
Learning to Drive Among Obstacles

Bradley Hamner
Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Email: bhamner@andrew.cmu.edu

Sebastian Scherer
Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Email: basti@ri.cmu.edu

Sanjiv Singh
Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Email: ssingh@cmu.edu

Abstract— This paper reports on an outdoor mobile robot that
learns to avoid collisions by observing a human driver operate a
vehicle equipped with sensors that continuously produce a map
of the local environment. We have implemented steering control
that models human behavior in trying to avoid obstacles while
trying to follow a desired path. Here we present the formulation
for this control system and its independent parameters, and
then show how these parameters can be automatically estimated
by observation of a human driver. We present results from
experiments with a vehicle (both real and simulated) that avoids
obstacles while following a prescribed path at speeds up to 4
m/sec. We compare the proposed method with another method
based on Principal Component Analysis, a commonly used
learning technique. We find that the proposed method generalizes
well and is capable of learning from a small number of examples.

I. INTRODUCTION

We are interested in high speed operation of an outdoor

mobile robot whose task is to to follow a path nominally

clear of obstacles, but not guaranteed to be so. Such a case is

necessary for outdoor patrolling applications where a mobile

robot must travel over potentially great distances without

relying on structure such as beacons and lane markings. In

addition to avoiding obstacles, it is important that the vehicle

stays near the designated route as much as possible. While the

problem of detecting obstacles is itself challenging, here we

consider issues related to collision avoidance while following

a designated path given that the robot can detect obstacles in

front of the vehicle in sufficient time to react to them.

Steering between obstacles is a difficult task, because good

paths defy description by simple geometric constructs. Car-

like vehicles, with a non-holonomic constraint, are limited in

their capability to change direction, especially at high speeds

where vehicle dynamics are a factor. Many methods of vehicle

control have been reported in the literature, most of which

rely on proper tuning of a set of parameters to a control

function. These parameters dictate the robot’s behavior, such

as when to start avoiding obstacles, how much clearance to

give obstacles, and relative level of desire to progress towards

a goal while avoiding obstacles. The values of these parameters

and their relation to each other are critical to the effectiveness

of the algorithm. Insufficient repulsion from obstacles can lead

to collisions. Too much obstacle repulsion can cause erratic

behavior as the vehicle wildly veers away from obstacles.

These gains have typically been tuned by hand over a large

number of trials. The programmer decides when the vehicle’s

behavior is good enough.

We have implemented a model of collision avoidance based

on studies with human subjects avoiding obstacles [1], [2]. The

model proposed by Fajen and Warren is attractive because it

uses a second-order control law, thus producing smooth paths,

and is fast to compute. It also provides a means to predict

where the vehicle will go if it follows the control scheme over

some time horizon, implying a method to modulate the speed

in a sophisticated way, as well as a means to detect cul de sacs

that could trap the vehicle. While this control model holds the

promise of high performance using a principled method, it still

requires a large number of parameters to be adjusted to obtain

a balance between safe and aggressive maneuvering.

We present a method for automatically learning the param-

eters of the control model. Using collected data from a human

driving the vehicle, we employ machine learning techniques to

tune the parameters to match simulated paths from the system

with an operator’s paths, while reducing oscillation.

II. RELATED WORK

Collision avoidance for mobile robots is a fundamental tech-

nology, and a large number of methods have been developed

for various applications. Most of the work has been indoors

with vehicles that move at speeds where dynamics are not an

important consideration. For example, Borenstein and Koren’s

vector field histogram (VFH) method transforms a local map

into a one-dimensional discretized “polar obstacle density”

function [3]. The angle closest to the heading to the goal that

has low obstacle density is chosen.

Other notable, similar methods are the dynamic window

approach [4] and the curvature-lane approach [5], which

perform a parameter search in space of steering and veloc-

ity commands. These ideas have been extended in outdoor

systems in which the robot projects candidate paths ahead

of itself and then chooses among the corresponding steering

actions the one that makes the most progress towards the goal

and is obstacle free [6]. If no collision-free steering angle can

move the robot towards a goal location, a higher level planner

is consulted. Further work in the same vein uses a global

planner in conjunction with the local planner and has been

implemented on robots for space exploration [7], [8]. Both of

these systems operate at low speeds (less than 1 m/s) where

vehicle dynamics are not a factor.

Several systems have demonstrated off-road navigation. The

Demo III XUV drives off-road and reaches speeds up to

10 meters per second. The speeds are high, but the testing

environments are rolling meadows with few obstacles. Obsta-

cles are given a clearance which is wider than the clearance

afforded by extreme routes. When clearance is not available,

the algorithm plans at slower speeds [9]. Sandstorm and

H1ghlander, robots developed for desert racing, have driven

extreme routes at speeds up to 15 meters per second by

planning in a series of grids along the original path and

smoothing the result [10].

The model proposed by Fajen and Warren for collision

avoidance seems similar to the standard potential field ap-

proach in that obstacles repel and the goal attracts but their

are important differences. Rather than create a potential field

over the state of the world, it stipulates a potential over the

heading of the vehicle. Hence obstacles repel as a function

of the difference between their bearing to the vehicle and the

vehicle’s heading. Second, the control is stated in a way that

allows for the incorporation of vehicle dynamics.

Fajen and Warren’s model was implemented on an indoor

robot [1], [2], but the operation was simple – only a small

number of point obstacles were considered and a single goal

was specified. In contrast we would like our robot to drive

outdoors at high speeds where it might encounter various

configurations of obstacles, and since we would like the robot

to track a specific path, the goal will move continuously.

Recently Huang, et al., have used a modified version of the

model proposed by Fajen and Warren that is geared towards

obstacle avoidance using a monocular camera [11]. Since

range to obstacles can not be measured directly, the width

of obstacles (segmented in the image) is used instead of

the distance. The authors report results with an indoor robot

moving at 0.7 m/s.

There has been quite a lot of attention to learning as applied

to mobile robots. Typically “learning” applies to perception

as in learning a map of the environment [12] or learning a

classification of the terrain given image or range data [13]–

[15]. In a few cases learning is applied to the control itself

as in a vehicle that learns to follow roads based on onboard

video cameras while a human drives [16], [17]. We are not

aware of other work where the robot learns to avoid obstacles

based on observation of a human driver.

III. APPROACH

Here we present our model of collision avoidance based on

the formulation by Fajen and Warren [2], and highlight the

parameters to be learned by the system.

A. Control Model

Fajen and Warren’s control model operates in the heading

space of the vehicle. A defined goal point attracts the vehi-

cle’s heading, while point obstacles each repel the vehicle’s

heading.

In our situation, a desired path is given. We set the goal

point to be a fixed distance, 10 meters, along the path from

the vehicle’s location. The goal’s attraction in the control law

increases as the angle to the goal increases. Since the goal

is always nearly the same distance from the vehicle, we do

not need a distance term in our control law (called MFW for

modified Fajen/Warren):

Fig. 1. Distance and angle terms used in the MFW control law. We consider
the vehicle’s position to be the center of the rear axle, so all distances are
measured from that point.

attractMFW(g) = kg · (φ− ψg)

(φ− ψg) is the angle to the goal. dg is the distance to the

goal. kg is a parameter which must be learned.

Since we use a single goal point at a large distance, vehicle

path tracking is not highly accurate. However, our standards

for path tracking accuracy are loose, and subordinate to the

ability to avoid obstacles.

Similarly, each obstacle repels the vehicle’s heading. The

repulsion increases with decreasing angle and decreasing dis-

tance. Also, in curved path situations, an obstacle may lie

directly in front of the vehicle, but far from its intended path.

We therefore include a term which allows obstacles on the

path to repel more. Then for each obstacle, there is a repulsion

function:

repulseMFW(o) = ko(φ− ψo)(e
−c3do)·

(e−c4|φ−ψo|)(1 + c5(dmax − min(dmax, dgv)
2)

(φ− ψo) is the angle to the obstacle. do is the distance to

the obstacle. ko, c3, c4, and c5 are parameters which must be

tuned.

Calculating each obstacle’s distance to the path is an ex-

pensive operation, as it requires finding the closest path point

to each obstacle. Instead we make an approximation for the

obstacle’s distance from the path. We draw a vector from the

vehicle to the goal point. An obstacle’s repulsion is increased

in proportion to its distance, dgv, to that vector. If the distance

is greater than dmax, then no extra weight is applied. This

maximum distance is based on the maximum distance the

vehicle is allowed to be off the path.

Note that the MFW obstacle repulsion function actually

gives zero repulsion for an obstacle directly in front of the

vehicle. However, it is unlikely that an obstacle will ever be

exactly at zero degrees to the vehicle. If it is at any small, non-

zero angle, it will repel the vehicle away from zero degrees,

and the repulsion will increase. The function is designed this

way to make it easier for the vehicle to cross in front of an

obstacle, so that if an obstacle is at a small angle to the vehicle,

then other forces can push the vehicle to either side.

The goal attractions and obstacles repulsions are summed

together, applying superposition. The result is a single control

law for the vehicle’s angular velocity:

Fig. 2. Our test platform is a modified all-terrain vehicle. A panning laser
is mounted between the headlights. The fixed laser is mounted on top of the
frame in the rear. The vehicle also carries two GPS antennae plus a differential
antenna and an inertial measurement unit.

φ̇∗
MFW

= −kg(φ− ψg) +
∑

o∈O(ko(φ− ψo)(e
−c3do)·

(e−c4|φ−ψo|)(1 + c5(dmax − min(dmax, dgv)
2)

We are left with five parameters in the control law, which

can be expressed in a 5-tuple ū = (kg, ko, c3, c4, c5). See Fig.

1 for an illustration of the terms used in the MFW control law.

Note that superposition will not always yield good results.

There are many situations in which attractions and repulsions

can oppose each other in such a way as to cause the vehicle to

not properly avoid obstacles. This is a limitation of the system.

It is up to the user to find good parameter values to prevent

these situations from occurring as much as possible.

B. Speed Control

Fajen and Warren found that most subjects walked at a

constant pace, so they did not explore speed control. We

constructed a speed control function based on the obstacle’s

distance and angle:

v = min
o∈O

[

do

2 cos(φ− ψo)

]

This slows down the vehicle as obstacles get closer, which

allows sharper turning and more time for the system to detect

additional nearby obstacles. The 1/2 coefficient is included to

ensure the vehicle will have over one second to stop for any

obstacle. If the commanded speed is under .2 m/s, the system

stops the vehicle.

For more detail of our control system, please see [18].

C. Vehicle Characteristics

All data collection and testing were performed on a modified

all-terrain vehicle (ATV), as shown in Fig. 2. Obstacles were

detected using data fused from two laser range finders, one

fixed horizontally, and the other arranged vertically panning

back and forth to cover the road. Vehicle pose information

was provided by a pose estimation system, which uses the

global position system (GPS) combined with motion data

from an onboard inertial measurement unit (IMU) to produce

positioning accurate to better than 5 cm.

To provide a better model of vehicle motion and increase

the accuracy of vehicle simulations for the training and testing

of parameters, we derived the vehicle’s steering dynamics.

Fig. 3. The display to the driver during training. The small, black diamond
on the right represents a moving goal point which slides along the desired
path. The vehicle is drawn large to make its heading clear to the driver, but
each obstacle is conservatively expanded in each direction by the length of
the vehicle to ensure collision-free operation. A collision only occurs when
the representative point of the vehicle intersects the ”grown” obstacles.

The vehicle’s steering actuator in contact with the ground

behaves like a second-order system with delay. The identified

parameters of the unit-mass spring-damper system are

θ̈ = −bθ̇ − k(θ − θd)

b = 6.5789

k = 258.7

tdelay = 0.2s

These values were used to generate vehicle paths as de-

scribed in the following section.

IV. SEARCH FOR PARAMETERS

Tuning the set of parameters ū by hand using intuition is

tedious and difficult. In this section we outline a method to

automatically determine the parameters based on a driver’s

behavior steering the robot.

A. Data Collection

A human subject drives the robot and tries to follow a path

while avoiding obstacles. The path is replaced by a virtual goal

point at a distance ahead of the current position as mentioned

in Section III-A. Data about the goal point, the obstacles,

and the driven path are recorded and used to determine the

unknowns of the described control model. First we segment the

path, and then optimize the parameters to match the subject’s

path.

The input to the control model and human subject at any

point in time is a goal point pg and a set of obstacles O defined

as points in the x-y plane of the vehicle. A subject drives the

robot only looking at a monitor which displays the virtual goal

point and the relevant obstacles, not looking up to see the true

location of obstacles ahead. Fig. 3 shows the only information

available to the operator. The subject does know the goal point

will remain at a near constant distance from the vehicle. Since

goal distance is not a term in our control equations, we are

unconcerned with the operator having this information. He has

no other information regarding the path, or whether the goal

will move to the left or right of the vehicle.

Fig. 4. A few examples of the data segments collected from the experiments
with the operator. The dashed line portrays the desired path if there were no
obstacles. The operator deviates from the path to avoid obstacles and returns
when the path is clear. The parameters presented in Section V were learned
using only these three segments as training data.

P

s

P

t

p

i-1

p

i

=(
x

i

,y

i

)

p

i+1

p

i+2

q

i-1

q

i

=(k

i

,l

i

)

q

i+1

q

i+2

d

i

Fig. 5. The difference between two path segments is used to optimize the
parameter set u. Ps is a recorded path segment while Pt was generated from
simulating the system’s driving using a parameter set u.

Using the goal and obstacle information, the operator drove

the vehicle through a variety of paths and obstacle configura-

tions. During operation, the pose estimation system collected

information about the driven path at a rate of 100Hz. A pose

data point contains a timestamp, an X-Y position, heading,

velocity, and angular velocity. We also recorded the goal points

given to the driver, as well as the locations of obstacles and

when they were detected.

Often the paths were obstacle-free, where the driver simply

followed the goal point. Of course, these situations provide

no information with which to learn the obstacle parameters.

We could learn the goal parameters alone, but we prefer to

learn all parameters at one time. We therefore extracted only

the relevant cases, breaking the data into short path segments

consisting of cases where the driver steered the vehicle around

the obstacles and returned to the path. A few of these segments

are shown in Fig. 4.

B. Problem Setup

We use the path segments with obstacle avoidance behavior

to train the parameters of our control model. Given a set ū of

parameters, we generate a path Pt = {qi = (ki, li)|i = 1..n}

Fig. 6. Path 2 stays closer to the human path than Path 1, but is less desirable,
due to its high frequency oscillations.

with the same n number of points as the training path segment

Ps, which contains regularly sampled points in the plane. Ps =
{pi = (xi, yi)|i = 1..n}.

One measure of error is the Euclidean distance be-

tween each point pair as shown in Fig. 5: d(ū)i =
√

(ki − xi)2 − (li − yi)2. However, we are also concerned

with driving smoothly. Minimizing distance error alone could

allow high frequency oscillations, illustrated in Fig. 6. Conse-

quently, we add a term to penalize accelerations in the steering

angle used by the autonomous system. The total error mini-

mized between two path segments is D(ū) =
∑n

i=1
[d(ū)i +

|ρ̈i|], where ρ is the commanded steering angle. We minimize

the error of the parameter set for a number of path segments.

Over m segments, the optimization procedure minimizes the

combined error term minūδ(ū) =
∑m

j=1
D(ū)j .

The path Pt is generated from a forward simulation of the

steering behavior of the robot. This simulation is intended to

be very accurate, using the steering model and its derived

parameters presented in the previous section. Since the length

of the path and velocities are not controlled in this model,

we use the recorded speeds to ensure Pt has the same length

as the training path Ps. The simulated path is generated as

follows:

For a control iteration, the commanded angular velocity is

φ̇∗MFW = −attractMFW(g) +
∑

o∈O

repulseMFW(o).

The commanded steering angle given the translational ve-

locity v and the vehicle length l is

θd = atan(l ·
φ̇∗MFW

v
).

The system retains a notion of the vehicle’s current steering

angle. The commanded steering angle is integrated with the

current steering angle using the second order model presented

in Section III-C.

θ̈ = −bθ̇ − k(θ − θd)

The differential equations are integrated using the first-order

Newton-Euler method to produce a new steering angle. The

system then calculates the curvature of the arc the vehicle

would travel on until the next control iteration.

κ =
tan(θ)

l

Finally, the vehicle’s position is updated to be at the end of

that arc.

(xnext, ynext, θnext) = updateArc(xprev, yprev, θprev, κ, v)

TABLE I

THE PARAMETER SETS

kg ko c3 c4 c5 err

Hand-Tuned 0.767 0.060 0.340 2.000 0.250 .3

Learned Random 0.8976 7.5537 0.9082 9.0856 0.5688 .18

Learned Genetic 0.6445 8.2175 1.6119 13.018 6.0817 .14

Learned SA 6.4328 8.7506 1.4971 5.0594 5.5838 .28

C. Learning Process

The relationship between the set of parameters ū and the

resulting paths is non-linear with many local minima. Normal

gradient descent techniques are insufficient to find the global

optimum, since they get trapped in the local minima. We

address this problem using a two-step optimization process;

first a nondeterministic algorithm to identify good candidates,

followed by an optimization step.

We tried three different approaches for the nondeterministic

step. The first is simply to randomly choose sets of parameters.

We set the range of each parameter to be uniformly distributed

between 0 and 10. With these ranges the system randomly

picks 2500 sets of parameters. We keep the ten sets with the

lowest residuals.

Another approach is a genetic learning algorithm. The

system starts with a population of twenty-five randomly chosen

sets of parameters, each parameter having a value between

0 and 10. Every iteration, twenty-five new sets are formed

through combination and mutation. In combination, the system

selects two parameter sets to form a new one, where each of

the five new parameters is taken independently from one of

the two parent sets. In mutation, the system selects one set and

randomly mutates a number of its parameters to other values.

The sets to be combined and mutated are drawn randomly with

a distribution favoring those with the lowest residual, δ. The

residuals of the population decrease over time as better sets are

found. After one hundred iterations of the genetic algorithm

(totaling 2500 error computations for a population of 25) we

keep the ten sets with the lowest residuals.

The last approach is simulated annealing. The system starts

with one randomly chosen set of parameters. At each iteration,

the system either performs gradient descent on the current pa-

rameters or randomly selects new parameters. The probability

of performing gradient descent increases over time, approach-

ing one. We ran 2500 iterations of simulated annealing. From

the 2500 sets whose residuals were calculated, we kept the ten

with the lowest residuals.

Following the nondeterministic step, we applied a nonlinear

least squares procedure with the previous best parameter sets

as the initial guesses, producing ten optimized parameter sets

for each approach. Then for each approach the optimized

parameter set with the lowest residual, δ, was chosen as the

best parameter set.

V. RESULTS

The methods described above learned parameter sets with

only three training path segments, covering thirty meters

of driving. We left the rest of our segments for test data.

Fig. 7. The maximum distance error of the hand-tuned and learned parameters
for each test segment.

Previously we used a parameter set hand-tuned over the course

of a year. The set was tuned in a manner similar to gradient

descent, starting with an initial guess and adjusting individual

parameters slightly until we thought we had achieved the

best vehicle behavior. The four sets are shown in Table I.

Notice they are very dissimilar. We compare them on our

remaining nine path segments, excluding the three training

segments, in Fig. 7. This figure displays the maximum distance

away from the human-driven path on each data segment. The

hand-tuned parameters perform nearly as well as the learned

ones in most segments, but are drastically far away in a

few situations. A few of the test paths are shown in Fig.

8. The parameters learned with simulated annealing perform

better than the hand-tuned parameters, but not as well as the

other learned parameter sets. The parameters learned with the

genetic algorithm perform only slightly better than the ran-

domly learned parameters on the distance metric, averaging 6

centimeters closer to the human path, despite the difference in

the learned parameters. The two have closer overall residuals

due to more oscillation in the parameters from the genetic

algorithm. As shown in Table I, the mean test residual is .3

for the hand-tuned set, .28 for the simulated annealing set,

.18 for the randomly guessed set, and .14 for the genetically

learned set. We chose the randomly learned parameter set to

use for additional testing, since it drives the vehicle smoother

than the genetically learned set, as shown in Fig. 9. Neither

method gives high frequency oscillations, but the set learned

by the genetic algorithm makes harder turns. This suggests that

the terms we included in the error metric to ensure smooth

steering need to be improved. Either smooth steering needs

to be weighted higher, or we need to design a new metric to

prevent those hard turns. All further results were obtained with

the system using the set learned through random guesses.

Of course, our recorded data segments are only a small

sample of what the vehicle may encounter. To ensure that the

learned parameter set is better than the hand-tuned set, we also

ran the system with the two sets in a vehicle simulator at 4

m/s, using new recorded obstacles from data files. Obstacle

Fig. 8. The system’s performance on test paths 4 and 5 with the two
sets of parameters. The hand-tuned parameters (grey) cannot deal with the
large obstacles on both sides of the vehicle. The randomly learned parameters
(black) drive closer to the human’s path (heavy line).

Fig. 9. At left, the path driven by the system using the parameters learned
from the genetic algorithm. At right, the path driven by the system using the
parameters learned by random guessing. They both avoid obstacles, but the
genetic algorithm parameters make harder turns.

detection is simulated by an obstacle replay program which

reads the vehicle’s location from shared memory and serves

all obstacles within a fixed distance from the vehicle to the

simulator. Results from the simulator are shown in Fig. 10. The

system using the hand-tuned set frequently gets the vehicle

“stuck”, where the vehicle has not avoided an obstacle and

must instead stop before colliding with it. The system using

the learned parameters gets stuck much less often. We have

not encountered a case where the learned parameters get the

vehicle stuck and the hand-tuned parameters do not. Also,

recently, we have successfully used the learned parameters on

the ATV test vehicle over a period of four months.

We have also implemented some classical road following

algorithms to compare with our system. Specifically, we im-

plemented eigenvector projection using principal component

analysis developed for road-following using video imagery

[17]. It is similar to steering using a neural network [16], but

assumes a linear model of the control equation. We used all of

our collected path segments as the training set, plus a copy of

the set mirrored from left to right to remove the possibility

of directional steering bias. The input images consisted of

a map grid of the local area in front of the vehicle, with

pixel values of -1, 0, and 1 indicating obstacle, free space,

and road, respectively (shown in Fig. 11). To make the road,

we expanded the desired path by two meters to either side.

Each training data point supplied a vector containing the input

image and a list of steering angle votes, which were Gaussian

with the operator’s steering angle as the mean. We stacked the

vectors to form a matrix, and then calculated the eigenvectors

Fig. 10. We also tested the system in new situations at 4 m/s in simulation
with recorded obstacles. At left, the hand-tuned parameter set can avoid
individual obstacles, but performs poorly in more complex situations. The
system stops the vehicle before a collision occurs, due to our speed control
function. At right, the system avoids all obstacles when using the randomly
learned parameters.

of that matrix.

Driving using the system consists of the following: an input

image is taken. It is projected on to the image portion of the

principal eigenvectors (in our case, the top ten eigenvectors).

We then read the steering angle portion of that projection,

which gives us a set of steering angle votes. We take the

weighted average of the votes as the commanded steering

angle.

We ran the PCA driving system on the path segments

from its own training data. In general, the system steered the

vehicle in the right direction, but consistently understeered.

One resulting path is shown in Fig. 12. The simulated vehicle

brushes the obstacles on both sides. We observe that to learn

to drive using PCA the system needs much more training data

than our own method requires. Especially, the vehicle does

Fig. 11. At left, an image of a road with obstacles on it used as input
to the PCA method. This input image comes from a local traversability map
built using registered laser data. White regions represent obstacles, while dark
regions denote the road. At right, the reconstruction of the image projected
onto the ten principal eigenvectors.

Fig. 12. Even in a situation seen in training, driving using PCA reduction
does not avoid all obstacles. The grey stripe indicates the road.

not get close to obstacles in the training data, so the system

using PCA does not know how to deal with such situations in

practice.

VI. CONCLUSIONS

We modified an obstacle avoidance control law, originally

modeled on pedestrian behavior, for a robot driving in a path-

following situation through densely spaced obstacles. We have

presented a method to automatically learn parameters for the

control lased on path data from a driver. The system has proved

able to control the vehicle smoothly while avoiding collisions.

Upon discovering that gradient descent minimizations per-

formed poorly, we compared three randomized learning tech-

niques. The genetic algorithm and random guessing performed

similarly well. Simulated annealing performed worst, barely

better than hand-tuning. We believe this is due to its being

closely related to gradient descent. Once the system cools, the

method essentially performs gradient descent on whichever

parameter set it has, rarely jumping to a new set. One could

have the simulated annealing method cool slower, but this

would be akin to randomly guessing.

Since we only needed to tune the parameters of the control

law, rather than learn a complete model of vehicle behavior, we

were able to successfully teach the system how to drive using

a small amount of data. Function approximators like principal

component analysis need to see nearly every possible situation

to learn how to drive the vehicle.

We did choose our training segments by hand from a larger

set of recorded data. To make the learning truly automatic, the

system needs to choose its own training data. It should not be

difficult to determine when the vehicle is avoiding obstacles

and extract the path segment from there. However, we have

yet to implement it.

Also, we limited all parameters to a fixed range, even though

the scales of each parameter are different, especially between

the exponential decays and the other weights. Better results

might be achieved by some analysis on the proper ranges of

the parameters.

Our error metric was designed to both reduce the distance

error and ensure the vehicle does not unnecessarily oscillate.

However, after applying the learning method, we discovered

we preferred less oscillation to a small improvement in dis-

tance. This suggests that our error metric should be adjusted to

weight the two terms for this desired behavior, and furthermore

that it could be adjusted to meet the preference of any user.

Many obstacle avoidance systems model vehicle control

similar to the MFW system, where obstacle repulsion and

goal attraction are modeled as potential functions. Our learning

method relies only on simulating paths, not through analysis

of how individual parameters affect the vehicle’s steering.

Therefore, we believe our method could be applied to teach

other obstacle avoidance systems how to drive as well.

REFERENCES

[1] B. R. Fajen,W. H.Warren, S. Termizer, and L. P. Kaebling, “A dynamical model of
steering, obstacle avoidance, and route selection”, International Journal of Comuter
Vision, 54(1/2):13 V34, 2003.

[2] B. Fajen and W. Warren, “Behavioral Dynamics of Steering, Obstacle Avoidance,
and Route Selection,” Journal of Experimental Psychology: Human Perception and
Performance, Vol. 29, No. 2, 2003.

[3] I. Ulrich and J. Borenstein, “VFH*: Local obstacle avoidance with look-ahead
verification”, In IEEE International Conference on Robotics and Automation, pages
2505 V2511, 2000.

[4] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance” IEEE Robotics and Automation Magazine, 4(1):23 V33, March, 1997.

[5] R. Simmons, “The curvature-velocity method for local obstacle avoidance”, In
IEEE International Conference on Robotics and Automation, volume 4, pages
2275 V2282, 1996.

[6] W. Feiten, R. Bauer, and G. Lawitzky, “Robust obstacle avoidance in unknown
and cramped environments”, In IEEE International Conference on Robotics and
Automation, pages 2412 V2417, 1994.

[7] S. Singh et al., “Recent Progress in Local and Global Traversability for Planetary
Rovers”, Proceedings of the IEEE International Conference on Robotics and
Automation, 2000, IEEE, April, 2000.

[8] C. Urmson and M.B. Dias, “Stereo Vision Based Navigation for Sun-Synchronous
Exploration”, Proceedings of the International Conference on Robotics and Automa-
tion, 2002, IEEE, May, 2002.

[9] P. Bellutta et. al., “Terrain Perception for Demo III”, Proceedings of the IEEE
Intelligent Vehicles Symposium 2000, Dearborn, MI, 2000.

[10] C. Urmson et al., “A Robust Approach to High-Speed Navigation for Unrehearsed
Desert Terrain”, to appear in the Journal of Field Robotics, 2006.

[11] Wesley H. Huang, Brett R. Fajen, Jonathan R. Fink, and William H. Warren, “Visual
Navigation and Obstacle Avoidance Using a Steering Potential Function”, Robotics
and Autonomous Systems, 54 (2006) 288-299.

[12] S. Thrun, “Bayesian Landmark Learning for Mobile Robot Localization”, Machine
Learning, Volume 33 , Issue 1, October 1998.

[13] A Talukder, R Manduchi, R Castano, K Owens, L. Mathies, “Autonomous Terrain
Characterisation and Modelling for Dynamic Control of Unmanned Vehicles”, In
Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems, 2002.

[14] C. Wellington and T. Stentz, “Learning Predictions of the Load-Bearing Surface
for Autonomous Rough-Terrain Navigation in Vegetation”, In Proceedings 4th
International Conference on Field and Service Robotics, July1416, 2003.

[15] M. Hebert and N. Vandapel, “Terrain Classification Techniques from Ladar Data
for Autonomous Navigation”, Collaborative Technology Alliances conference, May
2003.

[16] Dean Pomerleau, “Neural Network Vision for Robot Driving”, In The Handbook
of Brain Theory and Neural Networks, Editor M. Arbib, 1995.

[17] J. Hancock and C. Thorpe, “ELVIS: Eigenvectors for Land Vehicle Image System”,
tech. report CMU-RI-TR-94-43, Robotics Institute, Carnegie Mellon University,
1994.

[18] S. Roth, B. Hamner, S. Singh and M. Hwangbo, ”Results in Combined Route
Traversal and Collision Avoidance”, In Proceedings, International Conference on
Field and Service Robotics, Pt. Douglas, Australia, July 2005.

