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Abstract. Today, autonomous vehicle (AV) navigation systems rely solely on
local sensor data feed for safe & reliable navigation. However, it is not uncom-
mon for sensor data to contain erroneous measurements resulting in false predic-
tions, classified as either false positives (predict non-existent obstacle) or false
negatives (e.g., missed obstacle). In this paper, we propose a methodology to
identify and minimize false negatives in autonomous vehicle navigation, since
these are arguably the most dangerous. According to the methodology, each au-
tonomous agent simultaneously localizes and maps its local environment. This
map, in turn, is encoded into a low-resolution message and shared with nearby
agents via DSRC, a wireless vehicle communication protocol. Next, the agents
distributively fuse this information together to construct a world interpretation.
Each agent then statistically analyzes its own interpretation with respect to the
world interpretation for the common regions of interest. The proposed statistical
algorithm outputs a measure of similarity between local and world interpretations
and identifies false negatives (if any) for the local agent. This measure, in turn,
can be used to inform the agents to update their kinematic behavior in order to
account for any errors in local interpretation. The efficacy of this methodology in
resolving false negatives is shown in simulation.
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1 Introduction

Safety and reliability are the paramount goals of autonomous vehicle (AV) navigation
systems, but contemporary AV systems face critical obstacles along the road to attaining
these goals. One such obstacle is ubiquitous reliance on a data feed from local sensors,
and the accuracy of those data. It is not uncommon for sensor data to contain erro-
neous measurements that reduce overall safety and confidence in navigation. Erroneous
measurements may be a result of failing sensor health, sensor drift, bad calibration,
and/or temporary conditions such as inclement weather. Those data may subsequently
produce false predictions, which can be classified as either false positives or false neg-
atives. In the context of AV navigation, a false positive arises when vehicle sensors
predict a non-existent obstacle, whereas a false negative may manifest in the form of a
missed obstacle, an imperfect reading of the road lane, an incorrect speed estimation of
other vehicles, etc. Though false positives may influence safety in an indirect manner,



false negatives significantly affect navigational safety. This observation is supported by
the fact that the majority of autonomous car accidents reported today are due to false
negatives [1] [2].

One example of the direct consequences of this problem occurred in February 2017.
In that instance, erroneous sensor readings caused Uber’s self-driving vehicle to miss
several traffic signals and stop signs during a test run in San Francisco [3]. While it
is true that there are significant efforts in the scientific community to use vision-based
machine learning algorithms that will identify and isolate false negatives by recognizing
and classifying environmental scenes [4] [5] [6], these methodologies depend heavily
on extensive and exhaustive training for reasonable performance. More importantly,
these methods do not directly address issues related to sensor drift or environmental
noise.

Sensor drift is another major contributing factor to false negatives in local inter-
pretations. Traditionally, issues related to sensor drift have been addressed by online-
sensor calibration routines, which try to correct for persistent errors [7] [8] [9] on an
ex-post-facto basis. These techniques usually depend upon more robust sensors, such
as odometers, to calibrate the others. However, there are two major shortcomings with
these methodologies: First, since calibration occurs in a dynamically changing environ-
ment, the reliability of correction degrades drastically in certain cases, and the routine
must be repeated. Second, these routines have little or no ability to correct errors that
manifest due to poor environmental conditions. Since it is difficult to quantify the source
of error in dynamic navigation, some of the techniques presented are incomplete solu-
tions to the problem of false negatives, and false negatives remain difficult to detect. For
AV driving and navigation to succeed, it is critical to identify and minimize the number
of false negatives.

In this paper, we explore a methodology for identifying and minimizing false nega-
tives in local environment interpretation by sharing and fusing sensor data collected by
close-proximity autonomous or intelligent vehicles. For each agent, the methodology
compares the local obstacle maps with maps generated by other close-proximity agents
to identify false negatives in local interpretation.

According to the methodology, each autonomous agent simultaneously localizes
and maps its local environment. This map, in turn, is encoded into a low-resolution
message and shared via Dedicated Short Range Communication (DSRC), a wireless
vehicle communication protocol. Next, the agents distributively fuse this information
together to construct a world interpretation. Each agent then statistically analyzes its
own interpretation with respect to the world interpretation for the common regions of
interest. The proposed statistical algorithm outputs a measure of similarity between lo-
cal and world interpretations and identifies false negatives (if any) for the local agent.
This measure, in turn, can be used to inform the agents to change their kinematic behav-
ior in order to account for any errors in local interpretation. Finally, each agent records
the measure and instances of erroneous interpretations, which improves the analysis
and quantification of sensor health over time.

As mentioned above, the information is shared between and among vehicles via
DSRC signals. DSRC is a two-way short-to-medium-range wireless communications
capability that permits very high-frequency data transmission critical to active com-



munications based safety applications. DSRC operates on a dedicated frequency of 5.9
GHz that guarantees communication latencies in the 100-millisecond range. The DSRC
protocol provides infrastructure for connected vehicles and enables sensor data sharing
between the vehicles. The SAE J2735 [10] standard provides guidelines for exchange
of safety-critical data between vehicles (V2V), and between vehicles and infrastructure
(V2I) [11]. We chose DSRC for this work because it provides a robust, low-latency
dedicated communication infrastructure. However, the proposed methodology operates
independently of the DSRC protocol. Any low-latency, high-reliability communication
protocol can be used with the proposed methodology to achieve identical performance.

While on the surface, our methodology bears a resemblance to distributed SLAM
techniques, a careful analysis highlights the differences. For example, authors in [12]
[13] [14] [15] propose the notion of using multi-agent and distributed computing tech-
niques for map-merging. The main objective of these research efforts is to build local
maps in a computationally efficient manner. Similarly, authors in [16] [17] [18] [19]
explore the ideas of multi-vehicle SLAM techniques for scenarios under which a sin-
gle sensing platform may not be sufficient for collecting data or creating maps of an
unknown environment. Furthermore, the authors in [20] [21] propose nonlinear opti-
mization techniques to minimize errors in local map data association. In specific, they
treat errors in local maps in data association as an assignment problem rather than a
sensor measurement error problem. Lastly, authors in [22] propose a SLAM technique
specifically designed to address the communication and computational issues that affect
multi-robot systems. None of these methods takes into consideration the uncertainities
associated with local sensor errors.

Thus the framework presented in this paper bears the following distinctions:

1. It takes into consideration the measurement errors in sensing (either due to sensor
drift or uncertainties in the environment)

2. It proposes a technique - called the Maximum Deviation Test (MDT) that is capa-
ble of highlighting statistical similarities (or differences) between two PDFs in a
computationally efficient manner

The rest of the paper is organized as follows: Section 2 presents details of the
methodology, Section 3 describes the details of simulation experiments, Section 4 dis-
cusses the performance characteristics of the algorithm, and Section 5 provide conclu-
sions and point out future lines of work.

2 Methodology

As mentioned in Section 1, we explore and develop a methodology for sharing and fus-
ing sensor data between multiple autonomous vehicles that have overlapping views of
the environment. The methodology focuses on identifying and minimizing the number
of false negatives in sensing and interpretation.

Before presenting details of the methodology, it is important to discuss modeling
assumptions made to ease some constraints: First, the road network and environment
conditions are such that false positives do not have a significant impact on safety. Thus
in this work we only identify and minimize false negatives. Second, the vehicles must



have compatible sensors or algorithms, such that the data from multiple agents can be
fused without considering format or synchronization inconsistency (as this is not the
focus of the paper). Lastly, we assume that only a minority of autonomous vehicles
have strong noise associated with their data. In other words, this paper does not address
pathological cases like when data from all the agents are highly erroneous.

The methodology can be divided into the following steps: 1) Localization, Segmen-
tation, and Super Frames; 2) Data Fusion along with Local vs Global interpretation.
The subsequent text in this section provides further details on each step.

2.1 Localization, Segmentation, and Super Frames

An autonomous agent must first understand its surrounding and its current location for
the purpose of navigation. Today, autonomous vehicles are equipped with local sensor
systems like LiDAR and camera to build an interpretation of the surrounding world.
This is done by scanning different obstacles and landmarks within the field of view.
Usually, a LiDAR returns a 360-degree scan of the obstacle field which in turn can be
converted into a Cartesian map of the points detected by the LiDAR. In turn, data seg-
mentation algorithms are used to associate a group of points with a particular obstacle.
In this paper, we simulate a LiDAR sensor to generate a obstacle grid and we cluster
the data based on the sequential compatible nearest neighbor (SCNN) approach [23].

The resulting map after the data segmentation step is translated into an occupancy
grid that encodes the estimated distances to the obstacles, and the measure of confidence
associated with them. We utilize the Extended Kalman Filter [24] algorithm to track and
estimate the obstacle locations. The output of a EKF tracker is the pose estimation for
the different segmented obstacles which can be transformed into a map that encodes the
distance to all perceivable obstacles and a measure of the accuracy in form of variance
into an occupancy grid.

Every EKF cycle, the agents record the estimated location of each obstacle, and the
associated variance into a frame. The information in this frame along with the vehicle’s
speed and GPS location are in turn formatted into a DSRC SAE J2735 message, and
shared over DSRC communication channel. We refer to this low-resolution message as
a super frame. In this paper, the agents share super frames at a frequency of 1 Hz using
the SAE J2735 Basic Safety Message(BSM) Part 2 structure. The BSM-2 encodes local
vehicle kinematics along with a low resolution super-frame.

2.2 Data Fusion

Autonomous vehicles share and receive super frames every second. Please note that
vehicles can only receive super frames from other autonomous vehicles that are in
the DSRC range (1000 feet). As mentioned earlier, the rationale behind sharing su-
per frames is that the agents can compare and validate local interpretations of their
surroundings with those of others. An individual agent must first identify regions of
interest in its field of view that overlap with that of other agents as a comparison can be
made only in regions that are observable to the other agents.

Furthermore, to account for different orientations of agents the data from super
frames should be transformed into a common frame of reference. Therefore, the data



received from different super frames are transformed into the coordinate frame of the
local agent. Euclidean translation and rotation transformation is used for this purpose.

Once the data points have been transformed, we must fuse each data point from the
different interpretations from close-proximity agents to the data points from the local
vehicle. This data association is usually done using the K-nearest neighbors algorithm,
where we cluster the data points based on mean distance and relative angles. The output
lets the agent map its own local data points to points in the interpretations from the dif-
ferent agents. The data points in each cluster, except the data points from the local view,
are fused with each other using a kernel mixture model. Each data point is basically a
probability density function (PDF) whose mean is the distance from the local sensor.

To correct for false negatives, each agent then statistically analyzes its own inter-
pretation with respect to the world interpretation (fused data) for the common regions
of interest. A Maximum Deviation Test (MDT) is used for this purpose [25].

Algorithm 1: Maximum Deviation Test

(µl ,σl) = mean and sd of local interpretation;
(µg,σg) = mean and sd of world interpretation;
δtol = error tolerance threshold;
Let F(x)l ,F(x)g be CDFs for local and global interpretations;
s = 0 (initiate test score);
for p in [0,100] do

δ =
F−1

l (p)−F−1
g (p)

F−1
l (p)

∗100;

if abs(δ )≤ δtol then
s += 1

end
end
if s≥ smin then

return density functions are statistically similar
end

As the name suggests, the maximum deviation test is a statistical technique to quan-
tify statistical differences between two density functions. The methodology employed
here first generates cumulative density functions (CDFs) for local and global interpre-
tations, and then generates a test score that measures statistical similarity. Here the
test-score is nothing but the number of percentile values in a local interpretation CDF
that are within user-defined tolerance bounds from the global interpretation. If the test
score is less than a preset threshold, then it can be inferred that local and global in-
terpretations are statistically significantly different, suggesting the presence of a false
negative. Hence through the MDT we are able to track false negatives in autonomous
navigation. Pseudo-code for the methodology is given in Algorithm 1:

An example where the test indicates a false negative is presented in Figure 1. The
blue curve corresponds to the data interpretation from the local agent. In this example,
the δtol is set to 5%, and smin is set to 95. The MDT test score turns out to be 85,
indicating the presence of a false negative.

Most non-parametric tests, such as the Kalmagorov Smirnov (KS) test, use maxi-
mum deviation from the mean as a measure to check for dissimilarity. Therefore, these



Fig. 1. MDT identifies a false negative

tests fail to recognize dissimilarities in heavy-tailed, or multi-modal distributions. On
the other hand, MDT uses sum of deviations of every percentile on the distribution as a
measure for dissimilarity. This property in addition to the symmetric nature of the test
makes MDT a very powerful test over either the KS Test or the Kullback-Leibler (KL)
Divergence test. Therefore, it is appropriate to use MDT for comparing occupancy grid
maps data between close-proximity autonomous agents.

3 Simulation Framework

Testing the efficacy of the proposed methodology in simulation raises three broad re-
quirements. First, the simulator should be able to implement microscopic traffic flow
characteristics of individual vehicles (e.g., position, velocity, car-following, and lane
changing behavior). Second, the simulator should be able to simulate the DSRC com-
munication protocol. Third, simulator should be able to simulate the behavior of au-
tonomous vehicles, which includes generating LiDAR scans, LiDAR data segmenta-
tion with respect to agents, building obstacles maps and finally comparing the fused
view with respect to the local view via the Max Deviation Test. No existing simulator
satisfies all three requirements. However, the combined capabilities of the open source
simulators SUMO and ROS do satisfy all three requirements. Therefore, we developed
a software package that provides an interface between SUMO's microscopic traffic sim-
ulator and ROS.

SUMO can generate a traffic networks, implement traffic rules, and manage and
maintain microscopic traffic flow characteristics. Furthermore, the Veins library in SUMO
simulates the DSRC communication protocol. Moreover, the behavior of traffic objects
inside SUMO can be accessed and manipulated through the TraCI API. This feature
is very critical for simulating and controlling autonomous vehicle behavior. ROS is an
ideal choice because it has useful repositories for simulating autonomous behaviors that
are reflective of the real-world.



Fig. 2. High-Level Schematic of the Simulator

The software architecture is detailed in Figure 4. As can be seen, SUMO sets up the
traffic and vehicular environment and updates vehicle motion models at each simulation
step. Some of the vehicles in SUMO are treated as autonomous. TraCI generates an en-
vironment (map) grid to simulate local sensor data. TraCI simulates a 360-degree Velo-
dyne LiDAR that generates the occupancy grid for each autonomous vehicle. It should
be noted that TraCI passes the local state and sensor information for each autonomous
vehicle through a noise model to emulate real-world sensor data that are generated by
an autonomous vehicle. The Map grid data generated are used by each agent to develop
local obstacle maps, which are later processed into super frames. The TraCI API, also
sends information related to other autonomous vehicle’s locations and instantaneous
kinematics are passed to ROS via local DSRC channel. Lastly, super frames are created
for each autonomous vehicle and shared with other autonomous vehicles within DSRC
range, through the DSRC channels via TraCI.

3.1 Simulator Assumptions

While it is our main objective to minimize the disparity between the simulator and
the real world, the simulation framework makes a few assumptions to relax certain
constraints. The assumptions made are as follows:

• All interactions within the simulation are event-based. That is, at a certain time-step
an event is initiated and agents appropriately interact with the simulator. This as-
sumption was made to relax the issue of clock synchronization, which is beyond
the scope of this work.

• No false positives exist in sensor readings.
• All vehicles in the simulator can travel only at speeds less than or equal to 80 mph.
• Only other vehicles and road geometry are qualified as obstacles.



• All noise in the simulation is uni-modal. We intend to extend the framework to multi-
modal systems in future.

• There is low noise in GPS, Odometer and IMU data. This assumption can be eas-
ily removed by implementing efficient multi-modal localization software; however,
this was not the interest of this research.

• There are no elevations or depressions in the road network and the height of each
vehicle is the same. These assumptions resolve into modulating the LiDAR sensor
model with one LIDAR beam for building 2D obstacle maps. It is not difficult to
deal with multi-beam LiDAR and build a more accurate and complex occupancy
grid, but that is not the interest of this research.

• All autonomous vehicles are connected. We also assume in this work that corre-
sponding network dead-regions are quite sparse and don’t significantly affect the
communication.

Algorithm 2: Simulator Process Flow

δt = 100 millisecond (initialize time step);
t = 0 (initiate simulation time);
At = set of all AVs in the system during time t;
ai = autonomous vehicle ’i’;
A j = set of AVs within DSRC range of ai;
T = time when all the vehicles exit the simulation;
while t ≤ T do

freeze simulation frame ;
for ai ∈ At do

TraCI sends local sensor feed to ROS;
builds obstacle maps using EFK;
update kinematic model;
encode location and speed info into BSM-1 ;
ROS sends back BSM-1 to SUMO via TraCI;
receives BSM-1 via Viens from all a j ∈ A j;
if t%1000 == 0 then

ROS encodes occupancy grid into super-frame;
ROS sends super frame to SUMO via TraCI;
receives BSM-2 via Viens from all a j ∈ A j;
process message(s) to develop world interpretation;
compares local interpretation with fused interpretation;
identify false negatives and update kinematic model;

end
end
SUMO updates collision model & reports potential collision ∀ ai ∈ At ;
unfreeze simulation frame;
sleep(δt );
t += δt ;

end

3.2 Experimental Design

The objective of the proposed methodology is to reduce false negatives in sensing and to
enhance the safety and reliability of autonomous vehicle navigation. The methodology’s



efficacy is best tested in a high-risk accident-prone environment. It is generally accepted
that the combination of high-speed merges along with blind spots makes lane changing
on a highway highly accident-prone [26].

We designed an experiment to simulate lane changing behavior on a 2-mile-long
straight highway with 3 lanes. Furthermore, the freeway segment has three on and off
ramps located equidistant from one other. The following three scenarios are considered:

– Scenario - 1: Total cars = 50; % AVs = 50
– Scenario - 2: Total cars = 100; % AVs = 50
– Scenario - 3: Total cars = 200; % AVs = 50

Three cases were created for each scenario with the percent of AVs with erroneous
sensors set to 5%, 10%, and 20%.

For a given scenario, and a case, it can be inferred that the number of cars in the
system, % AVs, and % AVs with erroneous sensors is constant. One needs to keep
two objectives in mind to ensure thorough testing: 1) vary vehicle arrival pattern for
a given input volume; and 2) for a given vehicle arrival pattern distribute the location
of autonomous cars, and AVs with erroneous sensors. To meet the first objective, we
ran five Monte Carlo simulations with five random seeds and to address the second
objective, ten Monte Carlo simulations are run to uniformly distribute location of AVs,
and AVs with erroneous sensors. Hence, results for a given scenario, and cases are
aggregated over 50 Monte Carlo simulations. Algorithm 2 presents pseudo-code for the
simulation process

4 Analysis of Results

As mentioned earlier, this research proposes a methodology that identifies and mini-
mizes false negatives in autonomous vehicle navigation by sharing and fusing sensor
data of close-proximity autonomous or intelligent vehicles. Simulation experiments are
designed to evaluate the effectiveness of this methodology and this section focuses on
the analysis of the results. However, before proceeding any further, we will first define
what successful resolution of a false negative means in the simulation. As stated be-
fore, ROS controls vehicle kinematics for autonomous vehicles while SUMO controls
vehicle kinematics of non-autonomous vehicles [27].

Every simulation step, path planning for an individual autonomous vehicle is done
in ROS using its local environment interpretation, and after correcting for any false
negatives. These path planning decisions are passed to SUMO via TraCI for implemen-
tation. In turn, SUMO cross-validates these control decisions and makes corrections in
case of an impending collision. In that sense, if SUMO implements vehicle path plan-
ning decisions without making any adjustments, then there are no inconsistencies in the
autonomous vehicle’s perception of its surroundings; otherwise, it can be inferred that
the algorithm failed to identify and correct false negatives. Therefore, every simulation
step, the following information is logged for every autonomous vehicle in the system: 1)
number of vehicles it interacted with for building the collaborative world interpretation;
2) a binary indicator value for any false negative resolution; 3) path planning decisions
computed using local sensor data and 4) SUMO’s path planning decisions.



We post-processed simulation log files to compute the number of instances in which
the proposed algorithm was able to successfully resolve false negatives. The results are
summarized in Table 1, Table 2 and Table 3 and presented in Fig 3. Each table has four-
teen columns. Values in columns 1-2 represent the number of vehicles in the simulation,
and proportion of AVs with faulty sensors. Values in columns 3-14 represent the num-
ber of instances per simulation a false negative was corrected, % of times the proposed
methodology successfully corrected a false negative, and % of times it failed to correct
a false negative. Furthermore, results are subdivided into number of the autonomous
vehicles involved in building the world interpretation (2, 3, 4, and 5 or more vehicle
interactions). Table 1 presents results for 5% autonomous vehicles with faulty sensors.
Similarly, Table 2 and Table 3 present results for 10%, and 20% AVs with faulty sen-
sors. Based on the values presented in these tables, it is easy to see that the proposed
algorithm successfully corrected false negatives about 95-99% of times the in case of
5 or more autonomous vehicle interactions. These values are between 89-96% for four
vehicle interactions, 82-92% for three vehicle interactions, and 72-82% in case of two
vehicle interactions.

Table 1: Observations for scenarios with 5% of autonomous vehicles with faulty sensors 

 

Table 2: Observations for scenarios with 10% of autonomous vehicles with faulty sensors 

 

Table 3: Observations for scenarios with 20% of autonomous vehicles with faulty sensors 

 

 

Total % Success % Fail Total % Success % Fail Total % Success % Fail Total % Success % Fail

50 5 26 77.2 22.8 42 86.2 13.8 22 93.4 6.6 21 98.5 1.5

100 5 36 79.4 20.6 46 90.0 10.0 43 95.2 4.8 29 99.0 1.0

200 5 43 82.2 17.8 56 92.2 7.8 64 96.3 3.7 34 99.0 1.0

Total # of 

vehicles

% Avs with 

faulty sensors

Avg. 2-vehicle interactions Avg. 3-vehicle interactions Avg. 4-vehicle interactions Avg. 5 or more vehicle interactions

Total % Success % Fail Total % Success % Fail Total % Success % Fail Total % Success % Fail

50 10 37 73.5 26.5 34 82.1 17.9 58 91.5 8.5 20 97.0 3.0

100 10 38 74.2 25.8 51 87.5 12.5 74 93.2 6.8 27 98.5 1.5

200 10 38 77.3 22.7 63 89.8 10.2 65 94.0 6.0 49 99.0 1.0

Total # of 

vehicles

% Avs with 

faulty sensors

Avg. 2-vehicle interactions Avg. 3-vehicle interactions Avg. 4-vehicle interactions Avg. 5 or more vehicle interactions

Total % Success % Fail Total % Success % Fail Total % Success % Fail Total % Success % Fail

50 20 33 70.1 22.8 47 82.0 18 65 89.2 10.8 20 95.3 4.7

100 20 47 72.0 28.0 55 84.8 15.2 85 90.7 9.3 36 96.7 3.3

200 20 63 74.3 25.7 82 85.2 14.8 95 91.0 9.0 50 98.0 2.0

Total # of 

vehicles

% Avs with 

faulty sensors

Avg. 2-vehicle interactions Avg. 3-vehicle interactions Avg. 4-vehicle interactions Avg. 5 or more vehicle interactions

Fig. 3. Summary statistics

The following inferences can be drawn based on these observations: 1) the prob-
ability of resolving a false negative increases as the number of autonomous vehicles
interactions increase; 2) the variance in resolving a false negative also decreases with
increased number of interactions; 3) the probability of resolving a false negative de-
creases with increased % in autonomous vehicles with bad sensors. These trends can be
clearly seen in Figure 4.

5 Conclusions & Future Work

In this paper we presented a methodology that identifies and minimizes false negatives
in autonomous vehicle navigation by sharing and fusing sensor data of close-proximity



Fig. 4. Percentage success in resolving false negatives for different vehicle group interactions

autonomous or intelligent vehicles. Using the methodology, each autonomous agent si-
multaneously localizes and maps its local environment. This map, in turn, is encoded
into a low-resolution message and shared via DSRC. Next, the agents collaboratively
fuse this information together to construct a world interpretation. Each agent then sta-
tistically analyzes its own interpretation with respect to the common regions of interest.
The proposed statistical algorithm outputs a measure of similarity between local and
world interpretations and identifies false negatives (if any) for the local agent. This
measure, in turn, can be used to inform the agents to change their kinematic behavior
in order to account for any errors in local interpretation.

The efficacy of this methodology is tested in simulation, and based on the simulation
results it can be inferred that the methodology is effective in resolving false negatives.
We have identified several directions for future work:

• One direction is to extend the framework to identify & minimize false positives.
• Another is to quantify the impact of the percentage of autonomous vehicle penetra-

tion on the efficiency of the algorithm (in the current paper, we only considered a
penetration level of 50

• Today, autonomous cars have no obvious way of self-assessing sensor’s health. In
principle, one can revisit the data logged by the proposed methodology to ascertain
sensor’s health. This can be done by looking at the number of instances erroneous
sensor readings that are corrected.

• In the current paper, equal weight has been given to each obstacle map while gener-
ating the world interpretation or fused map. Exploration of fused map creation that
takes into account sensor health is another area for future work.



• Finally, it would be interesting to explore multi-agent collaborative path planning.
Such systems could have profound impact on improving safety of rural high-speed
signalized intersections.
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