Probabilistic path planning for multiple robots with subdimensional expansion

Glenn Wagner, Minsu Kang and Howie Choset
Conference Paper, IEEE International Conference on Robotics and Automation (ICRA),, pp. 2886--2892, May, 2012

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Probabilistic planners such as Rapidly-Exploring Random Trees (RRTs) and Probabilistic Roadmaps (PRMs) are powerful path planning algorithms for high dimensional systems, but even these potent techniques suffer from the curse of dimensionality, as can be seen in multirobot systems. In this paper, we apply a technique called subdimensional expansion in order to enhance the performance of probabilistic planners for multirobot path planning.We accomplish this by exploiting the structure inherent to such problems. Subdimensional expansion initially plans in each individual robot’s configuration space separately. It then couples those spaces when robots come into close proximity with one another. In this way, we constrain a probabilistic planner to search a low dimensional space, while dynamically generating a higher dimensional space where necessary. We show in simulation that subdimensional expansion enhanced PRMs can solve problems involving 32 robots and 128 total degrees of freedom in less than 10 minutes. We also demonstrate that enhancing RRTs and PRMs with subdimensional expansion can decrease the time required to find a solution by more than an order of magnitude.


author = {Glenn Wagner and Minsu Kang and Howie Choset},
title = {Probabilistic path planning for multiple robots with subdimensional expansion},
booktitle = {IEEE International Conference on Robotics and Automation (ICRA),},
year = {2012},
month = {May},
pages = {2886--2892},
publisher = {IEEE},
keywords = {multirobot path planning, sampling based planning},
} 2017-09-13T10:39:51-04:00