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Abstract
In the spectrum of vision-based autonomous driving, vanilla end-to-end models

are not interpretable and are suboptimal in performance, while mediated perception
models require additional intermediate representations such as segmentation masks
or detection bounding boxes, whose annotation can be prohibitively expensive as we
move to a larger scale. More critically, all prior works fail to deal with the notori-
ous domain shift if we were to merge data collected from different sources, which
greatly hinders the model generalization ability. In this work, we address the above
limitations by taking advantage of virtual data collected from driving simulators, and
present DU-drive, an unsupervised real-to-virtual domain unification framework for
end-to-end autonomous driving. It first transforms real driving data to its less com-
plex counterpart in the virtual domain, and then predicts vehicle control commands
from the generated virtual image. Our framework has three unique advantages: 1)
it maps driving data collected from a variety of source distributions into a unified
domain, effectively eliminating domain shift; 2) the learned virtual representation
is simpler than the input real image and closer in form to the "minimum sufficient
statistic" for the prediction task, which relieves the burden on the compression phase
while optimizing the information bottleneck tradeoff and leads to superior predic-
tion performance; 3) it takes advantage of annotated virtual data which are unlimited
and free to obtain. Extensive experiments on two public driving datasets and two
driving simulators clearly demonstrate the performance superiority and interpretive
capability of DU-drive.
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Chapter 1

Introduction

The development of a vision-based autonomous driving system has been a long-standing research
problem [2, 3, 4, 5]. End-to-end models, among many methods, have attracted much research
interest [6, 7, 8] as they optimize all intermediate procedures simultaneously and eliminate the
tedious process of feature engineering. [6] trains a convolutional neural network (CNN) to map
raw image pixels from a frontal camera to steering commands, which successfully maneuvered
the test car in constrained environments. Many attempts have since been made to improve the
performance of vanilla end-to-end models by taking advantage of intermediate representations
(Figure 1.1). For example, [7] uses semantic segmentation as a side task to improve model perfor-
mance, while [9] first trains a detector to detect nearby vehicles before making driving decisions.
However, the collection of driving data and the annotation of intermediate representation can be
prohibitively expensive as we move to a larger scale.

Moreover, raw images of driving scenes are loaded with nuisance details that are not relevant
to the prediction task due to the complexity of the real world. For example, a typical human
driver will not change his or her behavior according to the shadow of trees on the road, or the
view beyond the road boundaries. Such nuisance information could distract the neural network
from what is truly important and negatively impact prediction performance. [10] visualizes the
activation of the neural network and shows that the model not only learns driving-critical infor-
mation such as lane markings, but also unexpected features such as atypical vehicle classes. [8]
presents results of the driving model’s attention map refined by causal filtering, which seems to
include rather random attention blobs.

As pointed out by [11] in the information bottleneck principle, the learning objective for a
deep neural network could be formulated as finding the optimal representation that maximally
compresses the information in the input while preserving as much information as possible about
the output, or in other words, finding an approximate minimal sufficient statistic of the input
with respect to the output. Further work [12] shows that the Stochastic Gradient Descent (SGD)
optimization of the neural network has two distinct phases, the fitting phase during which the
mutual information of the intermediate layers with the output increases and empirical error drops,
and the compression phase during which the mutual information of the intermediate layers with
the input decreases and the representation becomes closer in form to the minimum sufficient
statistic of the output. They also show that most of the training effort is spent on the compression
phase, which is the key to good generalization. It is therefore beneficial for the optimization of
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(a) Vanilla end-to-end (b) With scene parsing

(c) With vehicle/lane detection (d) With DU-drive (ours)

Figure 1.1: Various methods have been proposed for vision-based driving models. While vanilla
end-to-end models (a) are not interpretable and are suboptimal in performance, scene parsing (b)
or object detection (c) requires expensively annotated data. Our method (d) unifies real images
from different datasets into their simpler counterparts in the virtual domain that contains fewer
superfluous details, which boosts the performance of the vehicle command prediction task.

the network to have a representation that contains less irrelevant complexity, as it could relieve the
burden of the compression phase by giving a better "initialization" of the optimal representation.

More critically, all existing work focuses on a single source of data and does not explicitly
deal with generalization to an unseen dataset. As noted by [13], datasets could have strong built-
in biases, and a well-functioning model trained on one dataset will very likely not work so well on
another dataset that is collected differently. This phenomenon is known as domain shift, which
characterizes the distance in the distribution of inputs and outputs from different domains. While
the existing model could be tuned to gradually fit the new domain with the injection of more and
more supervised data from the new environment, this could be extremely data-inefficient and
prohibitively expensive for tasks with diverse application scenarios like autonomous driving.

We propose to tackle the above challenges by taking advantage of virtual data collected from
simulators. Our DU-drive system maps real driving images collected under variant conditions
into a unified virtual domain, and then predicts vehicle commands from the generated fake virtual
image. Since all real datasets are mapped to the same domain, we could easily extend our model
to unseen datasets while taking full advantage of the knowledge learned from existing ones.
Moreover, virtual images are "cleaner" as they are less complex and contain less noise, and
thus closer to the "minimal sufficient statistic" of the vehicle command prediction task, which is
the target representation that the neural network should learn under the information bottleneck
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framework. Last but not least, our model could make full use of unlimited virtual data and the
simulation environment, and a model learned in the virtual environment could be directly applied
to a new dataset after unifying it to the virtual domain. Experimental results on two public driving
datasets and two driving simulators under supervised and semi-supervised settings, together with
analysis of the efficiency of the learned virtual representation compared to raw image input under
the information bottleneck framework clearly demonstrate the performance superiority of our
method.
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Chapter 2

Related Work

2.1 Vision-based Autonomous Driving
Vision-based solutions are believed to be a promising direction for solving autonomous driving
due to their low sensor cost and recent developments in computer vision. Since the first success-
ful demonstration in the 1980s [2, 4, 5], various methods have been investigated in the spectrum
of vision-based driving models, from end-to-end methods to full pipeline methods [14]. The
ALVINN system [3], first introduced in 1989, is the pioneering work in end-to-end learning for
autonomous driving. It shows that an end-to-end model can indeed learn to steer under sim-
ple road conditions. The network architecture has since evolved from the small fully-connected
network of ALVINN into convolutional networks used by the DAVE system [15] and then deep
models used by the DAVE-2 system [6]. Intermediate representations such as semantic segmen-
tation masks and attention maps are shown to be helpful to improving the performance [7, 8].

Pipeline methods separate the parsing of the scene and the control of the vehicle. [9] first
trains a vehicle detector to determine the location of adjacent cars and outputs vehicle com-
mands according to a simple control logic. [16] shows that convolutional neural networks can
be used to do lane and vehicle detection at a real-time frame rate. While such methods are
more interpretable and controllable, the annotation of intermediate representations can be very
expensive.

Our method takes advantage of an intermediate representation obtained from unsupervised
training and therefore improves the performance of vanilla end-to-end driving models without
introducing any annotation cost.

2.2 Generative Adversarial Networks
Generative adversarial network (GAN) is a new framework for estimating generative models via
an adversarial process first proposed by [17]. Given a set of data X drawn from an unknown dis-
tribution pdata, GAN introduces a noise variable z drawn from some predefined distribution pz,
and parametrizes the mapping from z to x asG(z; θg), whereG is a differentiable function repre-
sented as a neural network parametrized by θg. Another neural network D(x; θd) is also defined,
which takes a data point as input and outputs a single scalar. D(x) represents the probability that
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D believes x is from the natural dataset X . D is thus called the discriminative network while G
is called the generative network. The two networks are trained hand-in-hand by an adversarial
process called the minimax game, where D and G tries to maximize and minimize the following
objective V (D,G) respectively:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

Intuitively, the goal of the discriminator is to distinguish "real" data drawn from the natural data
distribution pdata and the "fake" data produced by the generative network, while the goal of
the generator is to fool the discriminator. During training, the objective is iteratively optimized
w.r.t. each network with stochastic gradient-based methods. The training reaches equilibrium
when pz(G(z)) = pdata(x), i.e., when the generator generates real-looking data points that the
discriminator cannot distinguish from real data points.

However, generative adversarial networks are notoriously difficult to train in their original
form. Many variant objectives and training schemes have been proposed to stabilize the training
process. [18] showed that minimizing the least square loss for the discriminator is equivalent
to minimizing the Pearson divergence between the two distributions. LS-GAN alleviates the
gradient vanishing problem and leads to a more stable training process. [19] proposed WGAN,
which minimizes the Earth-Mover distance and to a large extent resolves the mode-collapse issue.
It also does not require a careful balancing in training the discriminator and the generator. In our
implementation, we use LS-GAN to stabilize our training process.

2.3 Information Bottleneck Theorem

Deep learning has celebrated tremendous success in many applications during the past few years,
yet little is known about the internal structure or optimization process of deep neural nets. The
information bottleneck theorem (IB) [20] suggests the study of the process in the information
plane - the plane of mutual information values of the network neurons with the input and output
variable. Under the IB framework, [11] discovered that deep learning proceeds in two phases: the
"fitting" phase where the mutual information between the network layers and the input/output in-
creases, and the "compression phase" where the mutual information between the network layers
and the input decreases. Intuitively, the "fitting" phase could be thought of as the memorization
process while the "compression" phase could be thought of as the forgetting process, which is the
key to good generalization. The optimization process could be alternatively framed as optimizing
the information bottleneck tradeoff, which aims to retain as much information as possible about
the output label while discarding irrelevant information in the input. In other words, the goal
is to find an estimate of the minimal sufficient statistic of the input with respect to the output.
Figure 2.1 illustrates the information path of five layers of a neural network in the information
plane during a training process.
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Figure 2.1: Illustration of the information paths for a 5-layer neural network during the training
process [1].
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2.4 Domain Adaptation for Visual Data
Ideally, a model trained for a specific task should be able to generalize to new datasets collected
for the same task, yet research has shown that model performance could seriously degrade when
input distribution changes due to the inherent bias introduced in the data collection process [13].
This phenomenon is known as domain shift or dataset bias. In the world of autonomous driving,
it is even more critical to have a model that can generalize well to unseen scenarios.

Dataset bias originates from many different sources. As pointed out by [13], there is selection
bias where a dataset often prefers particular kinds of images (e.g. summer scenes with few trees
and clear sky for a driving dataset collected in Texas), and capture bias caused by a particular
setup of cameras (e.g. mounting the camera at a fixed location of a particular vehicle). While
it is difficult to measure how badly the dataset bias will degrade the generalization ability of
the model, as it is inherently difficult to measure the distance between two high-dimensional
distributions, one way to quantify the difference between two datasets is to train a classifier on
the two datasets and see how easy it is to distinguish images from different datasets. A pair of
datasets that is relatively easy to tell apart is more likely to cause domain shift than a pair of
datasets that is relatively difficult to discriminate.

Domain adaptation methods attempt to battle domain shift by bridging the gap between the
distribution of source data and target data [21, 22]. Recently, generative adversarial network
(GAN) based domain adaptation, also known as adversarial adaptation, has achieved remark-
able results in the field of visual domain adaptation. [23] introduces a framework that subsumes
several approaches as special cases [24, 25, 26]. It frames adversarial adaptation as training an
encoder (generator) that transforms data in the target domain to the source domain at a certain
feature level, trying to fool the adversarial discriminator, which in turn tries to distinguish the
generated data from those sampled from the source domain. The line of work on style trans-
fer [27, 28, 29] could also be potentially applied to domain adaptation at the pixel level.

One subarea especially to our interest is the adaptation of virtual data to real data. As the
collection of real-world data can be excessively expensive in certain cases, virtual data rendered
with computer graphics technologies can come to remedy if we could adapt knowledge learned
in the virtual domain to the real domain. [30] proposed a GAN-based model that transforms data
from the virtual domain to the real domain in the pixel space in an unsupervised manner by
utilizing a content-similarity loss to retain annotation. [31] uses adversarial training to improve
the realism of synthetic images with the help a self-regularization term, a local adversarial loss
and a buffer of training images for the discriminator. [32] randomizes the texture of objects in the
robot simulator and trains a visuomotor policy without using any real-world data. [33] trains a
driving policy with reinforcement learning in a simulator by transforming virtual images to real
images, retaining the scene structure with an adversarial loss on the segmentation mask.

While existing work aims at transforming virtual images into realistic-looking images, we
argue that doing the opposite, i.e., transforming real images into the virtual domain, could be
more advantageous for learning a driving policy. The transformation from real to virtual is an
easier task as it is more manageable to go from complex to simple, and all real datasets could be
unified into their simpler counterparts in the virtual domain.
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Chapter 3

Unsupervised Domain Unification

3.1 Network Design and Learning Objective
Learning Objective for DU-Drive Given a dataset of driving images labeled with vehicle com-
mands in the real domain and a similar dataset in the virtual domain, our goal is to transform a
real image into the virtual domain and then run a prediction algorithm on the transformed fake
virtual image. The overall architecture is shown in Figure 3.1. Our model is closely related to
conditional GAN [34], where the generator and discriminator both take a conditional factor as
input, yet it is different in two subtle respects. One is that in our model, the discriminator does
not depend on the conditional factor. The other is that our generator does not take any noise
vector as input. Unlike the mapping from a plain virtual image to a rich real image, where there
could be multiple feasible solutions, the mapping from a real image to its less complex virtual
counterpart should be unique. Therefore, we could remove the noise term in conventional GANs
and use a deterministic generative network as our generator.

More formally, let Xr = {xri ,yri }Nr
i=1 be a labeled dataset withN r samples in the real domain,

and let Xv = {xvi ,yvi }N
v

i=1 be a labeled dataset with N v samples in the virtual domain, where x is
the frontal image of a driving scene and y is the corresponding vehicle command. Our DU-drive
model consists of a deterministic conditional generator G(xr; θG) → xf , parametrized by θG,
that maps an image xr ∈ Xr in the real domain to a fake virtual image xf , a virtual discriminator
D(xv; θD) that discriminates whether a image is sampled from true virtual images or from fake
virtual images, and a predictor P (xv; θP ) → yv, that maps a virtual image to a vehicle control
command.

The learning objective of DU-drive is:

min
θG,θP

max
θD
Ld(D,G) + λLt(P,G), (3.1)

where Ld(D,G) is the domain loss, which the generator tries to minimize and the discriminator
tries to maximize in the minimax game of GAN. Ld(D,G) is defined as:

Ld(D,G) =Exv [logD(xv; θD)]+ (3.2)
Exr [log(1−D(G(xr; θG); θD))], (3.3)

9



Figure 3.1: Model architecture for DU-Drive. The generator network G transforms input real
image to fake virtual image, from which the vehicle command is predicted by the predictor
network P . The discriminator network D tries to distinguish the fake virtual images from true
virtual images. Both the adversarial objective and the prediction objective drive the generator G
to generate the virtual representation that yields the best prediction performance. For simplicity,
instance normalization and activation layers after each convolutional/fully connected layer are
omitted. (Abbr: n: number of filters, k: kernel size, s: stride size)
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Lt(P,G) is the task-specific objective for predictor and generator, which in this work is the mean
square loss between the predicted control command and the ground truth control command,
defined as:

Lt(P,G) = Exr [‖P (G(xr; θG), θP )− yr‖22] (3.4)

λ is a hyperparameter that controls the weight of task-specific loss and the domain loss.
Network Design For the GAN part of the model, we mostly adopt the network architecture as
defined in [29], which has achieved impressive results in style transfer tasks. The generator
network consists of two convolutional layers with 3x3 kernel and stride size 2, followed by 6
residual blocks. Two deconvolutional layers with stride 1/2 then transform the feature to the same
size as the input image. We use instance normalization for all the layers. For the discriminator
network, we use a fully convolutional network with convolutional layers of filter size 64, 128,
256 and 1. Each convolutional layer is followed by instance normalization and Leaky ReLU
nonlinearity. We do not use PatchGAN as employed in [28] because driving command prediction
needs global structure information.

For the predictor network, we adopt the network architecture used in the DAVE-2 system[6],
also known as PilotNet, as it has achieved decent results in end-to-end driving [6, 10, 29]. The
network contains 5 convolutional layers and 4 fully connected layers. The first three convolu-
tional layers have kernel size 5x5 and stride size 3, while the last two layers have kernel size 3x3
and stride size 1. No padding is used. The last convolutional layer is flattened and immediately
followed by four fully connected layers with output size 100, 50, 10 and 1. All layers use ReLU
activation.

3.2 Learning

Our goal is to learn a conditional generator that maps a real image into the virtual domain. How-
ever, a naive implementation of conditional GAN is insufficient for two reasons. First, the adver-
sarial loss only provides supervision at the level of image distribution and does not guarantee the
retention of the label after transformation. Second, conventional GANs are vulnerable to mode
collapse, a common pitfall during the optimization of the GAN objective where the distribution
of transformed images degenerates. Previous work on adapting virtual images to real images
alleviates those problems by introducing a task-specific loss to add additional constraints to the
image generated. For example, [30] uses a content similarity loss to enforce that the foreground
of the generated image matches with that of the input image. [31] employs a self-regularization
term that minimizes the image difference between the synthetic and refined images.

Unfortunately, we cannot take advantage of similar techniques as the "foreground", or the
information critical to retaining the label is not obvious for autonomous driving. Instead, we
introduce a joint training scheme, where the conditional generator and the predictor are trained
simultaneously, so that the supervision from the prediction task gradually drives the generator to
convert the input images from the real domain to its corresponding representation in the virtual
domain, which retains the necessary semantics and yields the best prediction performance. More
formally, our objective in Eq. 3.1 can be decomposed into three parts with respect to the three
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networks G,P and D:

min
θG
Ld(D,G) + λLt(P,G), (3.5)

min
θP
Lt(P,G), (3.6)

max
θD
Ld(D,G) (3.7)

We omit the weight term λ in Equation 3.6, as it is easy to see that only θG is influenced by both
the domain loss and the prediction loss, and we can train θD, θG and θP with respect to the three
objectives above independently. We denote αP as the learning rate for updating θP , and αGAN as
the learning rate for updating θD and θG.

During training, we update θD, θG and θP sequentially by alternately optimizing the above
three objectives, so that the generation quality and prediction performance improve hand in hand.

3.3 Domain Unification
Consider the case when we have multiple real datasets {xr1 ,yr1},...,{xrn ,yrn}. Due to different
data distribution depicted by road appearance, lighting conditions or driving scenes, each dataset
belongs to a unique domain which we denote as Dr1 ,...,Drn respectively. Prior works on end-
to-end driving tend to deal with only one domain rather than a more general reasoning system.
DU-drive, however, unifies data from different real domains into a single virtual domain and
eliminates the notorious domain shift problem.

For each real domain Dri , we use our DU-drive model to train a generator that transforms
images xri into their counterparts xfi in a unified virtual domain Dv (Figure 3.2). A global
predictor Pv could then be trained to do vehicle command prediction from the transformed virtual
images. We fix the generator for each real domain and train the global predictor with labeled data
from multiple real domains simultaneously. As in our training setup for a single domain, we also
use PilotNet pretrained on virtual data as our initialization for the global predictor.

3.4 Connection with Information Bottleneck Principle
Given a raw image input, what could be a good intermediate representation that could help boost
the performance of the prediction task? We try to answer this question under the information
bottleneck framework.

Formally, let X be the raw image input and Y be the vehicle control command that is to
be predicted. The information bottleneck objective of learning for a neural network is to find
the optimal representation of X w.r.t. Y , which is the minimal sufficient statistic T (x), the
simplest sufficient statistic that captures all information about Y in X . However, closed form
representation for the minimum sufficient statistic does not exist in general, and according to
[12] this objective could be written as a tradeoff between compression of X and prediction of Y
formulated in the following form:

L[p(t|x)] = I(X;T )− βI(T ;Y ) (3.8)
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Figure 3.2: Domain unification by DU-drive. For each real domain, a generator is trained inde-
pendently to transform real images to fake virtual images in a unified virtual domain. A single
virtual image to the vehicle command predictor is trained to do prediction across multiple real
domains.

where I(X;T ) denotes the mutual information between the learned representation and input,
and I(T ;Y ) denotes the mutual information between the learned representation and output. This
objective is optimized successively for each layer. At the beginning of training, the objective at
the input layer where T = X can be written as

L{T=X} =I(X;X)− βI(X;Y ) (3.9)
=H(X)− β(H(Y )−H(Y |X)) (3.10)
=H(X)− βH(Y ) (3.11)

where Eq. 3.11 follows from the fact that X is a sufficient statistic for Y . Now, consider the
case when we have an intermediate representation G(X) of X . We assume that G(X) is also
a sufficient statistic of Y , which is reasonable for any meaningful intermediate representation.
Then the objective when T = G(X) is

L{T=G(X)} =I(X;G(X))− βI(G(X);Y ) (3.12)
=(H(G(X))−H(G(X)|X))− β(H(Y )−H(Y |X)) (3.13)
=H(G(X))− βH(Y ) (3.14)

Subtracting Eq. 3.12 from Eq. 3.9 yields:

L{T=X} − L{T=G(X)} = H(X)−H(G(X)) (3.15)

This essentially tells us that an intermediate representation with lower entropy could give a better
initialization to the information bottleneck objective, which motivates us to transform real images
into their simpler virtual counterparts.
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Chapter 4

Experiments

4.1 Data

We use TORCS [35], an open-source car racing simulator, and Carla [36], a recent realistic urban
driving simulator as our platform for virtual data collection. Figure 4.2 shows samples from both
datasets. For TORCS, we construct a virtual dataset by setting up a robot car that follows a
simple driving policy as defined in [9] and marking down its frontal camera images and steering
commands. We also included twelve traffic cars that follow a simple control logic as defined
in [9], with random noise added to the control commands to encourage varied behaviors. We
captured our data on six game tracks with different shapes, which are summarized in Figure
4.1 To account for the imbalance of right turns and left turns in the virtual data, which could
introduce bias in the domain transformation process, we augment our data by flipping the image
and negate the steering command. For Carla, we use the training dataset provided by [37].

We use two large-scale real-world datasets released by Comma.ai [38] and Udacity [39]
respectively (Table 4.1). Both datasets are composed of several episodes of driving videos. For
the Comma.ai dataset, we follow the data reader provided by [38] and filter out data points where
the steering wheel angle is greater than 200. For the Udacity dataset, we use the official release
of training/testing data for challenge II in [39]. Large variance could be observed in lighting/road
conditions and roadside views.

Dataset train/test frames Lighting size
Commai.ai 345887/32018 Day/Night 160 x 320
Udacity 33808/5279 Day 240 x 320
Carla 657600/74600 Day/Dawn 88 x 200
TORCS 30183/3354 Day 240 x 320

Table 4.1: Dataset details.
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Figure 4.1: Shape of the 6 tracks in TORCS simulator from which virtual data are collected.

Figure 4.2: Sample data used by our work. From top to down: Carla (virtual), TORCS (virtual),
Comma.ai (Real), Udacity (real)

4.2 Preprocessing

We first crop the input image to 160 x 320 by removing the extra upper part, which is usually
background sky that does not change driving behavior. We then resize the image to 80 x 160 and
normalize the pixel values to [-1, 1].

Instead of predicting the steering angle command directly, we predict the inverse of the radius
as it is more stable and invariant to the geometry of the data-capturing car [6, 8]. The relationship
between the inverse turning radius ut and steering angle θt is characterized by the Ackermann
steering geometry:

θt = utdwKs(1 +Kslipv
2
t ) (4.1)

where θt is the steering command in radians, ut(1/m) is the inverse of the turning radius, and
vt(m/s) is the vehicle speed at time t. dw(m) stands for the wheelbase, which is the distance be-
tween the front and the rear wheel. Kslip is the slip coefficient. Ks is the steering ratio between
the turn of the steering wheel and the turn of the wheels. We get dw and Ks from car specifics
released by the respective car manufacturer of the data-capturing vehicle, and use the Kslip pro-
vided by Comma.ai [38], which is estimated from real data. After predicting ut, we transform it
back to θt according to equation 4.1 and measure the mean absolute error of the steering angle
prediction.
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4.3 Training details
All the models are implemented in Tensorflow [40] and trained on an NVIDIA Titan-X GPU.
We train all networks with the Adam optimizer [41] and set β1 = 0.5. We follow the techniques
used in [27] to stabilize the training. First, we use LSGAN [42], where the conventional GAN
objective is replaced by a least square loss. Thus the loss function becomes

Ld(D,G) =Exv [D(xv; θD)
2]+ (4.2)

Exr [(1−D(G(xr; θG); θD))
2], (4.3)

Second, we train the discriminator using a buffer of generated images to alleviate model oscilla-
tion [31]. We use a buffer size of 50.

In order to take advantage of the labeled data collected from simulators, we initialize the
predictor network with a model that is pretrained on virtual images. During pretraining, we set
the batch size to 2000 and learning rate to 0.01.

At each step, we sequentially update θG, θP and θD with respect to the objective functions in
3.5, 3.6 and 3.7. We use a batch size of 60. We set αP = 0.0002, αGAN = 0.00002, and λ = 0.5
to 1. We train the model for a total of 7 epochs.

After obtaining a real-to-virtual generator for each real domain, we could fix the generator
and train a global predictor with all real datasets. We initialize the global predictor with PilotNet
pretrained on virtual data, and use a learning rate of 0.001 and a batch size of 2000 for training.

4.4 Metrics and baselines
We evaluate the effectiveness of our model in terms of the quality of generated images in the
virtual domain and the mean absolute error of steering angle prediction. We compare the perfor-
mance of DU-drive with the following baselines. To ensure fairness, we use the same architecture
for the predictor network as described in section 3.1.
• Vanilla end-to-end model (PilotNet) Our first baseline is a vanilla end-to-end model,

where a real driving image is directly mapped to a steering command. This is essentially
the same model (PilotNet) as employed by [6].

• Fine-tune from virtual data A straightforward way to do domain adaption is to fine-tune
a model pretrained in the source domain with data in the target domain. We first train a
predictor with virtual data only, then fine-tune it with the real dataset.

• Conditional GAN A naive implementation of conditional GAN (cGAN) [34] uses a gen-
erator G to transform an image x from the real domain to an image G(x) in the virtual
domain. A discriminative network D is set up to discriminate G(x) from y sampled from
the virtual domain while G tries to fool the discriminator. No additional supervision is
provided other than the adversarial objective. We also train a PilotNet to predict steering
angle from the fake virtual image generated by cGAN.

• CycleGAN CycleGAN [28] is a method to do unpaired image-to-image translation, which
could also be applied to transforming real driving images to the virtual domain. It uses
one generative adversarial network GX2Y to transform image x from domain X to image
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Figure 4.3: Image generation results of DU-Drive. Information not critical to driving behavior,
e.g. day/night lighting condition and the view beyond the road boundary, is unified. Driving-
critical cues like lane markings are well preserved.

GX2Y (x) in domain Y , and another generative adversarial network GY 2X to transform
GX2Y (x) back to an image GY 2X(GX2Y (x)) in domain X . A cycle consistency loss is
employed to ensure that GY 2X(GX2Y (x)) = x.

• PilotNet joint training To verify the effectiveness of our domain unification model, we
also directly train a PilotNet with two labeled real datasets simultaneously.

4.5 Quantitative Results and Comparisons

We compare the performance of steering command prediction for a single real domain of our
DU-drive (single) model with the plain end-to-end model (PilotNet), fine-tuning from virtual data
and conditional GAN without joint training (Table 4.2). Both DU-drive (single) and fine-tuning
from virtual data perform better than the plain end-to-end model, which verifies the effectiveness
of leveraging annotated virtual data. DU-drive (single) outperforms fine-tuning by 12%/20%
using TORCS virtual data and 11%/41% using Carla virtual data for the Comma.ai/Udacity
datasets respectively, despite using the same training data and prediction network. This verifies
the superiority of transforming complex real images into their simpler counterparts in the virtual
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domain for the driving command prediction task. Conditional GAN without joint training does
not perform well as the adversarial objective itself is not enough to ensure the preservation of
label.

Simulator TORCS Carla
Dataset Model MAE SD MAE SD

Udacity

PilotNet[6] 6.018 7.613 6.018 7.613
fine-tune from virtual 5.808 7.721 6.053 8.041

cGAN [34] 5.921 6.896 4.925 7.100
PilotNet joint training 15.040 27.636 15.040 27.636

DU-Drive (single) 4.558 5.356 3.571 4.958
DU-Drive (unified) 4.521 5.558 3.808 4.650

Comma.ai

PilotNet[6] 1.208 1.472 1.208 1.472
fine-tune from virtual 1.203 1.500 1.196 1.473

cGAN [34] 1.215 1.405 1.206 1.404
PilotNet joint training 5.988 11.670 5.988 11.670

DU-Drive (single) 1.061 1.319 1.068 1.337
DU-Drive (unified) 1.079 1.270 1.174 1.460

Table 4.2: Mean absolute error (MAE) and standard deviation (SD) for the steering angle pre-
diction task. DU-drive clearly outperforms all baseline methods.

4.6 Information Bottleneck Analysis of Virtual Representa-
tion

As shown in Table 4.2, transforming real images to the virtual domain using our DU-drive model
gives superior performance even with the same training data and predictor network. We attribute
this to the fact that virtual images are more homogeneous and contains less complexity that is not
related to the prediction task. As shown in Figure 4.3, superfluous details including views beyond
the road and changeable lighting conditions are unified into a clean, homogeneous background,
while cues critical for steering angle prediction like lane markings are preserved. In the language
of information bottleneck theory, this corresponds to a representation that is closer to the optimal
minimum sufficient statistic than the raw image with respect to the prediction task.

Following the deduction in 3.4, we now show by estimation that H(X) > H(Xv), which
implies L{T=X} > L{T=Xv}. While it is unclear how to measure the entropy of an arbitrary
set of images, under the mild assumption of normal distribution, the entropy equals the natural
logarithm of the determinant of the covariance matrix up to a constant. We therefore treat each
image as a vector and measure the total variance of 50 randomly sampled pairs of real and
generated virtual data. As shown in the results summarized in Table 4.3, virtual representation
tends to have lower entropy and hence gives a better initialization to the information bottleneck
objective. Figure 4.4 shows that for the four data points we obtained from our experiments, the
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Figure 4.4: The percentage decrease in MAE versus the percentage decrease in input entropy.
The four data points are from the combination of two real datasets and two simulators. The
percentage decrease in MAE is calculated between fine-tune and DU-drive (single).

percentage decrease in prediction mean absolute value is positively corelated with the percentage
decrease in input entropy.

Variance
Carla TORCS

Udacity Commaai Udacity Commaai
Real 82745 23902 107666 29656

Virtual 31650 23483 62389 22453

Table 4.3: Variance of 50 randomly sampled pairs of real and generated virtual images. The
generated virtual images have lower variance, which implies lower entropy for input distribution
and thus less burden during the compression phase when optimizing the information bottleneck
tradeoff.

4.7 Effectiveness of Domain Unification

A critical advantage of our model is that data collected from different sources can be unified
in the same virtual domain. As shown in Figure 4.3, images from the Comma.ai dataset and
those from the Udacity dataset are transformed into a unified virtual domain, whose superiority
is directly reflected in the performance of the steering angle prediction task. As shown in Table
4.2, directly training a network with data from two real domains together will lead to results much
worse than training each one separately due to domain shift. However, with DU-drive (unified),
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a single network could process data from multiple real domains with comparable results to DU-
drive (single). Moreover, DU-drive separates the transformation and prediction process, and a
generator could be independently trained for a new real dataset.

To further study the generalization ability of DU-drive, we conducted semi-supervised exper-
iments where labels are limited for an unseen dataset. We first train a DU-drive model with the
Comm.ai data, then use 20%/50% of the labeled Udacity data respectively to train the generator
with our co-training scheme and report the prediction performance on the test set. We also exper-
imented on joint training with the Comma.ai dataset under our domain unification framework.
As shown in Table 4.4, Domain unification outperforms baselines by a large margin, especially
when labeled data are scarce. This shows the superiority of domain unification at transferring
knowledge across domains and alleviating domain shift.

Percentage
Carla TORCS

PilotNet Ours(single) Ours(unified) PilotNet Ours(single) Ours(unified)
20% 7.86 7.12 6.02 7.86 6.85 6.34
50% 7.11 6.41 5.15 7.11 5.73 5.42

100% 6.02 3.57 3.81 6.02 4.56 4.52

Table 4.4: MAE for semi-supervised learning.

4.8 Comparison with CycleGAN
Although CycleGAN seems to do better at recovering details (Figure 4.5), which could be impor-
tant in many generation tasks, the additional details that are unrelated to steering angle prediction
do not help much for our task. They also come at a cost of high memory usage, which could
make joint training with the predictor difficult. Moreover, since real images are more complex
than virtual images, the generated fake real images often include lots of undesired hallucinated
details, which justifies our motivation to go the other way around.

4.9 Prevention of mode collapse
Mode collapse is a common pitfall for generative adversarial networks. Due to the lack of ad-
ditional supervision, a naive implementation of conditional GAN easily suffers from unstable
training and mode collapse (Figure 4.6). With our novel joint training of steering angle predic-
tion and real-to-virtual transformation, mode collapse for driving-critical information like lane
markings is effectively prevented.
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Figure 4.5: Image generation results of CycleGAN. Top row: real source images and generated
fake virtual images. Bottom row: virtual source images and generated fake real images.

Figure 4.6: Mode Collapse happens for naively implemented conditional GAN.
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Chapter 5

Conclusion and Future Work

We propose a real-to-virtual domain unification framework for autonomous driving, or DU-drive,
that employs a conditional generative adversarial network to transform real driving images to
their simpler counterparts in the virtual domain, from which the vehicle control commands are
predicted. In the case where there are multiple real datasets, a real-to-virtual generator was able
to be independently trained for each real domain and a global predictor was able to be trained
with data from multiple sources simultaneously. We further analyze the advantage of using the
virtual representation under the framework of the information bottleneck theorem. Qualitative
and quantitative experiment results clearly show that our model can effectively unify real images
from different sources to more efficient representations in the virtual domain, eliminating domain
shift and boost the performance of the control command prediction task.

One important direction for future work is the deployment of our method in dynamic environ-
ments. For sequential prediction tasks such as vehicle control, good supervised-learning testing
results on a given dataset don’t guarantee the successful execution of the task when interacting
with a dynamic environment due to the accumulation of error. To this end, many interactive al-
gorithms such as DAgger [43] and reinforcement learning have been developed to train policies
that could successfully maneuver the robot in a dynamic environment. It should be straightfor-
ward to combine our method with such interactive learning algorithms by simply replacing the
perception module with our real-to-virtual transformation framework.

Run-time performance is another issue to be considered. In our experiments carried out on
a single Titan-X GPU, the average processing time for one frame of image is 0.0112s, which
should be sufficient for real-time applications. However, vehicle-mounted GPUs tend to be less
powerful than cluster GPUs and the computation power needs to be shared among many different
tasks in the self-driving stack. It is therefore important to integrate our framework with other
parts of the self-driving stack and optimize the online performance.
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