Minimization of Energy in Quasi-Static Manipulation

MICHAEL A. PESHKIN, MEMBER, IEEE, AND ARTHUR C. SANDERSON, SENIOR MEMBER, IEEE

Abstract—Quasi-static mechanical systems are those in which mass or acceleration are sufficiently small that the inertial term ma in $F = ma$ is negligible compared to dissipative forces. Many instances of robotic manipulation can be well approximated as quasi-static systems, with the dissipative force being dry friction.

Energetic formulations of Newton's laws are valuable for mechanics problems involving multiple constraints. The following energetic principle for quasi-static systems seems intuitively appealing, or perhaps even obvious:

A quasi-static system chooses that motion, from among all motions satisfying the constraints, which minimizes the instantaneous power.

Roughly speaking, the above minimum power principle states that a system chooses at every instant the lowest energy, or "easiest," motion in conformity with the constraints.

Surprisingly, the principle is in general false. For example, if viscous forces act, the motion predicted by the minimum power principle will be incorrect. We prove that the principle is correct if there are no forces with velocity-dependent magnitude. This allows its application to many systems with Coulomb friction.

I. INTRODUCTION

A. Quasi-Static Systems, and the Minimum Power Principle

THE QUASI-STATIC approximation to the motion of a mechanical system is the solution to Newton's law $F = ma$ with the inertial term ma ignored. Ignoring ma is only exact in trivial cases, but in many systems, dissipative forces so overwhelm the inertial term that the quasi-static approximation is useful.

The quasi-static approximation may be used to analyze motion even when velocity-dependent forces are important:

Example: A bacterium swims in a viscous fluid. Dissipative forces are proportional to v. A bacterium can drift only about 10^{-6} body lengths without swimming [1], so we know inertial effects are minimal. The shape assumed by the bacterium's flexible flagellum, for a given motion at its base, can be analyzed in the quasi-static approximation.

The quasi-static approximation is appropriate for many interesting driven dissipative systems below a characteristic driving velocity. For systems involving frictional forces, characteristic velocities for quasi-static motion have been discussed in [5] and [6]. Bounds on the error caused by using the quasi-static approximation can be estimated in particular cases.

Example: A credit card on a tabletop, with weight uniformly distributed over the area of contact, rotates as it is pushed by a robot finger. Here we find that a characteristic pushing velocity at which the quasi-static approximation produces 10-percent errors is roughly 10 cm/s.

Example: A rope lying snaked on the ground straightens as one end is pulled steadily. The quasi-static approximation may be used to analyze the shape of the rope as it straightens, so long as the end is not pulled too fast.

The minimum power principle can be stated as follows:

A quasi-static system chooses that motion, from among all motions satisfying the constraints, which minimizes the instantaneous power.

For the above two examples "instantaneous power" may be understood as the rate of energy dissipation due to sliding friction. Note that in each example one of the constraints is a "moving constraint" (one that imposes a motion on the system). Were this not so the systems would choose the lowest power motion of all: no motion.

The minimum power principle expresses the intuitively appealing idea that when the credit card is pushed or the rope is pulled, each "satisfies the constraints" (e.g., gets out of the way of the pushing finger, or complies with the motion of the pulling hand) in the easiest way: the way which minimizes the energy loss to sliding friction.

Because of its simplicity the minimum power principle seems reminiscent of other energetic principles in mechanics. The minimum power principle is not an existing principle of mechanics, and in fact, it is false. The purpose of this paper is to warn that the minimum power principle is in general false, and to prove that it is true if there are no forces with velocity-dependent magnitude.

B. Relation to Other Principles of Mechanics

Several readers have confused the minimum power principle with the method of virtual work. The latter states that if a
system is in static equilibrium, zero change in energy results from any arbitrary infinitesimal “virtual displacement” δ of a component of the system. Virtual displacements violating the constraints are allowed, making the principle useful for calculating forces of constraint. Comparing,

- The minimum power principle states: the instantaneous motion that the system will perform is the one which minimizes instantaneous power.
- The method of virtual work states: the change in energy due to any infinitesimal motion that you choose is zero.

In contrast to the minimum power principle, the method of virtual work makes no prediction of motion.

The minimum power principle is related to results from the classical theory of plasticity [2], [8]. Interested readers may find a summary and further consideration of the validity of the minimum power principle and related principles in a forthcoming paper by Goyal and Ruina [4].

All formulations of mechanics are ultimately isomorphic to simple Newtonian ($F = ma$) mechanics. In other words, it can be proved that the answers obtained from all formulations are the same. Nevertheless, energetic formulations have proven extremely valuable. In systems with multiple constraints, the energetic principles greatly simplify the solutions because constraint forces need not be evaluated.

The subject of this paper may be stated “is the minimum power principle isomorphic to Newtonian mechanics in the quasi-static approximation?” If so, the minimum power principle can be a useful addition to the available techniques for dealing with quasi-static systems. Of course, the minimum power principle is much less powerful than the Lagrangian or Hamiltonian formulations, as it applies only to quasi-static systems.

In fact, we will find that for the isomorphism to hold we must restrict ourselves to systems involving only certain kinds of forces. These include all of the velocity-independent forces (e.g., springs, gravity, electric fields). Among the velocity-dependent (e.g., dissipative) forces, the principle may only be used for forces which are parallel to velocity and of constant magnitude. As a practical matter the minimum power principle is therefore useful only for systems with Coulomb friction. And even among systems with Coulomb friction, we must be careful that the normal force is not velocity-dependent.1

C. Quasi-Static Systems in Robotics

We have used the minimum power principle to solve a problem similar to the “credit card” example above [7]. Trinkle [9] has found the minimum power principle relevant to the planning of robotic grasps in three dimensions.

The dynamics of the robot itself or of its effects on the environment cannot be considered within quasi-static mechanics when kinetic effects are important. However many other problems arise in robotics which can be partially or completely analyzed in the quasi-static approximation:

- the strength and mode of failure of a grasp as external forces are applied to the grasped part;
- the stability or mode of collapse of a partially assembled structure;
- prediction of backlash in a system of gears or tendons (with friction, but at low speeds);
- the effect of terrain on the trajectory of a mobile robot with coupled wheels, when wheel slip is an issue;
- rigidity (and deviation from nominal shape) of a robot under load, including frictional coupling of the links of the robot. Similarly, rigidity of a part as it is machined under numerical control, and determination of the shape actually cut.

D. Constraints

In testing the correctness of the minimum power principle we compare its solution for the motion of a quasi-static system to that obtained by straightforward application of Newton’s law. We are interested in n-particle systems including multiple constraints, so the treatment of those constraints is important. Constraints enter the minimum power principle solution only indirectly, as a limitation on the space of motions over which instantaneous power is minimized. However, the forces which maintain the constraints must be considered explicitly in the Newtonian solution.

To compare the solutions we introduce $3n$-dimensional constrained directions, which mesh neatly with the method of Lagrange multipliers in the Newtonian solution. In the minimum power principle solution, the same constrained directions are the basis vectors of a subspace complementary to that over which instantaneous power is minimized.

Constraints are central to the analysis of the example systems above. In the “rope” example, the rope, which is a continuous object, may be approximated by an arbitrarily dense linear collection of point particles, each constrained to be at a fixed (small) distance from its two adjacent neighbors. The credit card may be considered to be a network of point particles, each constrained to lie at fixed distances from several nearby particles. With enough such constraints the object is rigid. The credit card and the rope are also affected by an external constraint that keeps them in the plane of the tabletop or of the ground, respectively. And each system is affected by an external, moving constraint: the robot finger, or the hand pulling the rope.

Of course, one would not normally analyze a rigid object as a collection of particles and constraints. Simpler specifications of it are possible, having as few as six degrees of freedom and no internal constraints. We will use the “collection of particles” specification in discussing the validity of the minimum power principle, because that specification is completely general. In actually using the minimum power principle, simpler specifications would be employed. This issue is discussed further in Section V.

E. What is a Constraint?

Real forces exerted on a particle are always continuous functions of the particle’s position. The forces commonly

1 Coulomb friction is a model of sliding friction in which the frictional force is directed opposite to the motion of a sliding body, is independent of speed, and is proportional to the normal force acting on the sliding body and to a coefficient of friction μ.

2 A subtle caveat observed by Tae-Hee Kim, Northwestern University.
called "constraints" are so abrupt, however, that a useful idealization is to consider them to be due to perfectly rigid links, enforcing fixed distances. This idealization is useful because with sufficient rigidity the detailed nature of the forces is unimportant to the motion. However, the idealization brings with it difficulties in calculation due to the singularities which may arise.

We therefore segregate the forces which act in a system into two classes. One class, which we will call F_C, consists of forces due to the idealized rigid constraints. The second class contains all remaining forces, and will be denoted F_{XC}. ("XC" stands for "except constraints.") F_{XC} may include external fields (e.g., gravitational, electric, magnetic), dissipative forces (e.g., friction, viscosity), and interparticle forces (e.g., spring forces). We have $F_{\text{TOTAL}} = F_C + F_{XC}$. Newton's law is simply $F_{\text{TOTAL}} = 0$ in the quasi-static approximation.

F. Definition of the Instantaneous Power

We define the instantaneous power P_v of a system of particles to be

$$P_v = -\sum_i F_{XC_i} \cdot v_i$$

where i ranges over the particles, F_{XC_i} is all forces acting on particle i except forces of constraint, and v_i is the velocity of particle i.

Dissipative forces (such as friction) contribute positively to P_v, and conservative forces can contribute with either sign. Constraint forces, including moving constraints, do not contribute to P_v. Because forces of constraint are left out of F_{XC}, P_v bears no obvious relation to actual energies of the system.

Note that the instantaneous power P_v is a function of the velocities of all the particles composing the system. The minimum power principle states that the system will choose that set of velocities $\{v_i\}$ which minimizes P_v, subject to the restriction that the set $\{v_i\}$ satisfies the constraints.

G. Overview

As P_v is insensitive to mass and acceleration, the minimum power principle cannot give the correct result (i.e., the one which agrees with Newton's law) for non-quasi-static systems. Our purpose in this paper is to find out whether the minimum power principle gives the correct result for quasi-static systems. The minimum power principle is not in general isomorphic to Newton's law even for quasi-static systems, and an example of their disagreement is given in Section V. We will find that a sufficient condition for isomorphism is that all velocity-dependent forces acting in the system must be essentially equivalent to Coulomb friction, with velocity-independent normal force. (All dissipative forces, and some conservative forces, are velocity-dependent.)

We will first consider a single-particle system without constraints. A few lines of algebra are sufficient to find the restrictions on the types of forces. In Section III we introduce constraints in terms of "constrained directions" along which the projection of velocity must be zero. In Section IV we generalize the forces from three dimensions to $3n$ dimensions to represent an n-particle system. The constrained directions generalize easily to $3n$ dimensions. The equations derived for the one-particle case retain their form when generalized to n particles. Finally, we consider a simple example.

II. One-Particle Systems Without Constraints

We will assume that the system has arrived at its present state in accordance with the laws of physics, and ask only what happens in the next moment. The instantaneous velocity alone completely answers that question.

The Newtonian solution for the instantaneous velocity of a particle in the quasi-static approximation is that velocity which satisfies

$$F_{\text{TOTAL}} = 0.$$ \hspace{1cm} (2)

In the absence of constraints, $F_{XC} = F_{\text{TOTAL}}$.

With P_v as defined in (1), and in the absence of constraints, the velocity specified by the minimum power principle is the one for which

$$\nabla P_v = 0.$$ \hspace{1cm} (3)

Or, using the definition of P_v from (1)

$$\nabla (F_{XC} \cdot v) = 0.$$ \hspace{1cm} (4)

Note that the gradient is taken with respect to v, the possible motions. If we had constraints, they would enter (3) or (4) only as a restriction on the vector space of velocities over which P_v is minimized.

We wish to find the conditions under which (2) and (4) are satisfied for the same velocity v, i.e., where the minimum power principle gives the same solution as Newton's law. A necessary and sufficient condition for equivalence of the solutions is that the left side of (2) is zero exactly where (in v space) the left side of (4) is zero. We will study the stronger (sufficient) condition that the left sides are equal over all of v-space. Equating the left sides of (2) and (4) we have

$$F_{\text{TOTAL}} = \nabla (F_{XC} \cdot v).$$

In the absence of constraints, $F_{XC} = F_{\text{TOTAL}}$, so we now drop the subscripts. Equation (5) may be broken into scalar components and transformed

$$\forall_i F_i = \frac{d}{dv_i} (F \cdot v)$$

and

$$\forall_i F_i = \sum_j (F_{ij} v_j).$$

We will now consider the instantaneous rates of change of the forces with respect to the velocities.$

$$\forall_i F_i = \sum_j \frac{d}{dv_j} F_i + \sum_j F_j \frac{d}{dv_j}$$

and

$$\forall_i F_i = \frac{d}{dv_i} F_i.$$ \hspace{1cm} (7)

The indices i and j run from 1 to 3, as we are dealing with one
particle in 3-space. In later sections we will generalize to \(n \) particles in \(3n \)-space, with \(i \) and \(j \) running from 1 to \(3n \).

Equation (6) or (7) is a sufficient condition, in its most general form, on the types of forces for which the minimum power principle gives the correct solution.

A. Forces for which the Minimum Power Principle is Correct

Equation (6) is linear. If two types of forces individually satisfy (6), their sum will also. If a force is independent of velocity, its derivative with respect to any component of velocity will be zero, so it will satisfy (7). Therefore, the minimum power principle is valid for all velocity-independent forces. Most common external forces (electric fields, springs, gravity) are velocity-independent. A magnetic field acting on a moving electric charge, however, exerts a velocity-dependent force.

If a force \(F \) is perpendicular to \(v \), \((F \cdot v) \) in (6) is zero. Therefore, (6) cannot be satisfied. The minimum power principle does not find the correct solution for forces which are perpendicular to the velocity which gives rise to them. A magnetic field acting on a moving electric charge is an example of a perpendicular force. This result is not surprising: a perpendicular force can do no work on a particle, and so is invisible in \(P_r \). Yet it does affect the motion.

Finally, consider forces which are parallel to the velocity which gives rise to them. We may write

\[
F = F \tilde{v}
\]

where \(F \) is a scalar and \(\tilde{v} \) is a unit vector in the direction of \(v \). Condition (5) becomes

\[
F \tilde{v} = \nabla (F |v|) \tag{9}
\]

\[
F \tilde{v} = |v| \nabla F + F \nabla |v| \tag{10}
\]

To satisfy (10), the gradient of \(F \) (nota bene: with respect to \(v \)) must be zero. Therefore, \(F \) must be independent of velocity. Such forces are generalized versions of Coulomb friction, where the frictional force is directed opposite to the velocity, but the magnitude of that force is independent of velocity and direction.

For single-particle quasi-static systems without constraints, we can conclude that the minimum power principle is isomorphic to Newtonian mechanics if the forces acting on the particle can be composed of:

- velocity-independent forces,
- velocity-dependent forces, if the direction of the force is parallel to velocity, and its magnitude is independent of velocity.

III. ONE-PARTICLE SYSTEMS WITH CONSTRAINTS

In this section we include constraints in the Newtonian and minimum power principle solutions for the motion of a system. By formulating both solutions in terms of the same "constrained directions" along which the projection of the particle's velocity must be zero, the constraint forces in the two solutions are shown to cancel exactly. The question of the equivalence of the Newtonian and minimum power principle solutions is thus reduced to the previous case in which no constraints were involved. The constrained directions will be generalized in Section IV to \(3n \) dimensions.

A. Newtonian Solution by Lagrange Multipliers

When there is a constraint there is a force to maintain the constraint. These "forces of constraint" must be included in \(F_{\text{TOTAL}} = 0 \). Generally, the forces of constraint are unknown and cannot be solved directly. The method of Lagrange multipliers [3] has been developed to deal with constraints.

In a formulation of the method of Lagrange multipliers well suited to our purposes, each constraint is replaced by a spring which exerts a force proportional to the difference between its length and its "relaxed" length \(d \). We denote the proportionality constant \(\lambda \). As \(\lambda \to \infty \), the spring becomes rigid and therefore acts as a constraint. Recall that rigid constraints were themselves only idealizations of real forces so sharp that their details ceased to be relevant to the motion of a system. Therefore, the choice of a very stiff spring to replace the constraint does not reduce the generality of the constraints.

The force exerted by a spring with spring constant \(\lambda \) constraining a particle to be a distance \(d \) from the origin, is

\[
f_r = \lambda (d - |r|) \hat{r} \tag{11}
\]

where \(r \) is the position of the particle, and \(\hat{r} \) indicates a unit vector in the direction of \(r \).

We have initially a state of the system (described by the vector \(r \)) which satisfies the constraints, and ask what happens in the next instant \(dt \). We wish to find \(v \), the vector specifying the instantaneous velocity of the particle. If a particle is constrained to be a distance \(d \) from the origin, and is presently at that distance, then the constraint may be stated as a restriction on the instantaneous velocity of the particle: \(v \) must be perpendicular to \(r \). The force arising from a violation of this constraint is

\[
f_r = -\lambda (v \cdot \hat{r}) dt \hat{r} \tag{12}
\]

Here \(r \) is a constrained direction; the velocity must be perpendicular to this direction. Fig. 1 illustrates the constrained direction \(r \). The velocity of the particle \(v \), if it is not to violate the constraint, must be perpendicular to the constrained direction. Should it not be perpendicular, the distance from the origin to the particle would increase by \((v \cdot \hat{r}) dt \), and a force of constraint \(f_r \) would develop as given by (12).

We will require two general forms for forces of constraint. The first

\[
f_r = -\lambda (v \cdot \xi) dt \xi \tag{13}
\]

is used to enforce a fixed distance from a particle to a point in space. (It can be used for fixed inter-particle distances, too, as we will see in Section IV.) By properly selecting constrained directions \(\xi \) in velocity space, (13) is sufficient to represent general distance constraints. Suppose a particle at \(r \) is
Fig. 1. \(r \) is a constrained direction. If a particle (dot) is constrained (by a rope, perhaps) to lie a fixed distance \(d \) from the origin, then the vector \(r \) is a constrained direction for the particle. This means that the particle’s instantaneous velocity \(v \) must have a component in the direction \(r \).

constrained to lie a distance \(d \) from a point \(p \) fixed in space. Its velocity \(v \) must be perpendicular to \((r - p) \). The vector \(e \) which represents this constraint is

\[
\begin{align*}
c_x &= r_x - p_x, \\
c_y &= r_y - p_y, \\
c_z &= r_z - p_z.
\end{align*}
\]

(14)

The second form of constraint we shall need imposes a velocity \(e \) on the motion of a particle. We can write a force term to maintain this constraint

\[
f_i = -\gamma ((v - e) \cdot \hat{e}) \delta t
\]

(15)

where \(\gamma \) is another spring constant like \(\lambda \). This equation may be interpreted to say that if the component of the particle’s velocity \(v \) in the \(\hat{e} \) direction differs from \(e \), we will impose a force in the \(\hat{e} \) direction.

Newton’s law may now be written as

\[
F_{XC} = \sum \lambda_i (v \cdot \hat{e}_i) \hat{e}_i dt - \sum \gamma_i ((v - e) \cdot \hat{e}_i) \hat{e}_i dt = 0
\]

(16)

where the second and third terms are the forces of constraint from (12) and (14). \(F_{XC} \) represents all forces other than the constraints.

To solve the system, one must solve for the components of \(v \) in terms of the multipliers \(\lambda_i \) and \(\gamma_i \), and then take the limit as all the multipliers go to infinity.

B. Minimum Power Principle Solution with Constrained Directions

A quasi-static system chooses that motion, from among all motions satisfying the constraints, which minimizes the instantaneous power \(P_v \).

In the notation developed above, \(P_v \) may be written

\[
P_v = F_{XC} \cdot v.
\]

(17)

\(F_{XC} \) represents all forces other than the constraints. \(P_v \) is a scalar quantity, while \(F_{XC} \) and \(v \) are vectors. Were it not for the restriction “among all motions satisfying the constraints,” the motion minimizing \(P_v \) would satisfy

\[
\nabla P_v = 0.
\]

(18)

(Again, note that the gradient is with respect to \(v \).) If certain directions of motion \(s_i \) violate the constraints, we do not care if \(P_v \) could be further lowered by moving in those directions. So we only require that \(P_v \) is at a minimum when we change \(v \) in unconstrained directions. In terms of the gradient of \(P_v \), we do not insist that it be zero in all directions, but only in the unconstrained directions. In the constrained directions, the gradient of \(P_v \) may be nonzero. This requirement may be written

\[
\nabla P_v = \sum_1 \alpha_i s_i.
\]

(19)

Note that the minimum power principle is satisfied if (19) is true for any set of values of the parameters \(\alpha_i \). Another way of understanding this is that we require \(P_v \) to be minimized not over the entire velocity space (of dimension 3 now, but which will be generalized to \(3n \)), but only on a subspace reduced in dimensionality by the number of constraints. The basis vectors of this subspace are perpendicular to all the constrained directions \(s_i \). \(P_v \) is also defined on the complementary subspace whose basis vectors are the constrained directions \(s_i \), but it is of no interest what the projection of \(\nabla P_v \) onto this space is, because the system is constrained to have zero velocity in this subspace. The minimum power principle therefore allows \(\nabla P_v \) to be composed of an arbitrary linear combination of the constrained directions.

C. Forces for which Minimum Power Principle is Correct

We now wish to find the conditions under which (16) and (19) are satisfied for the same velocity \(v \), i.e., where the minimum power principle gives the same solution as Newton’s law. When that occurs we have

\[
F_{XC} = \sum \lambda_i (v \cdot \hat{e}_i) \hat{e}_i dt - \sum \gamma_i ((v - e) \cdot \hat{e}_i) \hat{e}_i dt = \nabla (F_{XC} \cdot v) - \sum_1 \alpha_i s_i.
\]

(20)

The constrained directions \(s_i \) in the minimum power principle solution are the directions along which the projection of velocity must be zero to satisfy the constraints. That is also what the vectors \(c_i \) and \(e_i \) are, in the Newtonian solution. The \(s_i \) are simply a relabeling of the \(c_i \) and the \(e_i \). The values \(\alpha_i \) may be chosen arbitrarily, so we choose \(s_i \) to be of the form

\[
s_i = \lambda_i (v \cdot \hat{e}) \delta t
\]

or

\[
s_i = \gamma ((v - e) \cdot \hat{e}) \delta t
\]

(21)

depending on whether \(s_i \) corresponds to a \(c_i \) or an \(e_i \). Then the summations in (20) cancel out leaving only

\[
F_{XC} = \nabla (F_{XC} \cdot v).
\]

The algebra of (6) and (7) applies directly to this equation. The logic of Section II-A, therefore, applies too. For single-particle quasi-static systems with constraints, we can conclude that the minimum power principle is isomorphic to Newtonian mechanics if the forces acting on the particle can be composed
of:

- velocity-independent forces,
- velocity-dependent forces, if the direction of the force is parallel to velocity, and its magnitude is independent of velocity,
- forces of constraint, for both moving and stationary constraints.

IV. n-PARTICLE SYSTEMS WITH CONSTRAINTS

We now generalize the above results to \(n \)-particle systems. Both the algebra in Section II and the constrained directions in Section III generalize to the \(3n \)-dimensional velocity space needed for \(n \) particles. Henceforth, all vectors will be assumed to be \(3n \)-dimensional. \(c_i \) will denote the \(x \) component of \(c \) for particle \(i \). If a vector is only three-dimensional, it will be indicated as, e.g., \(\vec{c} \).

A. Newtonian Solution by Lagrange Multipliers

If a system consists of \(n \) particles, we can consider a force \(F \) to be a vector of \(3n \) components. \(F_{\text{TOTAL}} = 0 \) then describes the Newtonian solution for the whole system at once.

Equation (13) gave the force required to maintain a constrained direction \(c \). It is merely a formality to translate (13) to a general constrained direction in \(3n \)-space

\[
f_i = -\lambda (u \cdot \vec{c}) dt \vec{c}
\]

where \(\vec{c} \) is a \(3n \)-vector with components

\[
c_{ix}^1, c_{iy}^1, c_{iz}^1
\]

\[
c_{ix}^2, c_{iy}^2, c_{iz}^2
\]

\[
c_{ix}^3, c_{iy}^3, c_{iz}^3
\]

and \(i \) is the particle number of the constrained particle. The other \(3n - 3 \) components of \(c \) are zero.

The force required to impose a velocity \(\dot{c} \) on the motion of a particle (15) also generalizes trivially. We can write a force term to maintain this constraint

\[
f_i = -\gamma ((u - \dot{c}) \cdot \vec{e}) dt \vec{e}
\]

where

\[
e_{ix}^1, e_{iy}^1, e_{iz}^1
\]

\[
e_{ix}^2, e_{iy}^2, e_{iz}^2
\]

\[
e_{ix}^3, e_{iy}^3, e_{iz}^3
\]

The other \(3n - 3 \) components of \(e \) are zero.

Many other constraints relating movement of the particles, most of them unphysical, can be expressed in terms of \(3n \)-vector “constrained directions” \(c \) or \(e \). In an \(n \)-particle system we need a constraint maintaining inter-particle distances. The \(3n \)-vector \(c \) which represents a constrained direction for an inter-particle constraint has six nonzero components. If particle \(p \) has position \(\vec{p} \), and particle \(q \) has position \(\vec{q} \), then the \(3n \)-vector \(\vec{c} \) which constrains them to maintain their current distance is

\[
c_{ix} = \dot{c}_{ix} \vec{p} - \dot{c}_{iz} \vec{q}
\]

\[
c_{iy} = \dot{c}_{iy} \vec{p} - \dot{c}_{iz} \vec{q}
\]

\[
c_{iz} = \dot{c}_{iz} \vec{p} - \dot{c}_{ix} \vec{q}
\]

\[
c_{ix} = \dot{c}_{ix} \vec{q} - \dot{c}_{iy} \vec{p}
\]

\[
c_{iy} = \dot{c}_{iy} \vec{q} - \dot{c}_{iz} \vec{p}
\]

\[
c_{iz} = \dot{c}_{iz} \vec{q} - \dot{c}_{ix} \vec{p}
\]

The other \(3n - 6 \) components of \(\vec{c} \) are zero. The above three types of constraints allow us to tie a particle to a given point in space by a fixed-length link, to impose a velocity on a particle and to tie two particles of a system to each other by a fixed-length link. Thus rigid bodies may be modeled by specifying three noncoplanar interparticle constraints for each particle. Nonrigid bodies (e.g., a rope) may be modeled by specifying fewer constraints (two per particle in the case of a rope, as discussed in Section I-D).

All of the equations in preceding sections apply to \(3n \)-dimensional velocities as well as to the \(3 \)-dimensional velocities for which they were explained. Therefore, we can generalize our conclusions:

For \(n \)-particle quasi-static systems with constraints, the minimum power principle is isomorphic to Newtonian mechanics if the forces acting on each particle can be composed of:

- velocity-independent forces
- velocity-dependent forces, if the direction of the force is parallel to velocity, and its magnitude is independent of velocity. (The only useful example of such a force is Coulomb friction, with velocity-independent normal force.)

- forces of constraint, for both moving and stationary constraints, and for inter-particle constraints.

V. EXAMPLES

Note that in using the minimum power principle, it is not necessary to model the problem as a collection of particles and constraints. That was done only for purposes of generality in the preceding sections. Any set of parameters which includes all the degrees of freedom of the system may be used. The required constraints are only those which impose restrictions on the parameters chosen.

For instance, in Section I-D, we mentioned a system in which a credit card slides on a tabletop. The card can be considered to be a network of point particles connected by so many constraints that the network becomes rigid. But the minimum power principle can also be applied to a much simpler specification of the card: we may consider only the \(3 \)-space coordinates of three noncoincident points of the card. In that case, the only constraints which are needed are those which constrain the three points to lie in the plane of the tabletop, those which constrain the three points to lie at fixed distances from each other, and the moving constraint which
forces it to move. A still simpler specification of the card is one in which only the x and y coordinates of one point of the card are used, with the z coordinate understood to be that of the table top. One angle describing the orientation of the card must also be given. In this specification, no constraints besides the moving constraint are needed.

The minimum power principle becomes most advantageous when there are numerous constraints. However, we can demonstrate its use on a very simple system. As an example, consider the two-dimensional one-particle system shown in Fig. 2. A moving constraint imposes a velocity v_y on the particle, in the $+x$ direction. (The constraint could be a frictionless vertical fence.) The constraint applies a force only in the $+x$ direction. An external constant force (e.g., gravity) acts in the $-y$ direction with magnitude mg. A dissipative force ηv^α opposes the velocity v of the particle. We wish to solve for the instantaneous velocity v of the particle.

![Diagram](image)

Fig. 2. Example of a quasi-static system. A moving constraint imposes a velocity v_y on the particle, in the $+x$ direction. (The constraint could be a frictionless vertical fence.) The constraint applies a force only in the $+x$ direction. An external constant force (e.g., gravity) acts in the $-y$ direction with magnitude mg. A dissipative force ηv^α opposes the velocity v of the particle. We wish to solve for the instantaneous velocity v of the particle.

we obtain an implicit solution for v_y

$$
\frac{mg}{\eta} = v_y (v_x^2 + v_y^2)^{(\alpha - 1)/2}.
$$

B. Minimum Power Principle Solution

Instantaneous power due to the external force is $-mgv_y$. The dissipative force is ηv^α, so power is $\eta v^{\alpha + 1}$. Total power is then

$$
P_s = -mgv_y + \eta (v_x^2 + v_y^2)^{(\alpha + 1)/2}
$$

v_x is constrained; v_y unconstrained. We minimize P_s with respect to v_y

$$
0 = \frac{dP_s}{dv_y} = -mg + \frac{n+1}{2} \eta (v_x^2 + v_y^2)^{(\alpha - 1)/2} 2v_y.
$$

Solving we find

$$
\frac{mg}{\eta} = v_y (v_x^2 + v_y^2)^{(\alpha - 1)/2} (n+1)
$$

which is equivalent to the correct answer (30) only when $n = 0$. This example illustrates a valid use of the minimum power principle when $n = 0$, i.e., for Coulomb friction. It also serves as a counter-example for all other power-law dissipative forces v^α.

ACKNOWLEDGMENT

The authors especially wish to thank R. Schumacher for recognizing the minimum power principle as nonobvious and insisting that its validity be studied. They also wish to acknowledge the careful readings and useful suggestions of M. Mason and R. Schumacher, and interesting discussion with A. Ruina.

REFERENCES

Michael A. Peshkin (S'86-M'86) received the B.Sc. degree from the University of Chicago, Chicago, IL, the M.Sc. degree from Cornell University, Ithaca, NY, and the Ph.D. degree in 1986 from Carnegie-Mellon University, Pittsburgh, PA, all in physics.

At Carnegie-Mellon he worked in CMU's Robotics Institute, under the direction of Arthur Sanderson. He is presently an Assistant Professor of Mechanical Engineering at Northwestern University, Evanston, IL. His current research interests include task planning and force control. He is a 1988 NSF Presidential Young Investigator. He is the author of twelve technical publications and a forthcoming book Planning Robotic Manipulation Strategies (Englewood Cliffs, NJ: Prentice-Hall).

Dr. Peshkin is a member of the ASME and the American Physical Society.

Arthur C. Sanderson (S'66-M'68-SM'86) received the B.S. degree from Brown University, Providence, RI, in 1968, and the M.S. and Ph.D. degrees from Carnegie-Mellon University, Pittsburgh, PA, in 1970 and 1972, respectively.

From 1968 to 1970, he was a Research Engineer at Westinghouse Research Laboratories and worked on design and simulation of solid-state electronic devices. From 1972 to 1973 he was a Visiting Research Fellow at Delft University of Technology, Delft, The Netherlands, and conducted research in the areas of signal processing and pattern recognition. From 1973 to 1987, he was a faculty member at Carnegie-Mellon University in the Department of Electrical and Computer Engineering. From 1980 to 1987 he was Professor of Electrical and Computer Engineering and participated in the founding and development of the Robotics Institute at CMU. He was an Associate Director of the Robotics Institute from 1980 to 1987. As Associate Director, he coordinated many of the research initiatives in the Institute. From 1985 to 1987, he was on leave from CMU and held the position of Director of Information Sciences Research at Philips Laboratories, Briarcliff Manor, NY.

As Research Director, he developed new technical programs in Artificial Intelligence, Computer Architecture, Computer-Aided Design, and Robotics and Flexible Automation. In 1987, he joined Rensselaer Polytechnic Institute, Troy, NY, as Professor and Department Head of the Electrical, Computer, and Systems Engineering Department. He is the author of over 120 technical publications and proceedings. His current research interests include planning systems for robots and automation systems, sensor-based control, computer vision, and applications of knowledge-based systems.

Dr. Sanderson is an Associate Editor of the IEEE JOURNAL OF ROBOTICS AND AUTOMATION. He was the Program Chairman for the 1987 IEEE International Conference on Robotics and Automation. He is a member of AAAI, SME, and AAAS.