/Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration

Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration

Stefanos Nikolaidis, Swaprava Nath, Ariel Procaccia and Siddhartha Srinivasa
Conference Paper, Human-Robot Interaction, March, 2017

Download Publication (PDF)

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.


In human-robot teams, humans often start with an inaccurate model of the robot capabilities. As they interact with the robot, they infer the robot’s capabilities and partially adapt to the robot, i.e., they might change their actions based on the observed outcomes and the robot’s actions, without replicating the robot’s policy. We present a game-theoretic model of human partial adaptation to the robot, where the human responds to the robot’s actions by maximizing a reward function that changes stochastically over time, capturing the evolution of their expectations of the robot’s capabilities. The robot can then use this model to decide optimally between taking actions that reveal its capabilities to the human and taking the best action given the information that the human currently has. We prove that under certain observability assumptions, the optimal policy can be computed efficiently. We demonstrate through a human subject experiment that the proposed model significantly improves human-robot team performance, compared to policies that assume complete adaptation of the human to the robot.

BibTeX Reference
author = {Stefanos Nikolaidis and Swaprava Nath and Ariel Procaccia and Siddhartha Srinivasa},
title = {Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration},
booktitle = {Human-Robot Interaction},
year = {2017},
month = {March},