/Deep Supervised Hashing with Triplet Labels

Deep Supervised Hashing with Triplet Labels

Xiaofang Wang, Yi Shi and Kris M. Kitani
Conference Paper, Asian Conference on Computer Vision, November, 2016

Download Publication (PDF)

Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.


Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hashing codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in sub-optimal hash codes. Recently, deep hashing methods have been proposed to simultaneously learn image features and hash codes using deep neural networks and have shown superior performance over traditional hashing methods. Most deep hashing methods are given supervised information in the form of pairwise labels or triplet labels. The current state-of-the-art deep hashing method DPSH [1], which is based on pairwise labels, performs image feature learning and hash code learning simultaneously by maximizing the likelihood of pairwise similarities. Inspired by DPSH [1], we propose a triplet label based deep hashing method which aims to maximize the likelihood of the given triplet labels. Experimental results show that our method outperforms all the baselines on CIFAR-10 and NUSWIDE datasets, including the state-of-the-art method DPSH [1] and all the previous triplet label based deep hashing methods.

BibTeX Reference
author = {Xiaofang Wang and Yi Shi and Kris M. Kitani},
title = {Deep Supervised Hashing with Triplet Labels},
booktitle = {Asian Conference on Computer Vision},
year = {2016},
month = {November},
publisher = {Springer},