
The DynaDOOM Visualization Agent:
A Handheld Interface for Live Action Gaming

Gita Sukthankar
Cambridge Research Laboratory

HP Labs
One Cambridge Center

Cambridge, MA 02142 USA

gita.sukthankar@hp.com

ABSTRACT
This paper presents the DynaDOOM Visualization Agent, a system
for providing first-person visualization of live-action multiplayer
games. Participants carry a handheld computer instrumented with
location sensing devices and a wireless 802.11b connection. A
smooth trajectory of each player’s motion is automatically gener-
ated from position estimates using the Dynadraw algorithm, and
translated into commands that are fed to unmodified first-person
shooter game clients. Spectators can view the action in a 3-D vir-
tual environment that mirrors the real setting, either from the per-
spective of one of the players or from the viewpoint of a virtual
spectator.

Keywords
context awareness, location detection, pervasive computing, em-
bedded systems, intelligent interfaces

1. INTRODUCTION
Our goal is to create visually compelling interfaces through which
spectators can follow the activities of participants in a live-action
indoor multiplayer game. The DynaDOOM Visualization Agent
provides a first-person perspective of each player’s actions in a vir-
tual world that mirrors the physical gaming environment. Each
player is equipped with a handheld computer instrumented with
location sensing devices and a wireless 802.11b connection. Loca-
tion Agents monitor players as they move through the real world
and convert noisy position data into smooth trajectories augmented
with orientation information. Visualization Agents translate these
into appropriate first-person shooter actions and generate synthetic
keyboard and mouse events. Each Visualization Agent interacts
with an unmodified multiplayer game client (such as DOOM), en-
abling our system to be used with any standard first-person shooter
application. Spectators can watch the game either from the per-
spective of one of the players, or from the viewpoint of a non-
participating character in the virtual environment. The visualiza-
tion complements raw video feeds provided by any handheld cam-

Figure 1: Each participant in the CTF game is equipped with
the hardware shown above. Left: the iPAQ H3650 handheld
and BackPAQ interface sleeve. The BackPAQ provides sev-
eral I/O options including an accelerometer, camera and 802.11
wireless communication. Right: the Cricket listener (indoor lo-
cation sensor) provides an estimate of the user’s global position.

eras carried by participants. The DynaDOOM Visualization Agent
was first publicly demonstrated at MIT in February 2002 to visual-
ize the movements of players participating in an indoor version of
Capture-the-Flag [1]. Although the system was designed for use in
a game setting, we believe that it can be extended for augmented
reality applications.

Although most game engines are engineered to appeal to the popu-
lar audience, they have been successfully used both as test beds for
autonomous agent research [7, 8, 9] and as part of virtual reality
systems [6]. Here we attempt to give the players limited access to
a virtual world through a handheld gateway, without encumbering
them with head mounted displays and backpack computers [10].

2. HANDHELD PLATFORM
The user interacts with the virtual environment through a hand-
held interface running on an iPAQ H3650, a commercially available
PDA, using the freely-distributed Linux Familiar distribution [2, 4]
(see Figure 1). By using Linux as our embedded systems platform,
we leverage open source code originally written for desktop sys-

Location agent Visualization agent

CTF Game
Interface

DOOM clientCTF Game Server
(shared by all players)

Location sensor:
Cricket

Location sensor:
accelerometer

DesktopiPAQ Handheld

Figure 2: This diagram shows the architecture of each partici-
pant’s agent in the DynaDOOM visualization system. Informa-
tion about the iPAQ handheld’s location is sent (via wireless)
to the location agent and integrated into the CTF game server.
Successive, noisy global position estimates are translated into
first-person DOOM movement commands and sent to the Visu-
alization Agent. All of the CTF participants move and interact
in the DOOM world shown in Figure 4.

tems, such as XWindows. Linux also offers full multi-tasking and
networking functionality that is needed for pervasive computing ap-
plications. Development tools for most languages are available on
the Linux iPAQ; this project uses components developed in C, Java
and Python.

The iPAQ handheld is augmented with aBackPAQ, a prototype ex-
pansion pack developed at the Cambridge Research Lab [5]. The
BackPAQ hardware provides a variety of useful I/O devices for per-
vasive computing applications: a camera, an accelerometer and two
PCMCIA slots for wireless networking and additional storage de-
vices (see Figure 1). iPAQ handhelds with BackPAQ attachments
running the Familiar Linux distribution have also been adopted by
other research programs, such as MIT’s pervasive computing effort,
Project Oxygen [13].

3. SYSTEM ARCHITECTURE
Figure 2 summarizes the system architecture. Each participant’s
state is maintained by a pair of agents: theLocation Agentand
the Visualization Agent(detailed below). Since computational re-
sources on the handheld computer are limited, both of these agents
run on desktop machines, on data provided by components running
on the iPAQ. TheCTF Game Servermaintains the global game
state and communicates with each participant’sLocation Agentand
his/her iPAQ game interface. This interface is a lightweight Java
GUI (see Figure 3) that supports player-to-player communication,
shooting, and a 2-D overhead view of the game. The CTF Game
Server also provides personalized game state to each player’sVisu-
alization Agent. This agent converts the information into DOOM
actions that are fed (as synthetic keyboard and mouse events) to an
unmodified DOOM client. Spectators view a 3-D first-person per-
spective of the game on displays projected from the desktop com-
puters (see Figure 4). The following subsections present selected
aspects of the system in greater detail.

3.1 Location Agent
Each handheld is equipped with two hardware sensors for detect-
ing location information: a Cricket listener and the BackPAQ ac-
celerometer. Raw sensor information is published on two daemons
(cricketd andacceld) running on the handheld. TheLocation
Agentacquires raw sensor data from the handheld and derives an

Figure 3: This is a screenshot of the CTF interface on the iPAQ
handheld. In addition to serving as a gun and walkie-talkie,
the application provides a virtual aerial view of the CTF battle-
field. Locations of team-mates and known enemies are updated
in real-time. A first-person view of the game environment is
simultaneously rendered in the DOOM engine and made avail-
able to spectators on a projected display (see Figure 4).

estimate of the handheld’s global position.1

The Cricket location support system [11] was developed to be a
low-cost decentralized solution for devices to obtain their location
in indoor environments where GPS is non-functional. A listener
device is attached via serial cable to the iPAQ, and the indoor envi-
ronment is instrumented with Cricket beacons at known locations.
Beacons emit RF/ultrasound “chirps” that are detected by the lis-
tener device; a daemon on the iPAQ publishes distance estimates
to each beacon, derived from ultrasound time-of-flight informa-
tion. By triangulating readings from multiple beacons, the Location
Agent derives an estimate of the player’s current global position.

Before the game, beacons were taped onto the ceiling in the game
area. Since the beacons are completely self-contained, requiring
neither network or power, they can be positioned anywhere in the
environment. For the scenario, we chose an arbitrary x-y coordinate
system and tabulated each beacon’s coordinates in a file used by
the Location Agent. Changes in the coordinate frame only require
modifying the configuration file without physically relocating the
beacons; the same beacons can support many applications, each
with its own separate coordinate system.

Since the Cricket system was primarily designed for pinpointing
the locations of quasi-stationary objects, it does not provide reliable
data while the listener device is moving. In our application, where
the participants are rarely standing still, using raw Cricket data re-
sults in an unacceptably-high positioning error. Furthermore, the
standard Cricket system does not provide any orientation informa-
tion2 Our solution to both of these shortcomings is discussed in
Section 3.2.

1Since the BackPAQ prototype currently provides only 2-D ac-
celerometer data, our implementation relies solely on the Cricket
system for position estimates. Accelerometer information will be
integrated into the next version of our system.
2The new Cricket compass system [12] employs listener devices
with multiple receivers and should provide an estimate of the de-
vice’s heading.

3.2 Visualization Agent
Each participant’s Visualization Agent has the task of taking posi-
tional information calculated by the Location Agent and computing
a smooth trajectory (including orientations) that can be expressed
as DOOM commands (keystrokes and mouse events).

As discussed above, the raw global position data presents two chal-
lenges. First, the location sensors do not provide any orientation
information. Given the absence of actual data, the Visualization
Agent makes the reasonable assumption that the player is facing
in the direction of motion. Second, the position estimates are cor-
rupted by noise; simply connecting successive estimates from the
location sensors results in an avatar that blips randomly around the
virtual world (even when the player is stationary in the real world).
We explored several filtering approaches to this problem and se-
lected a second-order dynamic filter motivated by Dynadraw [3]
(a drawing tool that refines users’ noisy pen strokes using a sec-
ond order dynamic model). Rather than treating incoming loca-
tion estimates as new absolute positions, each new data point ex-
erts a force on the avatar’s current position according to following
mass/spring/damper model:

ẍt = κ||xt−1 − pt||2

ẋt = (1− β)(ẋt−1 + ẍt∆t)

xt = xt−1 + ẋt∆t

where∆t is the time interval between successive measurements,pt
is the location measurement received at timet, andxt is the current
(smoothed) estimate of player position. The control parameters,
κ (normalized spring constant) andβ (damping coefficient) were
tuned until the avatar’s motion in the virtual world seemed smooth
without appearing too sluggish.

The DOOM actions are generated as follows. A change in ori-
entation is mapped to the “turn left” and “turn right” keys. The
mapping between turn angle and keypress duration was determined
empirically (by measuring the time it took the DOOM avatar to ro-
tate through a series of known angles). Similarly, the scaling factors
used to convert between distances in the real world and keypress in-
terval for forward motion were determined by measuring the time it
took for the DOOM avatar to move in a straight line between known
locations in the virtual world. Synthetic keyboard and mouse events
are generated using the JavaRobot interface, and sent to the gam-
ing client. For additional control, the user can press buttons on the
iPAQ handheld to generate specific synthetic events in the virtual
world. This enables users to perform actions that cannot be per-
ceived by the location sensing alone (e.g., firing the gun or opening
a door). The same interface can also be used to manually tweak
the avatar’s movement in the virtual world, if necessary. The Vi-
sualization Agent must be co-located with the DOOM client due
to security restrictions on synthetic events, whereas the Location
Agents can be distributed across as many computers as are avail-
able.

3.3 CTF Game System
In addition to the location and visualization agents described above,
each player was equipped with a 2-D user interface that allowed
him/her to interact with the CTF (Capture-The-Flag) game system.
The CTF game server monitored all state specific to the Capture-
the-Flag scenario: player state, game time, score, territory bound-
aries, flag position. Players accrued points for their team by moving
the enemy’s flag (a specially designated Linux iPAQ instrumented
with a Cricket listener) into their own territory. While in enemy ter-

ritory, the player was vulnerable to being tagged by players of the
opposing team. Due to the difficulty in distinguishing orientation
with this version of the Cricket system, any player of the opposing
team within a certain radius of the shooting character was tagged.
Once tagged, players were relegated to a “virtual penalty box” dur-
ing which time their CTF client was disabled, preventing them from
interacting with the game server. Although player movement was
tracked and displayed in the virtual DOOM world, actions in the
DOOM world (e.g., firing gun, opening doors) had no effect on the
state of the CTF game.

3.4 DOOM Client
Our current implementation useslxdoom as its visualization en-
gine. lxdoom is a multiplayer version of the DOOM first person
shooter game originally released by Id software in 1993. Although
its graphics are not as impressive as some of the newer first-person
shooter games (e.g., Quake III, Unreal Tournament),lxdoom does
offer several benefits including freely available source code, the ex-
istence of a stable iPAQ Linux port, freely available level editing
tools and reliable support for networked multiplayer gaming. Fig-
ure 4 shows the DynaDOOM Visualization Agent connected to an
lxdoom client.

Note that DynaDOOM Visualization Agent is completely compat-
ible with any multiplayer gaming system since the Visualization
Agent interacts with the game client exactly as a human player
would—through keyboard and mouse actions.

4. DISCUSSION
An important question for designers of such environments is how
to partition the game between the virtual world and the physical
space. On one extreme, the virtual world could bear little resem-
blance to the player’s physical environment. In this case, the player
would be required to make movements in the real world while con-
stantly monitoring the effects of those actions in the virtual world
(e.g., using a handheld display). As the real and virtual worlds di-
verge, the mapping between the player’s actions and their virtual
consequences becomes less intuitive. Ultimately, this leads to an
abstract interface, similar to moving in the virtual world using key-
board actions. At the other extreme, the virtual world could be
an accurate mirror of the real world. Since physical actions map
closely to virtual actions, this allows players to play the game with-
out monitoring the virtual world. However, accurate localization
and interpretation of player actions is critical since any divergence
between real and virtual worlds becomes very disorienting to par-
ticipants.

In our implementation we decided to use the Visualization Agent
solely to mirror the physical world to the spectators; however, it
could easily be adapted to fit other paradigms of virtual world in-
teraction. For some game settings, it might be interesting to have
the players accomplish tasks in a virtual world setting before being
able to move on to some other stage of the physical game; this type
of interface could be well suited for a treasure hunt or adventure
game motif.

5. CONCLUSION
This paper presents a system for visualizing real-world multiplayer
games in a virtual environment. The current implementation of our
system has been successfully demonstrated at MIT for a Capture-
the-Flag game application.

Figure 4: This photo shows a CTF participant with the DynaDOOM Visualization Agent projected in the background. Each user’s
position in the room is estimated using the Cricket location system and appropriate DOOM commands are generated to move the
user’s avatar in the virtual world.

We plan to extend the DynaDOOM Visualization Agent in the fol-
lowing ways. First, we will improve the Location Agent by exploit-
ing hardware advances in the BackPAQ and Cricket systems: 3-D
accelerometer input will be combined with CricketCompass [12]
location and orientation data using a Kalman filter. Second, we
wish to expand the player’s interface to include an augmented re-
ality display using the BackPAQ camera. The goal is to annotate
the camera images with useful game information (e.g., locations of
enemy players, or best route to the target area). Finally, we will ex-
tend the Visualization Agent to incorporate information about the
state of the virtual world, either by interpreting the output of the
DOOM client, or through separate interactions with the DOOM
server. With these enhancements, the DynaDOOM Visualization
Agent will transform the live-action gaming experience.

6. ACKNOWLEDGMENTS
We would like to thank the following research groups for their
valuable assistance: Open Handhelds developers, the MIT Capture-
the-Flag team and the MIT Cricket Project. Thanks also to Frank
Bomba, Jamey Hicks, Ken Steele, Larry Rudolph and Rahul Suk-
thankar for helpful advice and feedback.

7. REFERENCES
[1] A. Champaneria, C. Music, M. Bourget, S. Garg,

G. Sukthankar, and P. Ho. Capture-the-Flag using iPAQs,
January 2002.
http://www.cs.cmu.edu/˜gitars/CTF/ .

[2] Compaq Research – Handhelds Group.
http://www.handhelds.org/ .

[3] P. Haeberli. Dynadraw: A dynamic drawing technique, 1989.
http://www.sgi.com/grafica/dyna/ .

[4] C. Halsall. Linux on an iPAQ, 2001.
http://linux.oreillynet.com/lpt/a/linux/
2001/06/01/linux_ipaq.html .

[5] J. Hicks. Compaq Research: Mercury Project Home Page.
http://crl.research.compaq.com/projects/
mercury/ .

[6] J. Jacobson and Z. Hwang. Unreal Tournament for immersive
interactive theater.Communications of the ACM, 45(1), 2002.

[7] G. Kaminka, M. Veloso, S. Schaffer, C. Sollitto,
R. Adobbati, A. Marshall, A. Scholer, and S. Tejada.
Gamebots: A flexible test bed for multiagent team research.
Communications of the ACM, 45(1), 2002.

[8] J. Laird. Research in human-level AI using computer games.
Communications of the ACM, 45(1), 2002.

[9] M. Lewis and J. Jacobson. Game engines in scientific
research.Communications of the ACM, 45(1), 2002.

[10] W. Piekarski and B. Thomas. ARQuake: The outdoor
augmented reality gaming system.Communications of the
ACM, 45(1), 2002.

[11] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket location-support system. InProceedings of ACM
MOBICOM, 2000.

[12] N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The
Cricket Compass for context-aware mobile applications. In
Proceedings of ACM MOBICOM, 2001.

[13] Project Oxygen Home Page.
http://oxygen.lcs.mit.edu/ .

