A learning-based

framework for handling dilemmas in urban automated driv-

ing. In Robotics and Automation (ICRA), 2017 IEEE Inter-

national Conference on, pages 1436–1442. IEEE, 2017. 2

[14] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,

Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971, 2015. 1, 3

[15] Minh-Thang Luong, Hieu Pham, and Christopher D Man-

ning. Effective approaches to attention-based neural machine

translation. arXiv preprint arXiv:1508.04025, 2015. 2

[16] Stefanie Manzinger, Marion Leibold, and Matthias Althoff.

Driving strategy selection for cooperative vehicles using ma-

neuver templates. In Intelligent Vehicles Symposium (IV),

2017 IEEE, pages 647–654. IEEE, 2017. 1, 2

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529, 2015. 1, 3

[18] Dean A Pomerleau. Alvinn: An autonomous land vehicle

in a neural network. In Advances in neural information pro-

cessing systems, pages 305–313, 1989. 2

[19] Viktor Rausch, Andreas Hansen, Eugen Solowjow, Chang

Liu, Edwin Kreuzer, and J Karl Hedrick. Learning a deep

neural net policy for end-to-end control of autonomous ve-

hicles. In American Control Conference (ACC), 2017, pages

4914–4919. IEEE, 2017. 2

[20] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and

Senthil Yogamani. End-to-end deep reinforcement learning

for lane keeping assist. arXiv preprint arXiv:1612.04340,

2016. 1

[21] Shai Shalev-Shwartz, Shaked Shammah, and Amnon

Shashua. Safe, multi-agent, reinforcement learning for au-

tonomous driving. arXiv preprint arXiv:1610.03295, 2016.

2

[22] Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr

Fedorov, and Anastasiia Ignateva. Deep attention recurrent

q-network. arXiv preprint arXiv:1512.01693, 2015. 5

[23] Junqing Wei, Jarrod M Snider, Tianyu Gu, John M Dolan,

and Bakhtiar Litkouhi. A behavioral planning framework for

autonomous driving. Intelligent Vehicles Symposium (IV),

2014 IEEE, 2014. 1

[24] Peter Wolf, Christian Hubschneider, Michael Weber, André

Bauer, Jonathan Härtl, Fabian Dürr, and J Marius Zöllner.

Learning how to drive in a real world simulation with deep

q-networks. In Intelligent Vehicles Symposium (IV), 2017

IEEE, pages 244–250. IEEE, 2017. 1

[25] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-

to-end learning of driving models from large-scale video

datasets. arXiv preprint, 2017. 2

[26] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In International Conference on

Machine Learning, pages 2048–2057, 2015. 2, 5

[27] Zhaoyang Yang, Kathryn Merrick, Lianwen Jin, and Hus-

sein A Abbass. Hierarchical deep reinforcement learning for

continuous action control. IEEE Transactions on Neural Net-

works and Learning Systems, 2018. 2

[28] Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and

Jiebo Luo. End-to-end multi-modal multi-task vehicle con-

trol for self-driving cars with visual perception. arXiv

preprint arXiv:1801.06734, 2018. 2

[29] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.

Recurrent neural network regularization. arXiv preprint

arXiv:1409.2329, 2014. 4

145

