
Deeply AggreVaTeD:
Differentiable Imitation Learning for Sequential Prediction

Wen Sun† WENSUN@CS.CMU.EDU
Arun Venkatraman† ARUNVENK@CS.CMU.EDU
Geoffrey J. Gordon† GGORDON@CS.CMU.EDU
Byron Boots∗ BBOOTS@CC.GATECH.EDU
J. Andrew Bagnell† DBAGNELL@RI.CMU.EDU
†School of Computer Science, Carnegie Mellon University, USA
∗College of Computing, Georgia Institute of Technology, USA

Abstract
Researchers have demonstrated state-of-the-art
performance in sequential decision making prob-
lems (e.g., robotics control, sequential predic-
tion) with deep neural network models. One
often has access to near-optimal oracles that
achieve good performance on the task during
training. We demonstrate that AggreVaTeD — a
policy gradient extension of the Imitation Learn-
ing (IL) approach of (Ross & Bagnell, 2014)
— can leverage such an oracle to achieve faster
and better solutions with less training data than
a less-informed Reinforcement Learning (RL)
technique. Using both feedforward and recurrent
neural network predictors, we present stochas-
tic gradient procedures on a sequential prediction
task, dependency-parsing from raw image data,
as well as on various high dimensional robotics
control problems. We also provide a compre-
hensive theoretical study of IL that demonstrates
we can expect up to exponentially lower sample
complexity for learning with AggreVaTeD than
with RL algorithms, which backs our empirical
findings. Our results and theory indicate that
the proposed approach can achieve superior per-
formance with respect to the oracle when the
demonstrator is sub-optimal.

1. Introduction
A fundamental challenge in artificial intelligence, robotics,
and language processing is to reason, plan, and make a se-

quence of decisions to minimize accumulated cost, achieve
a long-term goal, or optimize for a loss acquired only af-
ter many predictions. Reinforcement Learning (RL), es-
pecially deep RL, has dramatically advanced the state of
the art in sequential decision making in high-dimensional
robotics control tasks as well as in playing video and board
games (Schulman et al., 2015; Silver et al., 2016). Though
conventional supervised learning of deep models has been
pivotal in advancing performance in sequential prediction
problems, researchers are beginning to utilize deep RL
methods to achieve high performance (Ranzato et al., 2015;
Bahdanau et al., 2016; Li et al., 2016). Often in sequential
prediction tasks, future predictions from the learner are de-
pendent on the history of previous predictions; thus, a poor
prediction early on can yield high accumulated loss (cost)
for future predictions. Viewing the predictor as a policy
π, deep RL algorithms are able to reason about the future
accumulated cost in a sequential decision making process
whether it is a traditional robotics control problem or a se-
quential structured prediction task.

In contrast with reinforcement learning methods, well-
known imitation learning (IL) and sequential prediction al-
gorithms such as SEARN (Daumé III et al., 2009), DaD
(Venkatraman et al., 2015), AggreVaTe (Ross & Bagnell,
2014), and LOLS (Chang et al., 2015b) reduce the se-
quence prediction problem to supervised learning by lever-
aging one special property of the sequence prediction prob-
lem: at training time we usually have a (near) optimal cost-
to-go oracle. At any point along the sequential prediction
process (i.e. state or partially completed sequential predic-
tion), the oracle is able to select the next (near)-best action.

Concretely, the above methods assume access to an ora-
cle1 that provides an optimal or near-optimal action and
the future accumulated loss Q∗, also called the cost-to-

1Expert, demonstrator, and oracle are used interchangeably.

Differential Imitation Learning for Sequential Prediction

go. For robotics control problems, this oracle may come
from a human expert guiding the robot during the train-
ing phase (Abbeel & Ng, 2004) or from an optimal MDP
solver (Ross et al., 2011; Kahn et al., 2016) that either
may be too slow to use at test time or leverages informa-
tion unavailable at test time (e.g., ground truth). Simi-
larly, for sequential prediction problems, an oracle can be
constructed by optimization (e.g., beam search) or by a
clairvoyant greedy algorithm (Daumé III et al., 2009; Ross
et al., 2013; Rhinehart et al., 2015; Chang et al., 2015a)
that is near-optimal on the task specific performance met-
ric (e.g., cumulative reward, IoU, Unlabeled Attachment
Score, BLEU) given the training data’s ground truth.

Such an oracle, however, is only available during training
time (e.g., when there is access to ground truth). Thus, the
goal of IL is to learn a policy π̂, with the help of the oracle
(π∗, Q∗) during the training session, such that π̂ achieves
similar quality performance at test time when the oracle is
unavailable. In contrast to IL, reinforcement learning meth-
ods often initialize with an random policy π0 or cost-to-go
(accumulated loss)Q0 predictor which may be far from the
optimal. The optimal policy (or cost-to-go) must be found
through a tradeoff of dithering, directed exploration, and
exploitation.

The existence of oracle can be exploited to alleviate blind
learning by trial and error: one can imitate the oracle to
speed up learning process by significantly reducing explo-
ration. A classic IL method is to collect data from running
the demonstrator or oracle and train a regressor or classi-
fier via supervised learning. These methods (Abbeel & Ng,
2004; Syed et al., 2008; Ratliff et al., 2006; Ziebart et al.,
2008; Finn et al., 2016; Ho & Ermon, 2016) learn either
a policy π̂∗ or Q̂∗ from a fixed-size dataset pre-collected
from the oracle. A pernicious problem with these methods
is that they require the training and test data to be sam-
pled from the same distribution. This is very difficult to
enforce in practice, and, as a result, policies learned by
these methods can fail spectacularly in theory and in prac-
tice (Ross & Bagnell, 2010). Interactive approaches to IL
such as SEARN (Daumé III et al., 2009), DAgger (Ross
et al., 2011), and AggreVaTe (Ross & Bagnell, 2014) in-
terleave learning and testing procedures to overcome the
data mismatch issue and, as a result, work well in practi-
cal applications. Furthermore, these interactive approaches
can provide strong theoretical guarantees between training
time loss and test time performance through a reduction to
no-regret online learning.

In this work, we introduce AggreVaTeD, a differentiable
version of AggreVaTe (Aggregate Values to Imitate (Ross
& Bagnell, 2014)) which extends interactive IL for use
in sequential prediction and challenging continuous robot
control tasks. We provide two gradient update procedures:

a regular gradient update developed from Online Gradient
Descent (OGD) (Zinkevich, 2003) and a natural gradient
update (Kakade, 2002; Bagnell & Schneider, 2003) which
we show is closely related to Exponential Gradient Descent
(EG), another popular no-regret algorithm that enjoys an
almost dimension-free property (Bubeck et al., 2015).2

AggreVaTeD leverages the oracle to learn rich polices that
can be represented by complicated non-linear function ap-
proximators. Our experiments with deep neural networks
on various robotics control simulators and on a depen-
dency parsing sequential prediction task show that Ag-
greVaTeD can achieve expert-level performance and even
super-expert performance when the oracle is sub-optimal,
a result rarely achieved by non-interactive IL approaches.
The differentiable nature of AggreVaTeD additionally al-
lows us to employ LSTM-based policies to handle partially
observable settings (e.g., observe only partial robot state).
Empirical results demonstrate that by leveraging an oracle,
IL can learn much faster than RL in practice.

In addition to providing a set of practical algorithms, we
develop a comprehensive theoretical study of IL on dis-
crete MDPs. We construct an MDP that demonstrates ex-
ponentially better sample efficiency for IL than any RL al-
gorithm. For general discrete MDPs, we provide a regret
upper bound for AggreVaTeD with EG, which shows IL
can learn dramatically faster than RL. We provide a regret
lower bound for any IL algorithm, which demonstrates that
AggreVaTeD with EG is near-optimal. Our experimental
and the theoretical results support the proposition:

Imitation Learning is a more effective strategy
than Reinforcement Learning for sequential pre-
diction with near optimal cost-to-go oracles.

2. Preliminaries
In order to develop algorithms that reason about long-
term decision making, it is convenient to cast the problem
into the Markov Decision Process (MDP) framework. The
MDP framework consists of a set of states, actions (that
come from a policy), cost (loss), and a model that tran-
sitions states given actions. For robotics control problems,
the robot’s configuration is the state, the controls (e.g., joint
torques) are the actions, and the cost is related to achieving
a task (e.g., distance walked). Though more nuanced, most
sequential predictions can be cast into the same frame-
work (Daumé III et al., 2009). The actions are the learner’s
(e.g., RNN’s) predictions. The state is then the result of all
the predictions made so far (e.g., the dependency tree con-
structed so far or the words translated so far). The cumula-
tive cost is the performance metric such as (negative) UAS,

2i.e., the regret bound depends on poly-log of the dimension
of parameter space.

Differential Imitation Learning for Sequential Prediction

received at the end (horizon) after the final prediction.

Formally, a finite-horizon Markov Decision Process (MDP)
is defined as (S,A, P, C, ρ0, H). Here, S is a set of S many
states and A is a set of A actions; given time step t, Pt is
the transition dynamics such that for any st ∈ S, st+1 ∈
S, at ∈ A, Pt(st+1|st, at) is the probability of transiting
to state st+1 from state st by taking action at at step t; C is
the cost distribution such that a cost ct at step t is sampled
from Ct(·|st, at). Finally, we denote c̄t as the expected
cost, ρ0 as the initial distribution of states, and H ∈ N+ as
the finite horizon (max length) of the MDP.

We define a stochastic policy π such that for any state
s ∈ S, π(·|s) ∈ ∆(A), where ∆(A) is a A-dimension
simplex, conditioned on state s. π(a|s) ∈ [0, 1] outputs the
probability of taking action a at state s. The distribution
of trajectories τ = (s1, a1, . . . , aH−1, sH) is deterministi-
cally dependent on π and the MDP, and is defined as

ρπ(τ) = ρ0(s1)

H∏
t=2

π(at−1|st−1)Pt−1(st|st−1, at−1).

The distribution of the states at time step t, induced by run-
ning the policy π until t, is defined ∀st:

dπt (st) =
∑

{si,ai}i≤t−1

ρ0(s1)

t−1∏
i=1

π(ai|si)Pi(si+1|si, ai).

Note that the summation above can be replaced by an inte-
gral if the state or action space is continuous. The average
state distribution d̄π(s) =

∑H
t=1 d

π
t (s)/H .

The expected average cost of a policy π can be defined with
respect to ρπ or {dπt }:

µ(π) = E
τ∼ρπ

[

H∑
t=1

c̄t(st, at)] =

H∑
t=1

E
s∼dπt (s),a∼π(a|s)

[c̄t(s, a)].

We define the state-action value Qπt (s, a) (i.e., cost-to-go)
for policy π at time step t as:

Qπt (st, at) = c̄t(st, at) + E
s∼Pt(·|st,at),a∼π(·|s)

Qπt+1(s, a).

where the expectation is taken over the randomness of the
policy π and the MDP.

We define π∗ as the expert policy (e.g., human demon-
strators, search algorithms equipped with ground-truth) and
Q∗t (s, a) as the expert’s cost-to-go oracle (note π∗ may not
be optimal, i.e., π∗ 6∈ arg minπ µ(π)). Throughout the
paper, we assume Q∗t (s, a) is known or can be estimated
without bias (e.g., by rolling out π∗: starting from state s,
applying action a, and then following π∗ for H − t steps).

When π is represented by a function approximator, we use
the notation πθ to represent the policy parametrized by

θ ∈ Rd: π(·|s; θ). In this work we specifically consider op-
timizing policies in which the parameter dimension d may
be large. We also consider the partially observable setting
in our experiments, where the policy π(·|o1, a1, ..., ot; θ) is
defined over the whole history of partial observations and
actions (ot is generated from the hidden state st). We use an
LSTM-based policy (Duan et al., 2016) where the LSTM’s
hidden states provide a compressed feature of the history.

3. Differentiable Imitation Learning
Policy based imitation learning aims to learn a policy π̂
that approaches the performance of the expert π∗ in testing
time when π∗ is not available anymore. In order to learn
rich policies such as with LSTMs or deep networks (Schul-
man et al., 2015), we derive a policy gradient method for
imitation learning and sequential prediction. To do this, we
leverage the reduction of IL and sequential prediction to
online learning as shown in (Ross & Bagnell, 2014) to learn
policies represented by expressive differentiable function
approximators.

The fundamental idea in Ross & Bagnell (2014) is to use
a no-regret online learner to update policies using the fol-
lowing loss function at each episode n:

`n(π) =
1

H

H∑
t=1

E
st∼dπnt

[
E

a∼π(·|st)
[Q∗t (st, a)]

]
. (1)

The loss function intuitively encourages the learner to find
a policy that minimize the expert’s cost-to-go under the
state distribution resulting from the current learned pol-
icy πn. Specifically, Ross & Bagnell (2014) suggest an al-
gorithm named AggreVaTe (Aggregate Values to Imitate)
that uses Follow-the-Leader (FTL) (Shalev-Shwartz et al.,
2012) to update policies:πn+1 = arg minπ∈Π

∑n
i=1 `n(π),

where Π is a pre-defined convex policy set. When `n(π) is
strongly convex with respect to π and π∗ ∈ Π, after N
iterations AggreVaTe with FTL can find a policy π̂:

µ(π̂) ≤ µ(π∗)− εN +O(ln(N)/N), (2)

where εN = [
∑N
n=1 `n(π∗)−minπ

∑N
n=1 `n(π)]/N . Note

that εN ≥ 0 and the above inequality indicates that π̂ can
outperform π∗ when π∗ is not (locally) optimal (i.e., εn >
0). Our experimental results support this observation.

A simple implementation of AggreVaTe that aggregates the
values (as the name suggests) will require an exact solution
to a batch optimization procedure in each episode. When
π is represented by large, non-linear function approxima-
tors, the arg min procedure generally takes more and more
computation time as n increases.

Online Mirror Descent (OMD) (Shalev-Shwartz et al.,
2012) are popular for online learning due to its efficiency.

Differential Imitation Learning for Sequential Prediction

Therefore we consider two special cases of OMD for opti-
mizing sequence of losses {`n(π)}n: Online Gradient De-
scent (OGD) (Zinkevich, 2003) and Exponential Gradient
Descent (EG) (Shalev-Shwartz et al., 2012), which lead to
a regular stochastic policy gradient descent algorithm and a
natural policy gradient algorithm, respectively. Also, when
applying OGD and EG to {`n(π)}n, one can show that
Eq. 2 will hold (with O(1/

√
N)), as long as `n(π) is con-

vex with respect to π.

3.1. Online Gradient Descent

For discrete actions, the gradient of `n(πθ) (Eq. 1) with
respect to the parameters θ of the policy can be computed
as

∇θ`n(θ) =
1

H

H∑
t=1

E
st∼d

πθn
t

∑
a

∇θπ(a|st; θ)Q∗t (st, a).

(3)

For continuous action spaces, we cannot simply replace the
summation by integration since in practice it is impossible
to evaluate Q∗t (s, a) for infinitely many a, so, instead, we
use importance weighting to re-formulate `n (Eq. 1) as

`n(πθ) =
1

H

H∑
t=1

E
s∼d

πθn
t ,a∼π(·|s;θn)

π(a|s; θ)
π(a|s; θn)

Q∗t (s, a)

=
1

H
E

τ∼ρπθn

H∑
t=1

π(at|st; θ)
π(at|st; θn)

Q∗t (st, at). (4)

See Appendix A for the derivation of the above equation.
With this reformulation, the gradient with respect to θ is

∇θ`n(θ) =
1

H
E

τ∼ρπθn

H∑
t=1

∇θπ(at|st; θ)
π(at|st; θn)

Q∗t (st, at). (5)

The above gradient computation enables a very efficient
update procedure with online gradient descent: θn+1 =
θn − ηn∇θ`n(θ)|θ=θn , where ηn is the learning rate.

3.2. Policy Updates with Natural Gradient Descent

We derive a natural gradient update procedure for imitation
learning inspired by the success of natural gradient descent
in RL (Kakade, 2002; Bagnell & Schneider, 2003; Schul-
man et al., 2015). First, we show that Exponential Gradient
Descent (EG) can be leveraged to speed up imitation learn-
ing in discrete MDPs. Then we extend EG to continuous
MDPs, where we show that, with three steps of approxima-
tion, EG leads to a natural gradient update procedure.

3.2.1. EXPONENTIAL GRADIENT IN DISCRETE MDPS

For notational simplicity, for each state s ∈ S, we rep-
resent the policy π(·|s) as a discrete probability vector

πs ∈ ∆(A). We also represent dπt as a S-dimension prob-
ability vector from S-d simplex, consisting of dπt (s),∀s ∈
S. For each s, we use Q∗t (s) to denote the A-dimension
vector consisting of the state-action cost-to-go Q∗t (s, a)
for all a ∈ A. With this notation, the loss function
`n(π) from Eq. 1 can now be written as: `n(π) =
1
H

∑H
t=1

∑
s∈S d

πn
t (s)(πs ·Q∗t (s)), where a · b represents

the inner product between vectors a and b. Exponential
Gradient updates π as follows: ∀s ∈ S,

πn+1 = arg min
πs∈∆(A),∀s∈S

1

H

H∑
t=1

∑
s∈S

dπnt (s)
(
πs ·Q∗t (s)

)
+
∑
s∈S

d̄πn(s)

ηn,s
KL(πs‖πsn), (6)

where KL(q‖p) is the KL-divergence between two prob-
ability distributions q and p. This leads to the following
closed-form update:

πsn+1[i] =
πsn[i] exp

(
− ηn,sQ̃es[i]

)∑|A|
j=1 π

s
n[j] exp

(
− ηn,sQ̃es[j]

) , i ∈ [|A|],

(7)

where Q̃es =
∑H
t=1 d

πn
t (s)Q∗t (s)/(Hd̄

πn(s)). We refer
readers to (Shalev-Shwartz et al., 2012) or Appendix B for
the derivations of the above closed-form updates.

3.2.2. CONTINUOUS MDPS

We now consider how to update the parametrized policy πθ
for continuous MDPs. Replacing summations by integrals,
Eq. 6 can be written as:

θ = arg min
θ

1

H

H∑
t=1

E
s∼d

πθn
t

E
a∼π(·|s;θ)

[Q∗t (s, a)]

+ E
s∼d̄πθn

KL(πθ||πθn)/ηn. (8)

In order to solve for θ from Eq. 8, we apply several approx-
imations. We first approximate `n(θ) (the first part of the
RHS of the above equation) by its first-order Taylor expan-
sion: `n(θ) ≈ `n(θn) +∇θn`n(θn) · (θ− θn). When θ and
θn are close, this is a valid local approximation.

Second, we replace KL(πθ||πθn) by KL(πθn ||πθ), which
is a local approximation since KL(q||p) and KL(p||q) are
equal up to the second order (Kakade & Langford, 2002;
Schulman et al., 2015).

Third, we approximate KL(πθn ||πθ) by a second-order
Taylor expansion around θn, such that we can approximate
the penalization using the Fisher information matrix:

E
s∼d̄πθn

KL(πθn ||πθ) ≈ (1/2)(θ − θn)T I(θn)(θ − θn),

Differential Imitation Learning for Sequential Prediction

where the Fisher information matrix I(θn) =

Es,a∼d̄πθn πθn (a|s)
(
∇θn log(πθn(a|s))

)(
∇θn log(πθn(a|s)

)T
.

Inserting these three approximations into Eq. 8, and solv-
ing for θ, we reach the following update rule θn+1 =
θn − ηnI(θn)−1∇θ`n(θ)|θ=θn , which is similar to the nat-
ural gradient update rule developed in (Kakade, 2002) for
the RL setting. Bagnell & Schneider (2003) provided an
equivalent representation for Fisher information matrix:

I(θn) =
1

H2 E
τ∼ρπθn

∇θn log(ρπθn (τ))∇θn log(ρπθn (τ))T ,

(9)

where ∇θ log(ρπτ (τ)) is the gradient of the log like-
lihood of the trajectory τ which can be computed as∑H
t=1∇θ log(πθ(at|st)). In the remainder of the paper,

we use this Fisher information matrix representation, which
yields much faster computation of the descent direction δθ,
as we will explain in the next section.

4. Sample-Based Practical Algorithms
In the previous section, we derived a regular gradient up-
date procedure and a natural gradient update procedure for
IL. Note that all of the computations of gradients and Fisher
information matrices assumed it was possible to exactly
compute expectations including Es∼dπ and Ea∼π(a|s). In
this section, we provide practical algorithms where we ap-
proximate the gradients and Fisher information matrices
using finite samples collected during policy execution.

4.1. Gradient Estimation and Variance Reduction

We consider an episodic framework where given a policy
πn at episode n, we roll out πn K times to collect K tra-
jectories {τni }, for i ∈ [K], τni = {si,n1 , ai,n1 , ...}. For gra-
dient ∇θ`n(θ)|θ=θn we can compute an unbiased estimate
using {τni }i∈[K]:

∇̃θn =
1

HK

K∑
i=1

H∑
t=1

∑
a

∇θnπθn(a|si,nt)Q∗t (s
i,n
t , a),

(10)

∇̃θn =
1

HK

K∑
i=1

H∑
t=1

∇θnπθn(ai,nt |s
i,n
t)

πθn(ai,nt |s
i,n
t)

Q∗t (s
i,n
t , ai,nt).

(11)

for discrete and continuous setting respectively.

When we can compute V ∗t (s) (e.g., minaQ
∗
t (s, a)), we can

replace Q∗t (s
i,n
t , a) in Eq. 10 and Eq. 11 by the state-action

advantage function A∗t (s
i,n
t , a) = Q∗t (s

i,n
t , a) − V ∗t (si,nt),

which leads to the following two unbiased and variance-

reduced gradient estimations (Greensmith et al., 2004):

∇̃θn =
1

HK

K∑
i=1

H∑
t=1

∑
a

∇θnπθn(a|si,nt)A∗t (s
i,n
t , a),

(12)

∇̃θn =
1

HK

K∑
i=1

H∑
t=1

∇θnπθn(ai,nt |s
i,n
t)

πθn(ai,nt |s
i,n
t)

A∗t (s
i,n
t , ai,nt),

(13)

where Eq. 12 is for discrete action and Eq. 13 for continu-
ous action .

The Fisher information matrix (Eq. 9) is approximated as:

Ĩ(θn) =
1

H2K

K∑
i=1

∇θn log(ρπθn (τi))∇θn log(ρπθn (τi))
T

= SnS
T
n , (14)

where, for notation simplicity, we denote Sn as a d×K ma-
trix where the i’s th column is∇θn log(ρπθn (τi))/(H

√
K).

Namely the Fisher information matrix is represented by
a sum of K rank-one matrices. For large policies rep-
resented by neural networks, K � d, and hence Ĩ(θn)
a low rank matrix. One can find the descent direction
δθn by solving the linear system SnS

T
n δθn = ∇̃θn for

δθn using Conjugate Gradient (CG) with a fixed num-
ber of iterations, which is equivalent to solving the above
linear systems using the Partial Least Square (Phatak &
de Hoog, 2002). This approach is used in TRPO (Schul-
man et al., 2015). The difference is that our representa-
tion of the Fisher matrix is in the form of SnSTn and in
CG we never need to explicitly compute or store SnSTn
which requires d2 space and time. Instead, we only com-
pute and store Sn (O(Kd)) and the total computational
time is still O(K2d). The learning-rate for natural gradi-

ent descent can be chosen as ηn =
√
δKL/(∇̃Tθnδθn), such

that KL(ρπθn+1
(τ)‖ρπθn (τ)) ≈ δKL ∈ R+

4.2. Differentiable Imitation Learning: AggreVaTeD

We present the differentiable imitation learning framework
AggreVaTeD, in Alg. 1. At every iteration n, the roll-in
policy π̂n is a mix of the expert policy π∗ and the current
policy πθn , with mixing rate α (αn → 0, n → ∞): at
every step, with probability α, π̂n picks π∗ and else πθn .
This mixing strategy with decay rate was first introduced
in (Ross et al., 2011) for IL, and later on was used in se-
quence prediction (Bengio et al., 2015). In Line 6 one can
choose Eq. 10 or the corresponding variance reduced esti-
mation Eq. 12 (Eq. 11 and Eq. 13 for continuous actions)
to perform regular gradient descent, and choose CG to per-
form natural gradient descent. Compared with previous
well-known IL and sequential prediction algorithms (Ross

Differential Imitation Learning for Sequential Prediction

Algorithm 1 AggreVaTeD (Differentiable AggreVaTe)

1: Input: The given MDP and expert π∗. Learning rate
{ηn}. Schedule rate {αi}, αn → 0, n→∞.

2: Initialize policy πθ1 (either random or supervised
learning).

3: for n = 1 to N do
4: Mixing policies: π̂n = αnπ

∗ + (1− αn)πθn .
5: Starting from ρ0, roll in by executing π̂n on the given

MDP to generate K trajectories {τni }.
6: Using Q∗ and {τni }i, compute the descent direction

δθn (Eq. 10, Eq. 11, Eq. 12, Eq. 13, or CG).
7: Update: θn+1 = θn − ηnδθn .
8: end for
9: Return: the best hypothesis π̂ ∈ {πn}n on validation.

Figure 1. The binary tree structure MDP M̃.

et al., 2011; Ross & Bagnell, 2014; Chang et al., 2015b),
AggreVaTeD is extremely simple: we do not need to per-
form any Data Aggregation (i.e., we do not need to store
all {τi}i from all previous iterations); the computational
complexity of each episode scales as O(d).

When we use non-linear function approximators to repre-
sent the polices, the analysis of AggreVaTe from (Ross &
Bagnell, 2014) will not hold, since the loss function `n(θ)
is not convex with respect to parameters θ. Nevertheless,
as we will show in experiments, in practice AggreVaTeD
is still able to learn a policy that is competitive with, and
sometimes superior to the oracle’s performance.

5. Quantify the Gap: An Analysis of IL vs RL
How much faster can IL learn a good policy than RL? In
this section we quantify the gap on discrete MDPs when IL
can (1) query for an optimalQ∗ or (2) query for a noisy but
unbiased estimate ofQ∗. To measure the speed of learning,
we look at the cumulative regret of the entire learning pro-
cess, defined as RN =

∑N
n=1(µ(πn)− µ(π∗)). A smaller

regret rate indicates faster learning. Throughout this sec-
tion, we assume the expert π∗ is optimal. We consider
finite-horizon, episodic IL and RL algorithms.

5.1. Exponential Gap

We consider an MDPM shown in Fig. 1 which is a depth-
K binary tree-structure with S = 2K − 1 states and two

actions al, ar: go-left and go-right. The transition is de-
terministic and the initial state s0 (root) is fixed. The cost
for each non-leaf state is zero; the cost for each leaf is i.i.d
sampled from a given distribution (possibly different dis-
tributions per leaf). Below we show that forM, IL can be
exponentially more sample efficient than RL.

Theorem 5.1. ForM, the regret RN of any finite-horizon,
episodic RL algorithm is at least:

E[RN] ≥ Ω(
√
SN). (15)

The expectation is with respect to random generation of
cost and internal randomness of the algorithm. However,
for the same MDPM, with the access to Q∗, we show IL
can learn exponentially faster:

Theorem 5.2. For the MDPM, there exists a policy class
such that AggreVaTe with FTL that can achieve the follow-
ing regret bound:

RN ≤ O(ln (S)). (16)

Fig. 1 illustrates the intuition behind the theorem. As-
sume during the first episode, the initial policy π1 picks the
rightmost trajectory (bold black) to explore and the algo-
rithm queries from oracle that for s0 we have Q∗(s0, al) <
Q∗(s0, ar), it immediately learns that the optimal policy
will go left (black arrow) at s0. Hence the algorithm does
not have to explore the right sub-tree (dotted circle).

Next we consider a more difficult setting where one can
only query for a noisy but unbiased estimate ofQ∗ (e.g., by
rolling out π∗ finite number of times). The above halving
argument will not apply since deterministically eliminating
nodes based on noisy estimates might permanently remove
good trajectories. However, IL can still achieve a poly-log
regret with respect to S, even in the noisy setting:

Theorem 5.3. With only access to unbiased estimate ofQ∗,
for the MDPM, AggreVaTeD with EG that can achieve the
following regret with probability at least 1− δ:

RN ≤ O
(

ln(S)(
√

ln(S)N +
√

ln(2/δ)N)
)
. (17)

The detailed proofs of the above three theorems can be
found in Appendix D,E,F respectively. In summary, for
MDPM, IL is is exponentially faster than RL.

5.2. Polynomial Gap and Near-Optimality

We next quantify the gap in general discrete MDPs and also
show that AggreVaTeD is near-optimal. We consider the
harder case where we can only access an unbiased estimate
of Q∗t , for any t and state-action pair. The policy π is rep-
resented as a set of probability vectors πs,t ∈ ∆(A), for all
s ∈ S and t ∈ [H]: π = {πs,t}s∈S,t∈[H].

Differential Imitation Learning for Sequential Prediction

Theorem 5.4. With access to unbiased estimates of Q∗t ,
AggreVaTeD with EG achieves the regret upper bound:

RN ≤ O
(
HQemax

√
S ln(A)N

)
. (18)

Here Qemax is the maximum cost-to-go of the expert.3 The
total regret shown in Eq. 18 allows us to compare IL algo-
rithms to RL algorithms. For example, the Upper Confi-
dence Bound (UCB) based, near-optimal optimistic RL al-
gorithms from (Jaksch et al., 2010), specifically designed
for efficient exploration, admit regret Õ(HS

√
HAN),

leading to a gap of approximately
√
HAS compared to the

regret bound of imitation learning shown in Eq. 18.

We also provide a lower bound on RN for H = 1 case
which shows the dependencies on N,A, S are tight:

Theorem 5.5. There exists an MDP (H=1), with only ac-
cess to unbiased estimate ofQ∗, any finite-horizon episodic
imitation learning algorithm must have:

E[RN] ≥ Ω(
√
S ln(A)N). (19)

The proofs of the above two theorems regarding general
MDPs can be found at Appendix G,H. In summary for
discrete MDPs, one can expect at least a polynomial gap
and a possible exponential gap between IL and RL.

6. Experiments
We evaluate our algorithms on robotics simulations from
OpenAI Gym (Brockman et al., 2016) and on Handwrit-
ten Algebra Dependency Parsing (Duyck & Gordon, 2015).
We report reward instead of cost, since OpenAI Gym by
default uses reward and dependency parsing aims to max-
imize UAS score. As our approach only promises there
exists a policy among all of the learned polices that can
perform as well as the expert, we report the performance
of the best policy so far: max{µ(π1), ..., µ(πi)}. For regu-
lar gradient descent, we use ADAM (Kingma & Ba, 2014)
which is a first-order no-regret algorithm, and for natural
gradient, we use CG to compute the descent direction. For
RL we use REINFORCE (Williams, 1992) and Truncated
Natural Policy Gradient (TNPG) (Duan et al., 2016).

6.1. Robotics Simulations

We consider CartPole Balancing, Acrobot Swing-up, Hop-
per and Walker. For generating an expert, similar to previ-
ous work (Ho & Ermon, 2016), we used a Deep Q-Network
(DQN) to generate Q∗ for CartPole and Acrobot (e.g., to
simulate the settings where Q∗ is available), while using
the publicly available TRPO implementation to generate

3Here we assume Qe
max is a constant compared to H . If

Qe
max = Θ(H), then the expert is no better than a random policy

of which the cost-to-go is around Θ(H).

π∗ for Hopper and Walker to simulate the settings where
one has to estimate Q∗ by Monte-Carlo roll outs π∗.

Discrete Action Setting We use a one-layer (16 hid-
den units) neural network with ReLu activation functions
to represent the policy π for the Cart-pole and Acrobot
benchmarks. The value function Q∗ is obtained from the
DQN (Mnih et al., 2015) and represented by a multi-layer
fully connected neural network. The policy πθ1 is initial-
ized with common ReLu neural network initialization tech-
niques. For the scheduling rate {αi}, we set all αi = 0:
namely we did not roll-in using the expert’s actions dur-
ing training. We set the number of roll outs K = 50 and
horizon H = 500 for CartPole and H = 200 for Acrobot.

Fig. 4a and 4b shows the performance averaged over 10
random trials of AggreVaTeD with regular gradient de-
scent and natural gradient descent. Note that AggreVaTeD
outperforms the experts’ performance significantly: Natu-
ral gradient surpasses the expert by 5.8% in Acrobot and
25% in Cart-pole. Also, for Acrobot swing-up, at hori-
zon H = 200, with high probability a randomly initialized
neural network policy won’t be able to collect any reward
signals. Hence the improvement rates of REINFORCE and
TNPG are slow. In fact, we observed that for a short hori-
zon such asH = 200, REINFORCE and Truncated Natural
Gradient often even fail to improve the policy at all (failed
6 times among 10 trials). On the contrary, AggreVaTeD
does not suffer from the delayed reward signal issue, since
the expert will collect reward signals much faster than a
randomly initialized policy.

Fig. 2c shows the performance of AggreVaTeD with an
LSTM policy (32 hidden states) in a partially observed set-
ting where the expert has access to full states but the learner
has access to partial observations (link positions). RL al-
gorithms did not achieve any improvement while Aggre-
VaTeD still achieved 92% of expert’s performance.

Continuous Action Setting We test our approaches on
two robotics simulators with continuous actions: (1) the
2-d Walker and (2) the Hopper from the MuJoCo physics
simulator. Following the neural network settings described
in Schulman et al. (2015), the expert policy π∗ is obtained
from TRPO with one hidden layer (64 hidden states), which
is the same structure that we use to represent our policies
πθ. We set K = 50 and H = 100. We initialize πθ1 by
collecting K expert demonstrations and then maximize the
likelihood of these demonstrations (i.e., supervised learn-
ing). We use Eq. 11 instead of the variance reduced equa-
tion here since we need to use MC roll-outs to estimate V ∗

(we simply use one roll-out to estimate Q∗).

Fig. 2d and 2e show the performance averaged over 5 ran-
dom trials. Note that AggreVaTeD outperforms the expert
in the Walker by 5.4% while achieving 97% of the expert’s

Differential Imitation Learning for Sequential Prediction

0 5 10 15 20
n

0

50

100

150

200

250

300

350

400

450

R

CartPole

expert
natural
regular

(a) Cartpole

0 5 10 15 20
n

200

190

180

170

160

150

140

R

Acrobot

expert
natural
regular
RL natural
RL regular

(b) Acrobot

0 10 20 30 40 50
n

210

200

190

180

170

160

150

R

Acrobot (Partial)

expert
natural
regular
RL

(c) Acrobot (POMDP)

0 20 40 60 80 100
n

0

50

100

150

200

R

Walker

expert
natural
regular
RL natural
RL regular

(d) Walker

0 20 40 60 80 100
n

0

50

100

150

200

250

R

Hopper

expert
natural
regular
RL natural
RL regular

(e) Hopper

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.

performance in the Hopper problem. After 100 iterations,
we see that by leveraging the help from experts, Aggre-
VaTeD can achieve much faster improvement rate than the
corresponding RL algorithms.

6.2. Dependency Parsing on Handwritten Algebra

We consider a sequential prediction problem: transition-
based dependency parsing for handwritten algebra with raw
image data (Duyck & Gordon, 2015). The parsing task
for algebra is similar to the classic dependency parsing
for natural language (Chang et al., 2015a) where the prob-
lem is modelled in the IL setting and the state-of-the-art is
achieved by AggreVaTe with FTRL (using Data Aggrega-
tion). The additional challenge here is that the inputs are
handwritten algebra symbols in raw images. We directly
learn to predict parse trees from low level image features
(Histogram of Gradient features (HoG)). During training,
the expert is constructed using the ground-truth dependen-
cies in training data. The full state s during parsing con-
sists of three data structures: Stack, Buffer and Arcs, which
store raw images of the algebraic symbols. Since the sizes
of stack, buffer and arcs change during parsing, a com-
mon approach is to featurize the state s by taking the fea-
tures of the latest three symbols from stack, buffer and arcs
(e.g., (Chang et al., 2015a)). Hence the problem falls into
the partially observable setting, where the feature o is ex-
tracted from state s and only contains partial information
about s. The dataset consists of 400 sets of handwritten
algebra equations. We use 80% for training, 10% for val-
idation, and 10% for testing. We include an example of
handwritten algebra equations and its dependency tree in
Appendix I. Note that different from robotics simulators
where at every episode one can get fresh data from the sim-
ulators, the dataset is fixed and sample efficiency is critical.

The RNN policy follows the design from (Sutskever et al.,
2014). It consists of two LSTMs. Given a sequence of al-
gebra symbols τ , the first LSTM processes one symbol at
a time and at the end outputs its hidden states and mem-
ory (i.e., a summary of τ). The second LSTM initializes its
own hidden states and memory using the outputs of the first
LSTM. At every parsing step t, the second LSTM takes the
current partial observation ot (ot consists of features of the

0 10 20 30 40 50
n

70

75

80

85

90

95

100

U
A

S

validation

expert
natural
regular

(a) Validation

0 10 20 30 40 50 60 70 80
n

70

75

80

85

90

95

100

U
A

S

test

expert
natural
regular

(b) Test

Figure 3. UAS (y-axis) versus number of iterations (n on x-axis)
of AggreVaTeD with LSTM policy (blue and green), experts (red)
on validation set and test set for Arc-Eager Parsing.

most recent item from stack, buffer and arcs) as input, and
uses its internal hidden state and memory to compute the
action distribution π(·|o1, ..., ot, τ) conditioned on history.
We also tested reactive policies constructed as fully con-
nected ReLu neural networks (NN) (one-layer with 1000
hidden states) that directly maps from observation ot to ac-
tion a, where ot uses the most three recent items. We use
variance reduced gradient estimations, which give better
performance in practice. The performance is summarised
in Table 1. Due to the partial observability of the prob-
lem, AggreVaTeD with a LSTM policy achieves signifi-
cantly better UAS scores compared to the NN reactive pol-
icy and DAgger with a Kernelized SVM (Duyck & Gordon,
2015). Also AggreVaTeD with a LSTM policy achieves
97% of optimal expert’s performance. Fig. 3 shows the im-
provement rate of regular gradient and natural gradient on
both validation set and test set. Overall we observe that
both methods have similar performance. Natural gradient
achieves a better UAS score in validation and converges
slightly faster on the test set but also achieves a lower UAS
score on test set.

7. Conclusion
We introduced AggreVaTeD, a differentiable imitation
learning algorithm which trains neural network policies for
sequential prediction tasks such as continuous robot control
and dependency parsing on raw image data. We showed
that in theory and in practice IL can learn much faster
than RL with access to optimal cost-to-go oracles. The IL
learned policies were able to achieve expert and sometimes
super-expert levels of performance in both fully observable

Differential Imitation Learning for Sequential Prediction

Arc-Eager AggreVaTeD (LSTMs) AggreVaTeD (NN) SL-RL (LSTMs) SL-RL(NN) RL (LSTMs) RL (NN) DAgger SL (LSTMs) SL (NN) Random

Regular 0.924±0.10 0.851±0.10 0.826± 0.09 0.386±0.1 0.256±0.07 0.227±0.06 0.832±0.02 0.813±0.1 0.325±0.2 ∼0.150Natural 0.915±0.10 0.800±0.10 0.824±0.10 0.345±0.1 0.237±0.07 0.241±0.07

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using
expert’s samples: maximizing the likelihood of expert’s actions under the sequences generated by expert itself. SL-RL means RL with
initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger
with Kernel SVM is from (Duyck & Gordon, 2015).

and partially observable settings. The theoretical and ex-
perimental results suggest that IL is significantly more ef-
fective than RL for sequential prediction with near optimal
cost-to-go oracles.

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learning via

inverse reinforcement learning. In ICML, pp. 1. ACM, 2004.

Bagnell, J Andrew and Schneider, Jeff. Covariant policy search.
IJCAI, 2003.

Bahdanau, Dzmitry, Brakel, Philemon, Xu, Kelvin, Goyal,
Anirudh, Lowe, Ryan, Pineau, Joelle, Courville, Aaron, and
Bengio, Yoshua. An actor-critic algorithm for sequence pre-
diction. arXiv preprint arXiv:1607.07086, 2016.

Bengio, Samy, Vinyals, Oriol, Jaitly, Navdeep, and Shazeer,
Noam. Scheduled sampling for sequence prediction with re-
current neural networks. In NIPS, 2015.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider,
Jonas, Schulman, John, Tang, Jie, and Zaremba, Wojciech.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Bubeck, Sébastien, Cesa-Bianchi, Nicolo, et al. Regret analysis
of stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends R© in Machine Learning, 2012.

Bubeck, Sébastien et al. Convex optimization: Algorithms and
complexity. Foundations and Trends R© in Machine Learning,
2015.

Chang, Kai-Wei, He, He, Daumé III, Hal, and Langford,
John. Learning to search for dependencies. arXiv preprint
arXiv:1503.05615, 2015a.

Chang, Kai-wei, Krishnamurthy, Akshay, Agarwal, Alekh,
Daume, Hal, and Langford, John. Learning to search better
than your teacher. In ICML, 2015b.

Daumé III, Hal, Langford, John, and Marcu, Daniel. Search-
based structured prediction. Machine learning, 2009.

Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John, and
Abbeel, Pieter. Benchmarking deep reinforcement learning for
continuous control. In ICML, 2016.

Duyck, James A and Gordon, Geoffrey J. Predicting structure in
handwritten algebra data from low level features. Data Analy-
sis Project Report, MLD, CMU, 2015.

Finn, Chelsea, Levine, Sergey, and Abbeel, Pieter. Guided cost
learning: Deep inverse optimal control via policy optimization.
In ICML, 2016.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan. Vari-
ance reduction techniques for gradient estimates in reinforce-
ment learning. JMLR, 2004.

Ho, Jonathan and Ermon, Stefano. Generative adversarial imita-
tion learning. In NIPS, 2016.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-optimal
regret bounds for reinforcement learning. JMLR, 2010.

Kahn, Gregory, Zhang, Tianhao, Levine, Sergey, and Abbeel,
Pieter. Plato: Policy learning using adaptive trajectory opti-
mization. arXiv preprint arXiv:1603.00622, 2016.

Kakade, Sham. A natural policy gradient. NIPS, 2002.

Kakade, Sham and Langford, John. Approximately optimal ap-
proximate reinforcement learning. In ICML, 2002.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, Jiwei, Monroe, Will, Ritter, Alan, Galley, Michel, Gao, Jian-
feng, and Jurafsky, Dan. Deep reinforcement learning for dia-
logue generation. arXiv preprint arXiv:1606.01541, 2016.

Mnih, Volodymyr et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

Phatak, Aloke and de Hoog, Frank. Exploiting the connection
between pls, lanczos methods and conjugate gradients: alterna-
tive proofs of some properties of pls. Journal of Chemometrics,
2002.

Ranzato, Marc’Aurelio, Chopra, Sumit, Auli, Michael, and
Zaremba, Wojciech. Sequence level training with recurrent
neural networks. ICLR 2016, 2015.

Ratliff, Nathan D, Bagnell, J Andrew, and Zinkevich, Martin A.
Maximum margin planning. In ICML, 2006.

Rhinehart, Nicholas, Zhou, Jiaji, Hebert, Martial, and Bagnell,
J Andrew. Visual chunking: A list prediction framework for
region-based object detection. In ICRA. IEEE, 2015.

Ross, Stéphane and Bagnell, J. Andrew. Efficient reductions for
imitation learning. In AISTATS, pp. 661–668, 2010.

Ross, Stephane and Bagnell, J Andrew. Reinforcement and imita-
tion learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, Stéphane, Gordon, Geoffrey J, and Bagnell, J.Andrew. A
reduction of imitation learning and structured prediction to no-
regret online learning. In AISTATS, 2011.

Ross, Stephane, Zhou, Jiaji, Yue, Yisong, Dey, Debadeepta, and
Bagnell, Drew. Learning policies for contextual submodular
prediction. In ICML, 2013.

Differential Imitation Learning for Sequential Prediction

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael I, and Moritz, Philipp. Trust region policy optimiza-
tion. In ICML, pp. 1889–1897, 2015.

Shalev-Shwartz, Shai et al. Online learning and online convex
optimization. Foundations and Trends R© in Machine Learning,
2012.

Silver, David et al. Mastering the game of go with deep neural
networks and tree search. Nature, 2016.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to
sequence learning with neural networks. In NIPS, 2014.

Syed, Umar, Bowling, Michael, and Schapire, Robert E. Appren-
ticeship learning using linear programming. In ICML, 2008.

Venkatraman, Arun, Hebert, Martial, and Bagnell, J Andrew. Im-
proving multi-step prediction of learned time series models.
AAAI, 2015.

Williams, Ronald J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 1992.

Ziebart, Brian D, Maas, Andrew L, Bagnell, J Andrew, and Dey,
Anind K. Maximum entropy inverse reinforcement learning.
In AAAI, 2008.

Zinkevich, Martin. Online Convex Programming and Generalized
Infinitesimal Gradient Ascent. In ICML, 2003.

Differential Imitation Learning for Sequential Prediction

Appendix: Proofs and Detailed Bounds

A. Derivation of Eq. 4
Starting from Eq. 1 with parametrized policy πθ, we have:

`n(θ) =
1

H

H∑
t=1

E
st∼d

πθn
t

[
E

at∼π(·|st;θ)
[Q∗t (st, at)]

]
=

1

H

H∑
t=1

E
st∼d

πθn
t

[∫
a

π(a|st; θ)Q∗t (st, a)da
]

=
1

H

H∑
t=1

E
st∼d

πθn
t

[∫
a

π(a|st; θn)
π(a|st; θ)
π(a|st; θn)

Q∗t (st, a)da
]

=
1

H

H∑
t=1

E
st∼d

πθn
t

[
E

a∼π(·|st;θn)

π(a|st; θ)
π(a|st; θn)

Q∗t (st, a)
]

=
1

H

H∑
t=1

E
st∼d

πθn
t ,at∼π(a|st;θn)

[π(at|st; θ)
π(at|st; θn)

Q∗t (st, at)
]
. (20)

B. Derivation of Exponential Gradient Update in Discrete MDP
We show the detailed derivation of Eq. 7 for AggreVaTeD with EG in discrete MDP. Recall that with KL-divergence as
the penalization, one update the policy in each episode as:

{πsn+1}s∈S = arg min
{πs∈∆(A),∀s}

1

H

H∑
t=1

∑
s∈S

dπnt (s)
(
πs ·Q∗t (s)

)
+
∑
s∼S

d̄πn(s)

ηn,s
KL(πs‖πsn)

Note that in the above equation, for a particular state s, optimizing πs is in fact independent of πs
′
,∀s′ 6= s. Hence the

optimal sequence {πs}s∈S can be achieved by optimizing πs independently for each s ∈ S. For πs, we have the following
update rule:

πsn+1 = arg min
πs∈∆(A)

1

H

H∑
t=1

dπnt (s)(πs ·Q∗t (s)) +
d̄πn(s)

ηn,s
KL(πs‖πsn)

= arg min
πs∈∆(A)

πs · (
H∑
t=1

dπnt (s)Q∗t (s)/H) +
d̄πn(s)

ηn,s
KL(πs‖πsn)

= arg min
πs∈∆(A)

πs · (
H∑
t=1

dπnt (s)Q∗t (s)/(Hd̄
πn(s))) +

1

ηn,s
KL(πs‖πsn)

= arg min
πs∈∆(A)

πs · Q̃e(s) +
1

ηn,s

A∑
j=1

πs[j](log(πs[j])− log(πsn[j])) (21)

Take the derivative with respect to πs[j], and set it to zero, we get:

Q̃e(s)[j] +
1

ηn,s
(log(πs[j]/πsn[j]) + 1) = 0, (22)

this gives us:

πs[j] = πsn[j] exp(−ηn,sQ̃e(s)[j]− 1). (23)

Since πs ∈ ∆(A), after normalization, we get:

πs[j] =
πsn[j] exp(−ηn,sQ̃e(s)[j])∑A
i=1 π

s
n[i] exp(−ηn,sQ̃e(s)[i])

(24)

Differential Imitation Learning for Sequential Prediction

C. Lemmas
Before proving the theorems, we first present the Performance Difference Lemma (Kakade & Langford, 2002; Ross &
Bagnell, 2014) which will be used later:

Lemma C.1. For any two policies π1 and π2, we have:

µ(π1)− µ(π2) = H

H∑
t=1

Est∼dπ1t
[
Eat∼π1(·|st)[Q

π2
t (st, at)− V π2

t (st)]
]
. (25)

We refer readers to (Ross & Bagnell, 2014) for the detailed proof of the above lemma.

The second known result we will use is the analysis of Weighted Majority Algorithm. Let us define the linear loss function
as `n(w) = w · yn, for any yn ∈ Rd, and w ∈ ∆(d) from a probability simplex. Running Exponential Gradient Algorithm
on the sequence of losses {w · yn} to compute a sequence of decisions {wn}, we have:

Lemma C.2. The sequence of decisions {wn} computed by running Exponential Gradient descent with step size µ on the
loss functions {w · yn} has the following regret bound:

N∑
n=1

wn · yn − min
w∗∈∆(d)

N∑
n=1

w∗ · yn ≤
ln(d)

µ
+
µ

2

N∑
n=1

d∑
i=1

wn[i]yn[i]2. (26)

We refer readers to (Shalev-Shwartz et al., 2012) for detailed proof.

D. Proof of Theorem 5.1
Proof. We construct a reduction from stochastic Multi-Arm Bandits (MAB) to the MDP M̃. A stochastic MAB is defined
by S arms denoted as I1, ..., IS . Each arm It’s cost ci at any time step t is sampled from a fixed but unknown distribution.
A bandit algorithm picks an arm It at iteration t and then receives an unbiased sample of the picked arm’s cost cIt . For any
bandit algorithm that picks arms I1, I2, ..., IN in N rounds, the expected regret is defined as:

E[RN] = E[

N∑
n=1

cIn]− min
i∈[S]

N∑
n=1

c̄i, (27)

where the expectation is taken with respect to the randomness of the cost sampling process and possibly the randomness
of the bandit algorithm. It has been shown that there exists a set of distributions from which the arms’ costs sampled from,
the expected regret E[RN] is at least Ω(

√
SN) (Bubeck et al., 2012).

Consider a MAB with 2K arms. To construct a MDP from a MAP, we construct a K + 1-depth binary-tree structure MDP
with 2K+1− 1 nodes. We set each node in the binary tree as a state in the MDP. The number of actions of the MDP is two,
which corresponds to go left or right at a node in the binary tree. We associate each leaf nodes with arms in the original
MAB: the cost of the i’th leaf node is sampled from the cost distribution for the i’th arm, while the non-leaf nodes have
cost always equal to zero. The initial distribution ρ0 concentrates on the root of the binary tree. Note that there are total
2K trajectories from the root to leafs, and we denote them as τ1, ...τ2K . We consider finite horizon (H = K + 1) episodic
RL algorithms that outputs π1, π2, ..., πN at N episodes, where πn is any deterministic policy that maps a node to actions
left or right. Any RL algorithm must have the following regret lower bound:

E[

N∑
n=1

µ(πn)]−min
π∗

N∑
n=1

µ(π∗) ≥ Ω(
√
SN), (28)

where the expectation is taken with respect to the possible randomness of the RL algorithms. Note that any deterministic
policy π identifies a trajectory in the binary tree when rolling in from the root. The optimal policy π∗ simply corresponds
to the trajectory that leads to the leaf with the mininum expected cost. Note that each trajectory is associated with an arm
from the original MAB, and the expected total cost of a trajectory corresponds to the expected cost of the associated arm.
Hence if there exists an RL algorithm that achieves regret O(

√
SN), then we can solve the original MAB problem by

simply running the RL algorithm on the constructed MDP. Since the lower bound for MAB is Ω(
√
SN), this concludes

that Eq. 28 holds.

Differential Imitation Learning for Sequential Prediction

E. Proof of Theorem 5.2
Proof. For notation simplicity we denote al as the go-left action while ar is the go-right action. Without loss of generality,
we assume that the leftmost trajectory has the lowest total cost (e.g., s3 in Fig. 1 has the lowest average cost). We consider
the deterministic policy class Π that contains all policy π : S → {al, ar}. Since there are S states and 2 actions, the total
number of policies in the policy class is 2S . To prove the upper bound RN ≤ O(log(S)), we claim that for any e ≤ K,
at the end of episode e, AggreVaTe with FTL identifies the e’th state on the best trajectory, i,e, the leftmost trajectory
s0, s1, s3, ..., s(2K−1−1). We can prove the claim by induction.

At episode e = 1, based on the initial policy, AggreVaTe picks a trajectory τ1 to explore. AggreVaTe with FTL collects
the states s at τ1 and their associated cost-to-go vectors [Q∗(s, al), Q

∗(s, ar)]. Let us denote D1 as the dataset that
contains the state,cost-to-go pairs: D1 = {(s, [Q∗(s, al), Q∗(s, al)])}, for s ∈ τ1. Since s0 is visited, the state-cost pair
(s0, [Q

∗(s0, al), Q
∗(s0, ar)]) must be in D1. To update policy from π1 to π2, AggreVaTe with FTL runs cost-sensitive

classification D1 as:

π2 = arg min
π

|D1|∑
k=1

Q∗(sk, π(sk)), (29)

where sk stands for the k’th data point collected at dataset D1. Due to the construction of policy class Π, we see that π2

must picks action al at state s0 since Q(s0, al) < Q(s0, ar). Hence at the end of the episode e = 1, π2 identifies s1 (i.e.,
running π2 from root s0 leads to s1), which is on the optimal trajectory.

Now assume that at the end of episode n − 1, the newly updated policy πn identifies the state s(2n−1−1): namely at the
beginning of episode n, if we roll-in πn, the algorithm will keep traverse along the leftmost trajectory till at least state
s(2n−1−1). At episode n, let Dn as the dataset contains all data points from Dn−1 and the new collected state, cost-to-
go pairs from τn: Dn = Dn−1 ∪ {(s, [Q∗(s, al), Q∗(s, ar)])}, for all s ∈ τn. Now if we compute policy πn+1 using
cost-sensitive classification (Eq. 29) over Dn, we must learn a policy πn+1 that identifies action al at state s(2j−1), since
Qe(s(2j−1), al) < Q∗(s(2j−1), ar), and s(2j−1) is included in Dn, for j = 1, ..., n− 1. Hence at the end of episode n, we
identify a policy πn+1 such that if we roll in policy πn+1 from s0, we will traverse along the left most trajectory till we
reach s(2n−1).

Hence by the induction hypothesis, at the end of episodeK−1, πK will reach state s(2K−1−1), the end of the best trajectory.

Since AggreVaTe with FTL with policy class Π identifies the best trajectory with at most K − 1 episodes, the cumulative
regret is then at most O(K), which is O(log(S)) (assuming the average cost at each leaf is a bounded constant), as S is the
number of nodes in the binary-tree structure MDP M̃.

F. Proof of Theorem 5.3
Since in Theorem 5.3 we assume that we only have access to the noisy, but unbiased estimate of Q∗, the problem becomes
more difficult since unlike in the proof of Theorem 5.2, we cannot simply eliminate states completely since the cost-to-go
of the states queried from expert is noisy and completely eliminate nodes will potentially result elimination of low cost
trajectories. Hence here we consider a different policy representation. We define 2K deterministic base policies π1, ..., π2K ,
such that rolling in policy πi at state s0 will traverse along the trajectory ending at the i’th leaf. We define the policy class
Π as the convex hull of the base policies Π = {π :

∑2K

i=1 wiπ
i,
∑2K

i wi = 1, wi ≥ 0,∀i}. Namely each π ∈ Π is a
stochastic policy: when rolling in, with probability wi, π execute the i’th base policy πi from s0. Below we prove that
AggreVaTeD with Exponential Gradient Descent achieves the regret bound O(

√
ln(S)N).

Proof. We consider finite horizon, episodic imitation learning setting where at each episode n, the algorithm can
roll in the current policy πn once and only once and traverses through trajectory τn . Let us define ˜̀

n(w) =
1

K+1

∑
s∈τn

∑2K

j=1 wjQ̃
e(s, πj(s)), where τn is the trajectory traversed by rolling in policy πn starting at s0, and Q̃e

is a noisy but unbiased estimate of Q∗. We simply consider the setting where Q̃e is bounded |Q̃e| ≤ lmax (note that we
can easily extend our analysis to a more general case where Q̃e is from a sub-Gaussian distribution). Note that ˜̀

n(w) is
simply a linear loss with respect to w:

˜̀
n(w) = w · qn, (30)

Differential Imitation Learning for Sequential Prediction

where qn[j] =
∑
s∈τn Q̃

e(s, πj(s))/(K+ 1). AggreVaTeD with EG updates w using Exponential gradient descent. Using
the result from lemma C.2, we get:

N∑
n=1

(˜̀
n(wn)− ˜̀

n(w∗)) =

N∑
n=1

(wn · qn − w∗ · qn) ≤ ln(2K)

µ
+
µ

2

N∑
n=1

2K∑
j=1

wn[j]qn[j]2 ≤ ln(2K)

µ
+
µ

2

N∑
n=1

l2max

=
ln(2K)

µ
+
µNl2max

2
≤ lmax

√
ln(S)N. (31)

Note that S = 2K+1 − 1. The above inequality holds for any w∗ ∈ ∆(2K), including the we that corresponds to the
expert (i.e., we[1] = 1, we[i] = 0, i 6= 1 as we assumed without loss of generality the left most trajectory is the optimal
trajectory).

Now let us define `n(w) as follows:

`n(w) =
1

K + 1

K+1∑
t=1

∑
s∼S

dπnt (s)

2K∑
j=1

wjQ
∗(s, πj(s)). (32)

Note `n(w) can be understood as first rolling in πn infinitely many times and then querying for the exact cost-to-go Q∗ on
all the visited states. Clearly ˜̀

n(w) is an unbiased estimate of `n(w): E[˜̀n(w)]−`n(w) = 0, where the expectation is over
the randomness of the roll-in and sampling procedure of Q̃e at iteration n, conditioned on all events among the previous
n− 1 iterations. Also note that |˜̀n(w)− `n(w)| ≤ 2lmax, since `n(w) ≤ lmax. Hence {˜̀n(wn)− `n(wn)} is a bounded
martingale difference sequence. Hence by Azuma-Heoffding inequality, we get with probability at least 1− δ/2:

N∑
n=1

`n(wn)− ˜̀
n(wn) ≤ 2lmax

√
log(2/δ)N, (33)

and with probability at least 1− δ/2:

N∑
n=1

˜̀
n(we)− `n(we) ≤ 2lmax

√
log(2/δ)N. (34)

Combine the above inequality using union bound, we get with probability at least 1− δ:

N∑
n=1

(`n(wn)− `n(we)) ≤
N∑
n=1

(˜̀
n(wn)− ˜̀

n(we)) + 4lmax

√
log(2/δ)N. (35)

Now let us apply the Performance Difference Lemma (Lemma C.1), we get with probability at least 1− δ:

N∑
n=1

µ(πn)−
N∑
n=1

µ(π∗) =

N∑
n=1

(K + 1)
(
`n(wn)− `n(we)

)
≤ (K + 1)(lmax

√
ln(S)N + 4lmax

√
log(2/δ)N), (36)

rearrange terms we get:

N∑
n=1

µ(πn)−
N∑
n=1

µ(π∗) ≤ log(S)lmax(
√

ln(S)N +
√

log(2/δ)N) ≤ O(ln(S)
√

ln(S)N), (37)

with probability at least 1− δ.

G. Proof of Theorem 5.4
The proof of theorem 5.4 is similar to the one for theorem 5.3. Hence we simply consider the infinitely many roll-ins and
exact query of Q∗ case. The finite number roll-in and noisy query of Q∗ case can be handled by using the martingale
difference sequence argument as shown in the proof of theorem 5.3.

Differential Imitation Learning for Sequential Prediction

Proof. Recall that in general setting, the policy π consists of probability vectors πs,t ∈ ∆(A), for all s ∈ S and t ∈ [H]:
π = {πs,t}∀s∈S,t∈[H]. Also recall that the loss functions EG is optimizing are {`n(π)} where:

`n(π) =
1

H

H∑
t=1

∑
s∈S

dπnt (s)(πs,t ·Q∗t (s)) =

H∑
t=1

∑
s∈S

πs,t · qs,tn (38)

where as we defined before Q∗t (s) stands for the cost-to-go vector Q∗t (s)[j] = Q∗t (s, aj), for the j’th action in A, and
qs,tn =

dπnt (s)
H Q∗t (s).

Now if we run Exponential Gradient descent on `n to optimize πs,t for each pair of state and time step independently, we
can get the following regret upper bound by using Lemma C.2:

N∑
n=1

`n(π)−min
π

N∑
n=1

`n(πn) ≤
H∑
t=1

∑
s∈S

(ln(A)

µ
+
µ

2

N∑
n=1

A∑
j=1

πs,t[j]qs,tn [j]2
)
. (39)

Note that we can upper bound (qs,tn [j])2 as:

(qs,tn [j])2 ≤ dπnt (s)2

H2
(Q∗max)2 ≤ dπnt (s)

H2
(Q2

max)2 (40)

Substitute it back, we get:

N∑
n=1

(`n(πn)− `n(π∗)) ≤
H∑
t=1

∑
s∈S

(ln(A)

µ
+
µ

2

N∑
n=1

A∑
j=1

πs,t[j]dπnt (s)
(Q∗max)2

H2

)
=

H∑
t=1

(S ln(A)

µ
+
µ(Q∗max)2

2H2

N∑
n=1

∑
s∈S

dπnt (s)

A∑
j=1

πs,t[j]
)

=

H∑
t=1

(S ln(A)

µ
+
µ(Q∗max)2

2H2
N
)

≤ Q∗max

H

√
2S ln(A)N, (41)

if we set µ =
√

(Q∗max)2NS ln(A)/(2H2).

Now let us apply the performance difference lemma (Lemma C.1), we get:

RN =

N∑
n=1

µ(πn)−
N∑
n=1

µ(π∗) = H

N∑
n=1

(`n(wn)− `n(we)) ≤ HQemax

√
S ln(A)N. (42)

H. Proof of Theorem 5.5
Let us use Q̃e(s) to represent the noisy but unbiased estimate of Q∗(s).

Proof. For notation simplicity, we denote S = {s1, s2, ..., sS}. We consider a finite MDP with time horizon H = 1. The
initial distribution ρ0 = {1/S, ..., 1/S} puts 1/S weight on each state. We consider the algorithm setting where at every
episode n, a state sn ∈ S is sampled from ρ0 and the algorithm uses its current policy πsnn ∈ ∆(A) to pick an action
a ∈ A for sn and then receives a noisy but unbiased estimate Q̃e(sn) of Q∗(sn) ∈ R|A|. The algorithm then updates its
policy from πs

n

n to πs
n

n+1 for sn while keep the other polices for other s unchanged (since the algorithm did not receive any
feedback regarding Q∗(s) for s 6= sn and the sample distribution ρ0 is fixed and uniform). For expected regret E[RN] we

Differential Imitation Learning for Sequential Prediction

have the following fact:

E
sn∼ρ0,∀n

[
E

Q̃e(sn)∼Psn ,∀n

[N∑
n=1

(πs
n

n · Q̃e(sn)− π∗sn · Q̃e(sn))
]]

= E
sn∼ρ0,∀n

[N∑
n=1

E
Q̃ei (si)∼Psi ,i≤n−1

[
(πs

n

n ·Q∗(sn)− πesn ·Q∗(sn))
]]

=

N∑
n=1

E
si∼ρ0,i≤n−1

[
E

Q̃ei (si)∼Psi ,i≤n−1

[
E

s∼ρ0
(πsn ·Q∗(s)− π∗s ·Q∗(s))

]]
= E

[N∑
n=1

E
s∼ρ0

πsn ·Q∗(s)− E
s∼ρ0

π∗s ·Q∗(s)
]

= E
N∑
n=1

[µ(πn)− µ(π∗)], (43)

where the expectation in the final equation is taken with respect to random variables πi, i ∈ [N] since each πi is depend on
Q̃ej , for j < i and sj , for j < i.

We first consider EQ̃e(sn)∼Psn ,∀n
[∑N

n=1(πs
n

n · Q̃e(sn) − π∗sn · Q̃e(sn))
]

conditioned on a given sequence of s1, ..., sN .
Let us define that among N episodes, the set of the index of the episodes that state si is sampled as Ni and its cardinality
as Ni, and we then have

∑S
i=1Ni = N and Ni ∩Nj = ∅,for i 6= j.

E
Q̃e(sn)∼Psn ,∀n

[N∑
n=1

(πs
n

n · Q̃e(sn)− π∗sn · Q̃e(sn))
]

=

S∑
i=1

∑
j∈Ni

E
Q̃ej (si)∼Psi

(πsij · Q̃
e
j(si)− πesiQ̃

e
j(si)) (44)

Note that for each state si, at the rounds from Ni, we can think of the algorithm running any possible online linear
regression algorithm to compute the sequence of policies πsij ,∀j ∈ Ni for state si. Note that from classic online linear
regression analysis, we can show that for state si there exists a distribution Psi such that for any online algorithm:

E
Q̃ej (si)∼Psi ,∀j∈Ni

[∑
j∈Ni

(πsij · Q̃
e
j(si)− πesi · Q̃

e
j(si))

]
≥ c
√

ln(A)Ni, (45)

for some non-zero positive constant c. Substitute the above inequality into Eq. 44, we have:

E
Q̃e(sn)∼Psn ,∀n

[N∑
n=1

(πs
n

n · Q̃e(sn)− π∗sn · Q̃e(sn))
]
≥

S∑
i=1

c
√

ln(A)Ni = c
√

ln(A)

S∑
i=1

√
Ni. (46)

Now let us put the expectation Esi∼ρ0,∀i back, we have:

E
sn∼ρ0,∀n

[
E

Q̃e(sn)∼Psn

[N∑
n=1

(πs
n

n · Q̃e(sn)− π∗sn · Q̃e(sn))|s1, ..., sn
]]
≥ c
√

ln(A)

N∑
i=1

E[
√
Ni]. (47)

Note that each Ni is sampled from a Binomial distribution B(N, 1/S). To lower bound En∼B(N,1/S)

√
n, we use Hoeffd-

ing’s Inequality here. Note that Ni =
∑N
n=1 an, where an = 1 if si is picked at iteration n and zero otherwise. Hence ai

is from a Bernoulli distribution with parameter 1/S. Using Hoeffding bound, for Ni/N , we get:

P (|Ni/N − 1/S| <= ε) ≥ 1− exp(−2Nε2). (48)

Differential Imitation Learning for Sequential Prediction

Let ε = 1/(2S), and substitute it back to the above inequality, we get:

P (0.5(N/S) ≤ Ni ≤ 1.5(N/S)) = P (
√

0.5(N/S) ≤
√
Ni ≤

√
1.5(N/S)) ≥ 1− exp(−2N/S2). (49)

Hence, we can lower bound E[
√
Ni] as follows:

E[
√
Ni] ≥

√
0.5N/S(1− exp(−2N/S2)). (50)

Take N to infinity, we get:

lim
N→∞

E[
√
Ni] ≥

√
0.5N/S. (51)

Substitute this result back to Eq. 47 and use the fact from Eq. 43, we get:

lim
N→∞

E[RN] = lim
N→∞

E
sn∼ρ0,∀n

[
E

Q̃e(sn)∼Psn ,∀n

[N∑
n=1

(πs
n

n · Q̃e(sn)− π∗sn · Q̃e(sn))
]]
≥ c
√

ln(A)

S∑
i=1

E[
√
Ni]

≥ c
√

ln(A)S
√

0.5N/S = Ω(
√
S ln(A)N).

Hence we prove the theorem.

I. Details of Dependency Parsing for Handwritten Algebra
In Fig. 4, we show an example of set of handwritten algebra equations and its dependency tree from a arc-hybird sequence
slssslssrrllslsslssrrslssrlssrrslssrr. The preprocess step cropped individual symbols one by one from left to right and
from the top equation to the bottom one, centered them, scaled symbols to 40 by 40 images, and finally formed them as a
sequence of images.

(a) Handwritten algebra equations (b) Dependency tree

Figure 4. An example of a set of handwritten algebra equations (a) and its corresponding dependency tree (b).

Since in the most common dependency parsing setting, there is no immediate reward at every parsing step, the reward-to-
go Q∗(s, a) is computed by using UAS as follows: start from s and apply action a, then use expert π∗ to roll out til the
end of the parsing process; Q∗(s, a) is the UAS score of the final configuration. Hence AggreVaTeD can be considered
as directly maximizing the UAS score, while previous approaches such as DAgger or SMILe (Ross et al., 2011) tries to
mimic expert’s actions and hence are not directly optimizing the final objective.

