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ABSTRACT

Camera systems with automated zoom lenses are inherently more useful than those with fixed-parameter lenses. Variable-
parameter lenses enable us to produce better images by matching the camera’s sensing characteristics to the conditions
in a scene. They also allow us to make measurements by noting how the scene’s image changes as the lens settings are
varied. The reason variable-parameter lenses are not more commonly used in machine vision is that they are difficult to
model for continuous ranges of lens settings.

In this paper we present a methodology for producing accurate camera models for systems with automated, variable-
parameter lenses. To demonstrate our methodology’s effectiveness we applied it to produce an “adjustable,” perspective-
projection camera model based on Tsai’s fixed camera model. Our model was calibrated and tested on an automated
zoom lens where it operated across continuous ranges of focus and zoom with an average error of less than 0.11 pixels
between the predicted and measured positions of features in the image plane.
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1 FIXED VERSUS ADJUSTABLE CAMERA MODELS

Conventionally camera models have been used to capture the imaging properties of fixed-parameter lenses. For fixed
lenses the image-formation process is static, and thus the camera model’s terms are constants. In variable-parameter
lenses the image-formation process is an adjustable function of the lens control settings, and thus the terms in the camera
models must also be variable. The question is, “How do the terms in the camera models vary with the lens settings?”
This question is difficult to answer for two reasons: First, the two traditional models of the image-formation process —
the pinhole camera and the thin lens — are idealized, high-level abstractions of the real image-formation process, and
the connection between the model terms and the lens’s physical configuration is not direct. Second, the relationship
between the lens’s physical configuration and the control settings is complex and typically we have very little a priori
knowledge about the underlying mechanisms involved. We have no good theoretical basis for these relationships. Since
every model term is potentially a function of every lens control, the actual relationships between the model terms and
the lens controls must be determined empirically.

Unlike the calibration of fixed-parameter lenses, the calibration of variable-parameter lenses requires measurements over
ranges of lens settings. This raises several challenges. First, the dimensionality of the data is the same as the number of
controls that are to be concurrently modeled. Even if we just took 10 measurements across the ranges of focus; zoom,
and aperture controls, 1000 settings would have to be calibrated for, compared to just one for a fixed-parameter lens
system.

A second challenge are certain imaging situations that cause problems for taking measurements. As the lens is zoomed
in (i.e. the focal length is increased) the number of features in the camera’s field of view may decrease below the number
necessary to perform an accurate calibration. Conversely, as the lens is zoomed out the features may become too small
and/or crowded to be accurately measured. As a result, different calibration setups may be required to cover the full
range of zoom. Similar problems can occur with the focus and aperture controls.



The approach we use to model variable-parameter camera systems is to empirically characterize how the parameters of
a fixed camera model vary with lens settings. The approach has three steps:

1. Collection of calibration data for the fixed camera model across ranges of lens settings.
2. Calibration of the fixed camera model at each measured lens setting.

3. Characterization of the relationships between the fixed camera model’s parameters and the lens settings.

The equations for the fixed camera model plus the calibrated parameter models constitute an adjustable camera model.

1.1 Collecting calibration data

The first step in building an adjustable camera model is determining the range of lens settings the model is to be
calibrated for. Physical ranges for the lens settings can be expressed quite directly (e.g. 1000 < m; < 3000 motor units
where m; is the focus motor setting). However, often we would like to express the operational limits for the model in
terms of imaging properties such as focused distance, or depth of field, or effective focal length. Unfortunately the models
relating the lens’s settings to its imaging properties are often the models we are trying to build. When we have no models
the only approach left is to conduct experimental surveys of the lens’s control space to find approximate limits.

To formulate and calibrate the adjustable camera model we need to take measurements of the camera system at various
points throughout its physical operating space. In sampling the physical operating space the sampling frequency must
be sufficiently high along each lens control so that the underlying variations in the model parameters can be accurately
characterized. Since we start with little or no a prior1 information about the relationships between the lens controls and
the camera model parameters the sampling strategy must be determined empirically.

1.2 Characterizing variations in the fixed model’s parameters

If we take the parameter values from the calibrated fixed camera models and just store them in lookup tables then we
need to make no assumptions about how they vary with the lens settings. However, if we want to use a more compact,
algebraic form for the parameter values or interpolate between the sampled lens settings, we must determine expressions
for the individual parameter models. For our camera systems we find that simple polynomials work well. We choose the
polynomial orders based on design objectives for the final adjustable model and on an examination of the data.

Having chosen the form of the parameter models we next need to fit them to the their respective data. Instead of fitting
all of the parameter models independently and in one step, we work with the parameters one at a time. In our approach
we fit one polynomial model to the data for one parameter, set 1t aside, and then reestimate the remaining fixed camera
model parameters from the calibration data. This process is repeated until all the parameter models have been fit.

Naturally, as each freely estimated parameter in the fixed camera model is replaced with a parameter model, the error
between the camera model and the calibration data increases. For a given set of parameter models the final level of error
generally depends on the sequence in which the models are fit. We fit the parameter models from lowest polynomial order
to highest order, using a greedy algorithm whenever two or more parameter models have the same polynomial order. We
call this algorithm ascending-polynomial-order, greedy-within-order sequencing.

After the all parameter models have been fit we cycle through the parameters again, reestimating and then refitting
the parameter models to improve the fit between the adjustable camera model and the calibration data. This process
continues until no further improvement is seen in the error between the adjustable camera model and the calibration
data.
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Figure 1: Fixed perspective-projection camera model geometry

2 TSATS FIXED PERSPECTIVE-PROJECTION CAMERA MODEL
The basis for our adjustable camera model is the 3D to 2D perspective-projection model described by Tsai [2].

Tsai’s camera model consists of 11 parameters: six extrinsic, “exterior-orientation” parameters (Ry, Ry, R, Ty, Ty, T%)
that describe the position and orientation of the camera’s coordinate frame with respect to the world-coordinate frame,
and five intrinsic, “interior-orientation” parameters (f, C, Cy, sz, 1) that describe the camera’s image-formation process.
For a fixed lens all 11 camera parameters are constants estimated from calibration data taken from a single camera view
(i.e. the exterior and interior orientation of the camera is fixed). Whenever the camera is moved in the world-coordinate
system its exterior orientation must be recomputed while its interior orientation remains unchanged.

In Tsai’s model, illustrated in Fig. 1, the origin of the camera-centered coordinate system (#.,y., z.) coincides with the
front nodal point of the camera, the z, axis coincides with the camera’s optical axis. The image plane is assumed to be
parallel to the (#.,y.) plane and at a distance f from the origin, where f is the pinhole camera’s effective focal length.

The relationship between the position of a point P within the world coordinates (24, 4w, zw) and the point’s image in
the camera’s frame buffer (X¢,Y}) is defined by a sequence of coordinate transformations. The first transformation is
a rigid body rotation and translation from the world-coordinate system (@, Y, 2w ) to the camera-centered coordinate
system (x¢, ye, zc). This is described by

T, Ty T
Ye =R Yuw + Ty (1)
Ze Zw T,
where
T T2 T3
R = Ta s s (2)
rr rg Tg

i1s the 3 x 3 rotation matrix describing the orientation of the camera in the world-coordinate system. R can also be
expressed as

R = Rot(R,)Rot(R,)Rot(R.) (3)

the product of three rotations around the z, y, and z axes of the world-coordinate system.

The second transformation is a perspective projection (using an ideal pinhole-camera model) of the point in the camera
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Figure 2: Transformation from undistorted sensor to distorted frame coordinates

coordinates to the position of its image in undistorted sensor-plane coordinates, (X, Y, ). This transformation is described

by
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The third transformation, illustrated in Fig. 2, is from the undistorted (ideal) position of the point’s image in the sensor
plane to the true position of the point’s image, (X4, Yy), which results from geometric lens distortion. This is described

by

Xy Xd(l—l—lﬁ?lpz), (6)
Yo = Ya(l+k1p”) (7)

p=1/Xq+Y] (8)

and

where k1 1s the coefficient of radial lens distortion.

The final transformation is between the true position of the point’s image on the sensor plane and its coordinates in the
camera’s frame buffer, (X, Y}). This is described by

Xf = d;lesx + (9)

and

Yf = dy_lyd + Cy (10)

where C, and Cy are the coordinates (in pixels) of the intersection of the z, axis and the camera’s sensor plane; d, and
dy are the effective center-to-center distances between the camera’s sensor elements in the z. and y. directions; and s is
a scaling factor to compensate for any uncertainty in the ratio between the number of sensor elements on the CCD and
the number of pixels in the camera’s frame buffer in the # direction.



2.1 Fixed camera model performance metrics

One of the first questions we have about any camera model is how accurately it captures the camera’s imaging behavior.
This information is necessary both for measuring progress during model calibration and estimating the performance or
accuracy of any application the model is used in.

Given the measured coordinates of a point in the object space (24, Y, 2w ) and the measured position of the point’s image
in the frame buffer (X;,Y}) we can define an error metric for the model anywhere along the model’s chain of coordinate
transformations. One obvious error metric is the difference between the position of a point’s image we measure and the
position the camera model predicts. If we use the difference in positions following the last coordinate transformation (i.e.
after the lens distortion effects have been added to the point’s projection through the camera model) we can define the
distorted image plane error (DIPE) as

DIPE = \/(Xf — X2 (Y - YY)

where (X;,Y}) is the measured position of the point’s image and (X},YJ{) is the position of the point’s 3D coordinates
(Zw, Yw, zw) Projected through the camera model.

In many applications it is desirable to operate in a virtual, undistorted image plane in the camera. In fact, Tsai’s
fixed camera model is designed to allow converting directly from distorted sensor coordinates (X4, Yy) into undistorted
sensor coordinates (X, Yy, ), while going in the opposite direction requires significantly more computation. We define the
undistorted image plane error (UIPE) as

UIPE = \/(AX,,)? + (AYy,)? (11)
where

AXfu = dx_‘l(Xlw _Xul)sl‘a

AY;, = dy'(Yu, = Yu,)

(Xu,,Yy,) are calculated from the measured position of the point’s image (X;,Y}) using equations (6), (7), and (8),
while (X, Yy,) are calculated from the 3D coordinates of the point (@, Yy, zw) using (1), (4), and (5). The algorithms
that we use to calibrate the camera model minimize the sum-of-squared error in the undistorted image plane for the
calibration data.

Our estimation of the unknown parameters in Tsai’s fixed camera model is based on calibration data consisting of 3D
object space coordinates and corresponding 2D image coordinates. For the experiments described in this paper we used
a planar calibration target mounted on a translation stage. The calibration target contained 1/8-inch-diameter, black
reference points precisely spaced out on a regular, 1-inch grid.

For any set of images of the calibration target the relative 3D coordinates (2, Y, 2w ) of the reference points was known
from their position in the target plane and from the position of the target plane along the translation stage. The (X¢,Y7)
positions of the reference points in the image plane were measured to sub-pixel accuracy using the procedure described

in [3].

When calibrating our fixed camera models we assumed that the six exterior orientation parameters (Ry, Ry, R, Ty, Ty, 1)
and five interior orientation parameters (f, k1, Cy,Cy, sy) were all unknown and had to be estimated from the calibration
data. We calibrated the fixed camera model in two steps. First we used Tsai’s algorithm to obtain approximate estimates
for nine of the model’s 11 parameters and then we used iterative, non-linear optimization to refine all 11 parameters.

2.2 Fixed camera model calibration example

To demonstrate the calibration of a fixed camera model we calibrated our camera system for one lens setting. The
calibration data for the model came from two images of the calibration target taken with sensor-to-target ranges of 1.5 m



Parameter Value Units

f 60.013 mm
Ce 267.198 pixels
Cy 255.040 pixels
K1 -0.000103  1/mm?
S 1.079
R, -0.084  degrees
R, 0.589  degrees
R, 0.182 degrees
T -521.238 mm
T, -527.935 mm
T, 1581.238 mm
mean UIPE 0.064 pixels
standard deviation UTPE 0.033 pixels
maximum UIPE 0.182 pixels

Table 1: Example of a calibrated fixed camera model

and 2.5m. The absolute position of the origin for the world-coordinate system was arbitrarily assigned to be in the target
plane at 1.5 m range, approximately 520 mm up and 520 mm to the left of the center of the camera’s field of view. The
two images provided 186 data points.

Table 1 shows the calibrated fixed camera model after the final non-linear optimization step. The small values for the
mean UIPE and maximum UIPE indicate that the calibrated camera model does a good job of capturing the lens’s 3D
to 2D imaging behavior.

3 AN ADJUSTABLE PERSPECTIVE-PROJECTION CAMERA MODEL

Before we proceed in developing our adjustable camera model we introduce the following notation.

Lens setting: A three-tuple containing the control settings for the focus, zoom, and aperture motors on the lens.

S: {mfamzama}

Calibration data point: A five-tuple containing the 3D world coordinates of a point and its 2D frame-buffer coordi-
nates.

d:{xw,yw,zw,Xf,Yf}

Calibration data set: A set of calibration data points, d;, taken at one lens setting, in one world coordinate system,
from one fixed camera position and orientation.

D:{dOa"'adn}

Fixed camera model: An 11-tuple containing the intrinsic and extrinsic parameters for the fixed perspective-projection
camera model.

Mf = {facxacya"flasxaRxaRyaRzaTxaTyaTz}

Parameter model: A polynomial with coefficients ag,...,a, that describes the relationship between a fixed model
parameter P and a lens setting S.
gp(S) = polynomial(S;aqg, ..., an)



Adjustable camera model: A set of 11 parameter models that describe the values of the intrinsic and extrinsic pa-
rameters for the fixed perspective-projection camera model at any given lens setting S.

MG(S) = {gf(S)agCI(S)agCy(S)agm(S)agsz(S)a
ng(S)’gRy(S)’ng (S)’gTz(S)’gTy(S)’gTz(S)}

Mean undistorted image plane error (M_UIPE): The average value of the UIPE for model M and all points d;
in a dataset D.

1 n
M_UIPE(M, D) = = > UIPE(M, d;)
n

i=1

Sum of the squared undistorted image plane error (SS_UIPE): The sum of the square of the UIPE for model
M and all points in a dataset D.

SS_UTPE(M, D) = Zn: [UIPE(M, d;)]°

i=1

3.1 Adjustable camera model performance metrics

Our objective has been to develop a model of the camera’s imaging behavior that “holds calibration” across ranges of
lens settings. By “holds calibration” we mean that the model maintains an acceptable level of accuracy at any setting.
Since our “ground truth” is limited to the set of calibration data used to develop the model, the best we can do is have
a model that “holds calibration” at the settings used for the calibration data.

Given calibration data for a particular lens setting, the performance of the adjustable camera model can be expressed
using any of the fixed camera model metrics presented earlier. To be able to measure progress during calibration and to
compare different adjustable camera models we require an aggregate measure of the model’s performance for all of the
calibrated lens settings.

There are many ways to combine the adjustable camera model’s performance statistics at each calibrated lens setting
into a set of statistics for all lens settings. If we are interested in the total fit between the adjustable model M, and the
calibration datasets D); at each and every data point, then “per point error” metrics can be used, such as the sum of the
sum of the squared undistorted image plane error,

SSS_UIPE = > SS_UIPE(M,(S:), Di)

i=1

A drawback with per point error metrics is that the number of data points in each set of calibration data D; may vary
with lens setting S; so that different lens settings receive different weightings in the performance metric.

If we are more concerned with the performance of the adjustable model M, at each lens setting .S;, then we need a metric
that is invariant to the number of data points involved, for example the M_UIPE. One useful performance metric of this
type is the mean of the mean undistorted image plane error,

171
MM _UIPE = — M_UIPE(M,(S;), D;
UIPE = — Y M UIPE(M,(5:), Dy)

i=1

For the following adjustable model we base calibration decisions (i.e. initial fitting sequence and iterative refinement) on
the SSS_UIPE metric because it gives the same weight to every data point.

For displays of the adjustable model’s performance we use the MM_UIPE metric because it has a more direct (and
intuitive) relationship with the model’s accuracy in a given application.
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3.2 Example - an adjustable camera model for focus and zoom

For the operating range for this model we chose a focus range of 1500 < m; < 4000 motor units, which corresponds
roughly to a focused distance of 1.5m to 2.5m. The correspondence is not exact as the lens’s focused distance is also
affected by the zoom and aperture controls. For the zoom we chose a range of 1500 < m, < 4000 motor units, which
corresponds to focal lengths from approximately 130 mm down to 45 mm. For the aperture we used a fixed setting of 380
motor units, which corresponds roughly to f/16.

Figures 3 and 4 show the z and y image coordinates of an autocollimated laser plotted against the focus and zoom
settings for the lens. The plots show a relatively smooth variation in the laser’s position across the full operating space.
Thus, for the sampling strategy for this lens we arbitrarily chose a regular 11x 11 sampling of focus and zoom settings for
a total of 121 separate settings (Si,...,S121) across the operating space for our camera model. Had the plots revealed
discontinuities in the lens’s imaging properties different sampling strategies and parameter model formulations would
have to be used.

Calibration data for the adjustable camera model was obtained using the target and translation stage described earlier.
At each sample position in the camera operating space three images of the target were taken at ranges of 1.5m, 2.0m,
and 2.5 m between the target and the camera’s sensor plane. For the 121 different lens settings (S1, ..., S121) we obtained
121 sets of calibration data (Dy,..., Di21). Each set contained between 110 and 429 calibration data points.

For each set of data (D1, ..., Di21) we calibrated fixed camera models (My,,..., My,,, ). Figures b through 16 show the
values for the 11 fixed model parameters and the M_UIPE plotted against the focus and zoom settings. Despite the
apparent noise in many of the model parameters, the M_UIPE for the individual fixed camera models lies between 0.090
pixels and 0.123 pixels across the full operating space chosen for the camera model. The MM _UIPE over the operating
space 1s 0.099 pixels.

For the 11 parameter models we used bivariate polynomial functions with the same model order for each independent
variable. The largest bivariate polynomial that can be fit to the 121 data points is 14th order (120 coefficients).
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To fit the polynomial functions to the parameter values we used least-squared-error fitting. Ideally the noise in the
parameter values would be zero mean Gaussian. Unfortunately the parameter values are determined using an iterative
non-linear optimization on a criterion surface that, in practice, has many local minima. As a result, the fixed camera
models are multi-valued. That is, for any given set of calibration D; the fixed camera model calibration can potentially
produce several different sets of fixed camera model parameters. The set that is found depends on the noise in the data
and on the initial conditions used in the non-linear optimization. Thus, the variation in the fixed model parameter values
is not due to Gaussian, zero mean, constant standard deviation noise. This has two implications for fitting the parameter
models. The first is that least-squared-error fitting is not a maximum likelihood estimator for the models. Even so,
since the least-squared-error fitting can be accomplished with a direct, non-iterative approach this is our preferred fitting
method. Tests using much slower but more robust fitting techniques using local M-Estimates [1] showed no significant
improvement in the performance of the final adjustable camera model in this example.

The second implication of the non-Gaussian noise is that we cannot use a Chi-Squared test to determine how high a
polynomial order to use in each parameter model. Instead we chose the model order based on design requirements for
the adjustable camera model and on an examination of the data. To partially decouple the intrinsic from the extrinsic
parameters and make the adjustable model easier to use the R, Ry, R., T;, and T; parameters were modeled with zero-
order polynomials. Since the s, parameter was related to uncertainties in fixed elements in the camera system, it was also
modeled with a zero-order polynomial. We tried a wide range of polynomial orders for the remaining parameter models.
The final values we used represented an arbitrary tradeoff between increased complexity and improved performance for
the final adjustable model. In [3] we discuss alternate strategies for choosing parameter model orders.

Table 2 summarizes the parameters, the orders chosen for their parameter models, and the rationale for the choice of
order. The final adjustable camera model required a total of 96 coefficients for the 11 parameter models.

To fit the parameter models to the calibration data we used ascending-polynomial-order, greedy-within-order sequencing.
Table 3 shows the sequence in which the parameter models were fit, along with the MM_UIPE, maximum UIPE, and
SSS_UIPE statistics for the adjustable camera models at each stage. The first entry in the table is for the initial fixed
camera models. Steps 1 to 11 are for the individual parameter model fits. Steps 12 and 13 are for iterative refinement.
The last entry is for the final adjustable camera model.

Figures 17 through 21 show the final adjustable camera model surfaces for the parameters having second- and fifth-order
polynomials (the zero-order models are constants). While the final f, T, and &, models are all similar in shape to their
original unfitted parameters, the remaining models are all rather different than their original data.

Figure 22 shows the final M_UIPE for the adjustable camera model. The final MM_UIPE across the full range of lens
settings is 0.108 pixels, which is a 9% increase over the average of 0.099 pixels for the individual fixed camera models.
Figure 23 shows the difference between the M_UIPE for the final adjustable camera model and the M_UIPE for the
individual fixed camera models. For m, > 3750 and m; > 2000 the adjustable camera model’s M_UIPE is actually
better than that of the individual fixed camera models.

If we were to calibrate this model for another copy of the same lens the shapes of the C, and C, surfaces would be
different due to the different optical misalignments in each lens. However, the shapes of the f, T,, and x; surfaces for
both lenses would be similar, as would the positions of any image property discontinuities in the lens’s control space.

3.3 Recalibrating exterior orientation

Having spent a great deal of time and effort to produce an adjustable camera model for the lens, the next obvious question
is how can 1t be used. As with the fixed camera model, when the camera system is moved to a new pose the adjustable
model’s interior orientation functions (g¢, gc,,9c,,9c., 9s,) will be unaffected! . However, the exterior orientation of the
camera system (R., Ry, R, Ty,T,,T,) will have to be recomputed for the new pose. By design our adjustable camera
model was built with zero-order functions for the first five exterior orientation parameters R, R,, R,, T;, and T,. The

1The adjustable camera model can only be guaranteed to be accurate over the range of distances and camera parameters that the calibration
data covered.



Parameter

Polynomial

Order

Reason

Sz

Ry Ry R. T, T,

K1

Changing the camera’s image formation process should not change
the relative scale factor between the x and y axes so we only permit
a constant for this parameter.

For ease of use of the adjustable camera model we would like the
position and orientation of the camera’s coordinate frame relative
to the world coordinate frame to remain unchanged as the lens
parameters are varied so we only permit constants for these pa-
rameters.

Changing the lens’s hardware configuration redistributes the opti-
cal components along the camera’s optical axis shifting the posi-
tions of the lens’s front and rear nodal points. This in turn changes
the separation of the origins of the world and camera coordinate
systems. Empirically we find that a fifth-order polynomial works
well.

While primarily a function of the zoom actuator, f is also a function
of the focus, aperture, and image band. Empirically we find that
a fifth-order polynomial works well.

Changing the lens’s hardware configuration changes the alignment
of the lens’s optical components causing the camera’s field of view
to shift. Empirically we find that a fifth-order polynomial works
well.

Changing the optical configuration of the lens changes the factors
causing radial lens distortion. Empirically we find that a second-
order polynomial works well.

Table 2: Choice of polynomial orders for the parameter models
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Fitting Parameter Polynomial MM_UIPE max UIPE SSS_UIPE

Step Order [pixels] [pixels] [pixels?]
individual fixed models 0.099457 0.707898  404.268858
1 R, 0 0.099341 0.719303  403.835679
2 Sg 0 0.099357 0.735674  403.760237
3 T, 0 0.099868 0.732523  408.106362
4 Ty 0 0.101027 0.736067  417.610304
5 R, 0 0.102501 0.735245  426.124820
6 R, 0 0.109440 0.770797  467.337702
7 K1 2 0.109468 0.770712  467.920357
8 ! 5 0.109449 0.771996  467.958315
9 T, 5 0.109530 0.772310  469.284819
10 Cy 5 0.109681 0.774827  470.673135
11 Cy 5 0.110829 0.776854  480.119280
12 Cy 5 0.109681 0.774828  470.673046
13 R, 0 0.107671 0.776371  458.842669
final adjustable model 0.107671 0.776371  458.842669

Table 3: Fitting sequence for parameter models

only interaction between the camera’s exterior orientation and the lens settings is through the g, (my, m,) function. To
deal with this interaction we define a new function,

gr.(mg,mz) = T+ [gr. (mp,m.) — g7, (mpy, M) ]
= T20+ATZ(mfam2amfu’mzu)

which separates gp, into a fixed exterior orientation component, 7T},, and a variable interior orientation component, AT, .
The fixed component, T, is estimated along with the other five exterior orientation constants when the lens is set to a
base setting, (mg,,m,,). For more precise estimates of the new pose additional base settings can be used. The variable
component, AT, accounts for the shift of the lens’s principal point along the camera coordinate frame’s z axis, relative
to the base lens setting. Figure 24 illustrates these relationships in the 2D zz camera coordinate plane.
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Figure 24: Extrinsic (and intrinsic) parameter changes with lens settings



4 SUMMARY

In this paper we have presented a methodology for empirically building camera models for systems with variable-parameter
lenses. The methodology involves first calibrating a conventional fixed camera model at a number of settings spanning the
desired range of lens settings for the adjustable model. We then characterize how the parameters of the fixed model vary
with lens settings by alternately fitting polynomials to individual model parameters and reestimating the as yet unfitted
parameters using the calibration data. This process is repeated until all of the fixed camera model’s terms have been
replaced with polynomial functions of the lens control settings. The resulting adjustable camera model can interpolate
between the original sampled lens settings to produce — for any lens setting — a set of values for the parameters in the
fixed camera model.

This approach makes no a priori assumptions about the dependencies between the fixed camera model parameters and
the lens settings. It is general and can be applied to produce an adjustable camera model from any fixed one and allows
any number of lens controls to be incorporated. The degree of accuracy and complexity, and consequently the required
calibration effort, can be chosen arbitrarily.
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