Home/Model-free Sensorless Manipulation

Model-free Sensorless Manipulation

Pragna Mannam
Master's Thesis, Tech. Report, CMU-RI-TR-19-06, May, 2019

Download Publication

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


This thesis is a study of 2D manipulation without sensing and planning, by exploring the effects of unplanned randomized action sequences on 2D object pose uncertainty. Our approach uses sensorless reorienting of an object to achieve a determined pose, regardless of the initial pose. Without using sensors and models of the object’s properties, this work shows that under some circumstances, a long enough sequence of random actions will also converge toward a determined final pose of the object. This is verified through several simulation and real robot experiments where randomized action sequences are shown to reduce entropy of the object pose distribution. The effects of varying object shapes, action sequences, and surface friction properties are also explored.

author = {Pragna Mannam},
title = {Model-free Sensorless Manipulation},
year = {2019},
month = {May},
school = {},
address = {Pittsburgh, PA},
number = {CMU-RI-TR-19-06},
keywords = {manipulation; probabilistic reasoning, automation; manufacturing and logistics},
} 2019-05-16T09:05:33-04:00