Home/Reducing adaptation latency for multi-concept visual perception in outdoor environments

Reducing adaptation latency for multi-concept visual perception in outdoor environments

Luis Ernesto Navarro-Serment
Conference Paper, Proc. of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October, 2017

Download Publication (PDF)

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract

Multi-concept visual classification is emerging as a common environment perception technique, with applications in autonomous mobile robot navigation. Supervised visual classifiers are typically trained with large sets of images, hand annotated by humans with region boundary outlines followed by label assignment. This annotation is time consuming, and unfortunately, a change in environment requires new or additional labeling to adapt visual perception. The time is takes for a human to label new data is what we call adaptation latency. High adaptation latency is not simply undesirable but may be infeasible for scenarios with limited labeling time and resources. In this paper, we introduce a labeling framework to the environment perception domain that significantly reduces adaptation latency using unsupervised learning in exchange for a small amount of label noise. Using two real-world datasets we demonstrate the speed of our labeling framework, and its ability to collect environment labels that train high performing multi-concept classifiers. Finally, we demonstrate the relevance of this label collection process for visual perception as it applies to navigation in outdoor environments.

BibTeX Reference
@conference{Navarro-Serment-2017-101672,
title = {Reducing adaptation latency for multi-concept visual perception in outdoor environments},
author = {Luis Ernesto Navarro-Serment},
booktitle = {Proc. of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
keyword = {unsupervised learning, image classification, mobile robots, path planning, robot vision},
sponsor = {Army Research Laboratory},
publisher = {IEEE},
month = {October},
year = {2017},
}
2017-11-06T12:06:23+00:00