AI and Expert System
Myths, Legends,
and Facts

Mark S. Fox
Carnegie Mellon University

T he “discovery” of new technologies often gives rise to
misconceptions regarding their nature, use, and effective-
ness. Such is the case with Al, which concerns the devel-
opment of theories and techniques required for a compu-
tational engine to efficiently perceive, think, and act with
intelligence in complex environments.

First, this definition incorporates the activities of re-
ceiving information, reasoning with it, and acting upon
the world. Second, problems should be complex enough
that they cannot be solved in a straightforward algo-
rithmic way. Third, theories must be operational on a
computing engine; that is, they must work efficiently on
some type of machine.

While Al research has been underway for more than
three decades, it is only in the past six years that Al's
impact has been measurable. Many notable and well-
publicized successes have occurred — for example,
XCON,' Genaid,? and Opgen.® There have also been fail-
ures. The question is whether these failures are due to (1)
technological limitations, or (2) the process by which
technology has been applied. Without question, Al tech-
nology has limitations — it is no panacea. But have its
failures been due to these limitations?

8 ORBS/9000/90/0200-0008 $1.00 € 1990 [EEE

This article seeks to identify causes leading to inef-
fective Al applications. Views expressed herein are based
on personal observations made over 10 years of building,
deploying, and reviewing Al-based systems. Simply put,
many failures with which I am familiar have been caused
by one or both of the following: misconceptions regarding
the nature of Al technology; or poor management skills in
acquiring, nurturing, and applying that technology.

To manage and use Al it is imperative that we under-
stand its capabilities and limitations. My approach in
identifying problems and misperceptions will be to exam-
ine questions and assertions that have been posed to me
over the years. I have grouped these into three categories:

* Myths — Perceptions not based on any fact.

» Legends — Perceptions, once based on fact, that
have been blown out of proportion.

 Facts — Perceptions that have a real basis in fact.

By identifying these perceptions and misperceptions,
it is my hope that we can use Al technology selectively
and successfully to increase the quality and productivity
of decision making.

IEEE EXPERT

operation is fully defined, search proceeds with the next
operation. Search can be performed in a forward manner
or in a backward manner, starting from the due date.

This is a very simple search example. But in a single
factory having 85 orders, 10 operations, and only one
substitutable machine, we could create over 10% alterna-
tive schedules. Therefore, while this style of search is
theoretically interesting, it is impractical because too
many alternatives must be considered. Search must be
smarter; in fact, search must be structured such that the
search space is reduced from 10% to something much
smaller and more manageable.

Fact — Al reduces search combinatorics by apply-
ing situational knowledge. Feigenbaum provides an
important Al insight® — namely, that we can reduce the
combinatorics of moving through the problem space by
the smarter selection of operators (that is, by utilizing
domain knowledge). Domain knowledge can be repre-
sented as elaborations of operator conditions (that is,
descriptions of situations in which a particular decision is
to be made), which makes the application of operators
more sensitive to the current context.

Operators are opportunistically applied; at each step in
the search, the operator best matching the current situ-
ation is chosen to extend the search. Transition from one
state to another in Al-program problem spaces is rational;
at each step, the next step is opportunistically made
(jumping from one island of certainty to another and from
one decision process to another within the problem space).

Returning to our factory-scheduling example — rather
than generate all possible alternative operations every
time we schedule, expertise suggests that we consider
alternatives only when capacity becomes scarce on ma-
chines used in the standard plan:

IF Milling is to be scheduled
AND Capacity is scarce
AND Queue time is high
AND Due date is tight
THEN Consider
I. Grinding

2. Subcontracting

Many successful systems use expertise to reduce
search combinatorics (for example, XCON and Opgen).
But in the case of factory scheduling, the expert system
approach presents two problems:

(1) Factory scheduling tends to be so complex that it is
beyond the cognitive capabilities of human schedulers.
Therefore, schedules produced by such schedulers are
poor. Nobody wants to emulate their performance.

(2) Even if the problem is relatively simple, factory
environments change often enough that expertise built up
over time becomes obsolete.

10

Fact — Al reduces search combinatorics by refor-
mulating problems. Expert systems seem appropriate
only when problems are relatively small and stable or can
be decomposed into such subproblems. When the sched-
uling problem cannot be solved using expert systems, we
need more sophisticated search techniques. One approach
reformulates the problem as a simpler task whose solution
can be used to guide the original problem’s solution.®*

For example, the Isis-2 factory-scheduling system®
separates search into four levels — job selection, capacity
analysis, resource analysis, and resource assignment.
Level I selects the next unscheduled job to be added to the
existing shop schedule, according to a prioritizing algo-
rithm that considers job type and requested due dates. The
selected job is passed to Level 2 for scheduling.

Level 2 — representing the simpler reformulation of
the original problem — simplifies the problem by remov-
ing resources and constraints from consideration, and
performs a dynamic programming analysis of the plant
(based on current capacity constraints). Level 2 deter-
mines the earliest start time and latest finish time for each
selected operation, as bounded by the order’s start and due
dates. Times generated at this level are codified as opera-
tion-time-interval constraints, which influence search at
the next level.

Level 3 solves the original scheduling problem. Beam
search is performed using a set of search operators. The
search space to be explored is composed of states repre-
senting partial schedules. Poor alternatives are pruned,
based on local constraints and those generated at Level 2.
Level 3 selects a specific routing for the job, and assigns
reservation time intervals to resources required to pro-
duce that job. Level 3 outputs reservation time intervals
for each resource required for operations in the chosen
schedule.

Level 4 establishes actual reservations for resources
required by selected operations that minimize the job’s
work-in-process time. This approach works well when the
factory provides adequate capacity. But in situations
where contention for resources is high, system perform-
ance is no better than that of human schedulers.

Fact — AI enhances search through the use of
opportunism. When resources are highly contended for,
experience shows that optimizing resource allocation by
scheduling operations incident with the resource pro-
duces better results than does scheduling jobs one at a
time. Opportunistic search,” as employed in schedul-
ing,'""!"" extends hierarchical search by first analyzing
capacity requirements for all jobs (to identify whether a
high degree of resource contention exists). If contention
does exist for a resource, a resource-centered scheduler is
chosen to schedule operations incident with the resource.
The job-centered scheduler schedules jobs out from the
resource. Opportunism arises from the system’s ability to
(1) dynamically determine (at any point during schedule

IEEE EXPERT

Figure 2. An activity semontic network.

construgtiony primary snd secondary bowlenccks, and
{21 schedulestheny wathey thﬁafn.pursm ng 2 striettyl job-
centered nethodology

BExpertments with s approach show that i outpers
foroes: hierarchivsd sexach T addition, it cane sobve wpi-
cutly complex fac mr}j--»sc}}eaaimg probloms etfickentiy.

Fach == Knowledge vepreseytation Is-n core Al
eoucept. Al's problem-solving powstdotives fione i3
abitity performssachand from the ricthness of pattems
that it canreason withandabout: Patrers ropresentation is
3wy rescarch fopus known as knowledye representa:
Fon: Know ’(ifff ?eprese:s{\moa rescareh foguses on
developiag entdogies and sespuntivs tiat

< Spantheset of Scence;xts that are reqguired to solve
a probleny

+ Represepteoneepts preuseiy ami unambiguously
at afl granularity levels;

« Proevitle-a single representution um!ersmad and
used by more-than one application {other; mere

efficient representations may be construcied from this
repr%wtaiwn a3 required hy an application); and

» Can he easily understood hv zhe peugie who
constract theny

Consider the: following factory sctivity description:
The nulling operation precesdes the dritling operation and
1% povepnsed {s‘f swa sieps, setup and run. Setup iakes oue
hour. Bumtime is 10 minstes. Tworeeourees arg required,
@ m~;>ound wrench and aa operawr, The wrench Is
required onty Quring setop. Theopeoaiion is. peﬁmmcﬁ i
Cost conter 44,

Figare 2 shows bow an Al knowledge representation
represgots the contents of the preceding parsgraph. It is

relutional in form, ang divides knowledge into two types
rrrrr activity and state. A state describes 3 snapshet of the
world before an aeiiviny is performed. For exanple Yeost
center 4% possesses @ wrench” is @ state description, It
nntst be brue for mifling activity o ocour. Causatrelations
fiak states aadaotivities: & st desoribes what mast be
wue v the worldso coable an avtivity to ogovr. 1o sddition,

FEBRUARY 395G

1

activities can be defined at multiple abstraction levels.
Milling is refined into two subactivities, machine setup
and running. Lastly, we must represent time. Setup, in
time, occurs before the milling run. Time is relative, not
absolute. When describing the factory floor, it is atypical
to use absolute time periods; instead, activities are de-
scribed as preceding each other. Once the time of one
activity is determined, the time of all activities related to
it can be determined.

Fact — Al knowledge representation extends quan-
titative models by abstraction and differentiation.
Knowledge representations are qualitative abstractions of
underlying quantitative models; they answer questions
that an underlying quantita-

An abstraction is a partial model of an underlying and
more complete model. In fact, we can construct a contin-
uum of partial models. As demonstrated, each partial
model enables us to answer a different set of questions
more or less efficiently.

Al representations also enable us to differentiate con-
cepts contained in a quantitative representation. For ex-
ample, many types of temporal relations can be defined
between activities in addition to during:

* Before specifies that one activity ends before
another begins; and

* Overlap specifies that one activity ends after an-
other begins, but that it ends before the other does.

tive model may not. Let’s
assume that a quantitative
model of time has, for each
activity to be performed, a
specified start and end time.
With this model, the follow-
ing question could be an-
swered: Find the start and
end time of Activity 2 that
has the longest duration,
given start and end times of

Experts solve problems
by searching
a problem space.

Allen identifies 13 types of
temporal relation.'?
Differentiating among
concepts contained within
(but not easily identified
in) a quantitative model is a
requirement when we are
constructing knowledge-
based search; the more pre-
cise the representation is,
the more specific is the

Activities 1 and 3 — and
knowing that Activity 1 occurs during Activity 2, which
occurs during Activity 3.

This question can be stated as follows:

OBJECTIVE FUNCTION: MAX et, - st
CONSTRAINTS:

st <et, st, >= st, st, >= st,

st, <et, st, <=et, st, <=et,

st, <et, et <=et, et, <=et,
WHERE

st,, et,, st,, et, are known
ALGORITHM: Simplex

We can view Allen’s relational model of time as an
abstraction of a quantitative model.”? In the relational
model, the temporal relation during denotes that one
activity is performed during the time that another activity
is performed. This relationship can be asserted without
knowing the actual times of each activity. If we did not
know any of the start times or end times for each activity
— but knew only that Activity 1 occurs during Activity 2,
which occurs during Activity 3 — we could still answer
the question: Does Activity 1 occur during Activity 3
(stated as follows)? —

GIVEN: A, A, A, are activities, and
d d
A, > A, > A,
where d is the during relation and is transitive,
ALGORITHM: Hypothesis Introduction

definition of situations
for which actions can be defined.

Expert system misconceptions

Now, let’s examine some common myths and
legends surrounding expert systems, their building,
and their maintenance.

Myth — Expert systems differ from Al-based
systems. What is an expert system? The term has never
really been defined.

Is itdetermined by a technology such as rules? Clearly,
we would not consider a simple, rule-implemented
accounting program as an expert system. If it were one,
then any program written in a rule-based language would
be an expert system.

Is it a level of performance — that is, are systems that
operate at an expert level expert systems? If so, then a
linear programming algorithm would be an expert
system, since it can find an optimal solution to many
linear constraint systems.

Does it refer to a quantity of knowledge? If it did,
we could view any program accessing a large database
as an expert system.

I define an expert system to be a computer program
that emulates the search behavior of human experts in
solving a problem. The important point is that experts
solve problems by searching a problem space. What

IEEE EXPERT

-

e

FEBRUARY 1990

distinguishes expert search behavior from naive search
behavior is the rich set of operators from which experts
choose when solving a problem. Operators are rich in the
sense that their patterns or conditions describe specific
situations to which the operator applies.

These conditions represent an expert’s years of expe-
rience, which create the ability to distinguish one problem
from another and to reach corresponding solutions. The
most commonly used programming methodology is rule-
based, in which rules are used to implement an expert’s
pattern-directed search behavior.

Myth — If we have an expert, then we can create
an expert system. This is the most common mistake
made in selecting expert

equally expert). Second, there may be gaps in what the
expert knows or has communicated.

These errors can be reduced (but not eliminated) if we
use multiple experts to build a knowledge base. If all
possible inputs and outputs can be enumerated, and if the
system is tested across these inputs, then we can validate
the system’s performance. For most problems, however,
such enumeration cannot be done.

Knowledge-based systems provide another approach
for increasing the validity of decisions. By combining
strong methods (expert decision rules) and weak methods
(more general search techniques), weak methods can fill
in where strong methods fail. Such systems can move
smoothly between available expertise and other problem-
solving methods. But to do

system applications. Cri-
teria for selecting expert
system applications include
the following:

* Inputs must be well
defined. For many man-
agement problems, this
condition may not be
satisfied.

* Outputs must be well

If an algorithm
optimizes the solution,
use it.

this successfully requires
great skill on the part of
Al engineers designing
the system.

One approach towards
minimizing the occurrence
of mistakes is to learn from
those mistakes (usually
called machine learning).
Interest in machine learning
has occurred in cycles over

defined. Again, for some
innovative design problems, this condition may not
be satisfied.

* For obvious reasons, an expert is required.

Once these conditions have been satisfied, we must
determine the nature of expertise; if it regurgitates prior
experience, knowledge can probably be extracted and put
into an expert system. But if expertise requires the
synthesis of new solutions, that expertise probably
cannot be captured.

Myth — All expert systems are expert systems.
Contrary to popular belief, there are few “pure” expert
systems. Once an expert’s knowledge has been extracted,
Al engineers usually identify problem aspects that can be
better solved through other problem-solving techniques.
As a result, the final system tends to combine expertise
(search guided by the expert’s knowledge) with other
forms of search (unrelated to how the expert solves the
problem, but using a large amount of domain knowledge).
Systems that use domain knowledge to guide search,
in ways that differ from an expert’s, are known as
knowledge-based systems.

Myth — Expert systems do not make mistakes. If an
expert system emulates a human expert’s problem-solv-
ing methods, it will tend to make the same mistakes the
expert makes. Such mistakes may arise in two ways: First,
the expert’s decisions may be wrong (not all experts are

the last 30 years. Lately,
there has been a resurgence of interest.’* Many results are
just beginning to take shape, but have had little impact on
the commercial development of expert or knowledge-
based systems.

Some expert system tools contain algorithms that
infer the conditions of rules from data. Such systems lack
any provision for learning from their mistakes, and their
algorithms do little more than infer Boolean functions
from truth tables.

Myth — AI replaces conventional approaches.
Some algorithms generate optimal solutions for some
problem classes; for example, systems of linear con-
straints that can be solved using linear programming. If an
algorithm exists that optimizes the solution, use it. On the
other hand, no optimizing algorithms exist for many
problems (for example, large integer problems). For such
problems, Al provides a “satisficing” approach; it does
not guarantee an optimal solution. Consequently, Al tech-
niques are useful whenever an optimizing algorithm does
not exist.

Legend — Al systems are easy to build. The ease of
building an application depends on the amount of work
required to map the problem into software, which can vary
from easy to difficult. Let’s examine four cases:

Case 1. The problem to be solved involves automobile
engine troubleshooting, where operating problems are

System
feasibilit

Validation

Software plans and
requirement

Validation

Product design

Verification

Detailed design

Verification

Code

Unit test

Integration

Product verification

Implementation

System test

Operations and
maintenanc

Revaiidation

Figure 3. A waterfall model of the software process (from Boehm').

successively traced back along causal chains of failure.
Testbench — an application shell produced by Carnegie
Group and Texas Instruments — is well suited to this
problem and does not require a knowledge engineer:
experts can put their knowledge directly into the system.
Consequently, mapping expertise onto the knowledge
base is straightforward, since knowledge is represented in
the same manner that experts conceptualize it.

Case 2. The problem to be solved exemplifies classifi-
catory problem solving — that is, selecting a product from
an existing product line, where problem characteristics
are heuristically mapped directly onto solutions.'?

MYCIN, for medical diagnosis, was the first expert sys-
tem of this type.'® TI's Personal Consultant embodies
MYCIN's problem-solving method and provides an in-
terface to support mapping. A knowledge engineer is re-
quired to map expert knowledge onto the representation.

Case 3. The problem to be solved involves configura-
tion — that is, configuring a product from more basic
parts. R1/XCON, a computer configuration system, was
the first expert system of this type."” No software product
supports this problem-solving method directly, but a rule-
based programming language (OPSS, for example) pro-
vides an environment for building this type of application.

14

IEEE EXPERT

Figure 4. A spiral model of the software process (from Boehm').

Consequently, an Al engineer must design a knowledge
representation and devise steps in the problem-solving
methodology extracted from an expert (other techniques
available for configuration focus on assemblies and
constraint satisfaction).

Case 4. The problem to be solved involves factory
scheduling, in which the operations of multiple jobs are
scheduled on available machines. The solution to this
problem depends upon factory characteristics. No soft-
ware product solves this problem. Consequently, an Al
engineer must design the representation and problem-
solving methodology.

The bottom line is that — to the extent that software
represents directly how users think about the problem —
mapping will be easy. But if users are required to design
the representation or problem-solving methodology, the
system will become more complex to build.

Legend — Rapid prototyping leads more quickly
to final solutions. Rapid prototyping has frequently
been touted as an approach for constructing solutions
more quickly than conventional approaches can. And this
is partially true. If the problem fits an application shell
(for example, Testbench), knowledge gathered from
experts can be put into the system quickly and then tested.

FEBRUARY 1990

e

Consequently, the knowledge base can be built incre-
mentally, with verification and validation occurring
throughout the process.

When the problem does not map directly onto an
existing shell, the purpose of rapid prototyping changes.
Conventional approaches have failed to solve many prob-
lems that Al engineers tackle. As defined by Figure 3’s
waterfall model,” a conventional approach to software
development sequences through stages in which require-
ments and specifications are developed before any cod-
ing; a long time passes before anyone sees a working
program. Such problems are decision tasks that are not
well defined — system end users will not know what they
need until they have used the system for a while, and no
amount of prior analysis will result in a correct require-
ments document. Rapid prototyping seeks to determine
whether the approach being taken to solve a problem
meets user needs. “Meets user needs’ has two senses here:
First, does the interface provide all needed functions in a
useful form? Second, do the means by which the problem
is solved match user expectations?

Rapid prototyping elicits the requirements and specifi-
cations of software for ill-defined problems; its impor-
tance has not been lost on software engineering in general.
This approach is embodied in a recent software develop-
ment model called the spiral model,"® in which the re-
quirement, specification, coding, and validation cycles
repeat until the software converges on the right solution
(see Figure 4).

Myth — Small prototypes can be scaled up into full-
scale solutions. Using today’s powerful knowledge engi-
neering tools, Al engineers can construct prototypes
quickly with “pretty” interfaces. This not only gives
managers a false sense that the problem has been solved,
it also misleads Al engineers. The heart of the problem is
whether the problem-solving method used in the proto-
type — which solves only a small portion of the problem
— will scale up to solve the entire problem. Consider the
classificatory problem-solving methodology mentioned
earlier; the method has been employed in currently used
systems, and limitations have become clear. The method
seems to apply when the number of rules is relatively
small — 50 to 300, as in PUFF (a pulmonary diagnosis
system)' and Cooker (a soup-making process control
system used at Campbell Soups) — or when diagnostic
knowledge for each problem/malfunction can be decom-
posed into independent subsets, as in Genaid.?

When knowledge is considerable and highly inter-
dependent, classificatory problem-solving methods do
not scale up. For example, the family of systems
developed for diagnosis in internal medicine at the
University of Pittsburgh (Internist, Caduceus, and
MedQuick) use a different problem-solving methodology
to handle complexities.*

We find another well-documented example in speech-

understanding systems, which must recognize and under-
stand complete sentences without artificial pauses be-
tween words. The Hearsay-l system architecture, per-
forming speech understanding for a small vocabulary
(100 words), differs greatly from the opportunistic black-
board architecture developed in Hearsay-1I to perform
speech understanding for vocabularies one order of
magnitude larger.’

Legend — AI systems can be easily verified and
validated. Since we cannot guarantee that an expert or
knowledge-based system will be error free, we still need
verification and validation techniques. Verification con-
cerns whether the specification has been implemented
correctly (that is, building the system “right™). Validation
concerns whether system performance satisfies require-
ments (that is, building the “right” system).

If the expert system is implemented as rules, we can
view the expert’s inference network (elicited by the
knowledge engineer) as a specification for the knowledge
base — and we can view the expert’s problem-solving
behavior as a specification for the system’s problem-
solving behavior. Rule-based expert systems usually
provide an explanation facility that is little more than a
rule tracer, making it easier to verify by simulation both
the knowledge map implementation and the problem
solver’s behavior — much simpler than trying to verify a
conventional program written in Fortran, for example.

Verifying a knowledge-based system is akin to verify-
ing a conventionally programmed system. To the extent
that rules exist, they can be traced during simulation.
Recent work in recording justifications with decisions
also provides a means for verifying decision processes.*!
Otherwise, conventional techniques are required.

In either case, validation occurs as we test the system
over many problems and compare output to either the
expert’s decisions or to well-known solutions.

Legend — Al systems are easy to maintain. Using
rules as a programming language provides programmers
with a high degree of program decomposability; that is,
rules are separate knowledge chunks that uniquely define
the context of their applicability. To the extent that we use
them in this manner, we can add or remove rules inde-
pendently of other rules in the system, thereby simplify-
ing maintenance.

Building rule-based systems differs from this ideal.??
Various problem-solving methods (including iteration)
require that rules implementing these methods have
knowledge of other rules, which breaks the independence
assumption and makes the rule base harder to maintain.
The much-heralded XCON system'!” has reached its
maintainability limit (about 10,000 rules). The complex-
ity of rule interactions at this level exceeds maintainer
abilities. To reduce the complexity of interactions,
attempts have been made to modularize the rule base.

IEEE EXPERT

OoPS

Work centers
. .

Window

Graphics systom

Natural
language

Command
system

CRL-OPS CRL-Prolog

Object-oriented
programming

Agenda
mechanism

Carnegie representation language

Common Lisp

However, an “up” side exists. We should view an Al
programming language as a high-level programming
language. In a rule-based programming language —
if one rule is equivalent to 50 lines of Fortran code
(a guess) — then maintaining a 1000-rule system
should be much easier than maintaining a 50,000-line
Fortran program.

Myth — Managing Al systems differs from conven-
tional project management. Due in part to academic
ignorance of requirements for building production-level
systems, an incorrect belief prevails that managing Al
system engineering should differ from managing conven-
tional system engineering.

Rapid prototyping is an important means for acquiring
problem requirements and specifications, and for eliciting
and verifying knowledge maps. This is not meant to
circumvent the need for creating requirements, specifica-
tion, test code, and the like. The success of rapid proto-
typing indicates that the waterfall model of software
development is inappropriate for many software develop-
ment projects. Instead, the spiral model is the most suit-
able means for managing the construction of conventional
and Al-based systems alike.

Myth — All AI tools are the same. There are many
Al-software packages available in the marketplace. They
fall into at least four categories:

(1) Programming languages — An Al programming
language provides a basic knowledge representation and
problem-solving methodology — basic in the sense that it
can be applied to any problem (if not equally well). Both
OPS522?* and Prolog®*® fit into this category.

OPS5 provides a pattern-directed, forward chaining
problem-solving strategy in which we represent
knowledge in the form of lists and rules. Prolog provides
a goal-directed, backward chaining problem-solving
strategy in which axioms and assertions are represented
in the form of lists.

Programming languages require Al engineers to
design and construct a specific representation —
plus a problem-solving strategy on top of it — to solve
a problem.

(2) Programming environments — An Al program-
ming environment contains one or more programming
languages, interface modules, and interactive program-
ming environments for the construction, debugging, and
maintenance of programs.

FEBRUARY 1990

Figure 5 depicts the software layers existing in Carne-
gie Group’s Knowledge Craft: The bottom layer defines
high-level data structures. It is a frame-based language
that supports various inference techniques, including the
inheritance of properties and values across taxonomic and
other relationships. The second layer provides program-
ming languages, including object programming, OPSS,
and Prolog. The third layer provides an interface set in-
cluding windows, two-dimensional color graphics,
menus, and natural language. Finally, the fourth layer
provides a set of interactive programming environments
for program creation, debugging, and maintenance.

A knowledge engineering tool is designed to be used
by Al engineers who will define and construct the knowl-
edge representation and the problem-solving methodol-
ogy within and on top of it.

(3) Problem-solving shells — A problem-solving
shell is designed to solve a
specific class of problems.

practitioners tend to be computer scientists, they have
been good at constructing programming languages and
environments that incorporate computing theories and
techniques. In some cases, programming tools are direct
embodiments of theory, as in a classificatory problem-
solving tool (the analogy in operations research is using a
linear-programming tool). In most cases, however, tools
like Knowledge Craft do not directly implement a theory;
instead, they make Al-program construction easier than
using a more conventional language. In general, learning
an Al knowledge engineering tool does not teach us
much about Al theory.

Fact — AT knowledge engineering tools increase
productivity, thereby reducing the cost of creating and
maintaining software. Shells provide a single represen-
tation of knowledge and problem-solving methodology

for a specific problem

For example, Texas Instru-
ments’ Personal Consul-
tant is applied in classifica-
tory problem solving,
which uses heuristics to
map problem characteris-
tics (signs and symptoms)
onto an enumerated set of
possible solutions or
explanations (diseases).'”

class; knowledge acquisi-
tion, representation, and
utilization are precise and
efficient in shells because
of the direct mapping be-
tween the problem and
system.

Al programming envi-
ronments increase pro-
ductivity in at least four
ways:

Personal Consultant’s

knowledge representation and inference strategy are engi-
neered solely for that purpose. We can use classificatory
problem solving in many different domains.

A problem-solving shell is meant to be used by
knowledge engineers trained in the use of that shell.
Their job is to extract expert knowledge and map it
onto the shell’s knowledge representation, which may
require some minor modification of the shell’s problem-
solving strategy.

(4) Application shells — An application shell is a
narrower version of a problem-solving shell, and is spe-
cialized for a given domain so that knowledge representa-
tion is specific to that domain — thereby making knowl-
edge acquisition simpler — and relieves users of having
to worry about how the problem solver uses the represen-
tation. For example, Testbench troubleshoots electrical
and mechanical machines and devices.

An application shell is provided with interfaces that
eliminate the need for knowledge engineers, which
enables experts to map their knowledge directly into
the shell.

Myth — Learning an AI knowledge engineering
tool is all we need to know about AL Al is composed of
many subfields (the expert system subfield is but one).
Each contains many theories and techniques. Because Al

(1) Higher level data structures reduce the form and
amount of data to be represented;

(2) Higher level languages decrease the amount of
code that must be generated to accomplish a task;

(3) Interface modules reduce the number of modules
that must be created, by providing many of them as
“standard equipment”; and

(4) Programming environments reduce the time re-
quired to build programs, by providing a completely
interactive environment for creating and debugging pro-
grams. Some of these interfaces enable users to follow
program execution, and to display the knowledge base’s
structure graphically.

Myth — AI knowledge engineering tools are good
for only AI applications. The belief exists that we can
use Al tools only to reason with symbolic, qualitative
information; consequently, quantitative algorithmic proc-
essing is not supported. In reality, Al software supports
qualitative and quantitative reasoning equally well. The
bottom line is that we can use Al programming environ-
ments to build any application.

Such environments provide AI problem-solving
methodologies integrated with more conventional
programming techniques found in the underlying
implementation language.

18

IEEE EXPERT

-

How Al systems are being used

I am frequently asked whether any Al-based systems
are really “in use.” Currently, about 3000 such systems
are estimated to be in use daily around the world. Feigen-
baum, McCorduck, and Nii document numerous systems
in production use.*® For example,

» Ace — A telephone cable maintenance advisory
system developed by Bell Labs for Southern Bell — has
been in use for over two years;”

* XCON — A computer configuration system devel-
oped at Carnegie Mellon University for DEC — has been
inuse forover five years, and has configured over 100,000
orders;"!” and

» Dispatcher — A printed-wire, board assembly,
work-dispatching system developed by Carnegie Group
for DEC — increased throughput by 100 percent within
24 hours of its installation, and has saved DEC over $12
million per year.?

Other successful applications include APES (elec-
tronic design), CDS (configuration-dependent part
sourcing), National Dispatcher (transportation sourcing
and routing), XFL (floor layout assistance), and XSEL
(sales assistance) — all five from Digital Equipment Cor-
poration; a system for diagnosing robots and a system for
wave-solder-machine diagnosis — both from Ford Motor
Company; Compass (network management, from GTE);
Cooker (food-processing control, from Campbell Soups);
ESP (facility analysis, from Northrop): Ocean (computer
configuration, from NCR): Opgen (PWB process plan-
ning, from Hazeltine); Trinity Mills Scheduler (FMS
scheduling, from Texas Instruments); and VT (elevator
configuration, from Westinghouse Electric).

The second wave of technology transfer embeds Al
technology in applications that do not require users to
learn that technology (nor even to be aware that Al is
embedded). The following products use Al techniques
partially or totally: CDS (FMS cell control. Hitachi);
Genaid (steam turbine and generator diagnosis, Westing-
house Electric); Intellect (natural language database inter-
facing, AI Corporation); Mudman (drilling mud analysis,
N.L. Baroid); Testbench (described earlier); and
Telestream (telemarketing assistance, Transcom).

I have addressed questions and misconceptions regard-
ing Al and expert systems. But the bottom line is that hoth
are here ro stay. They are not simply laboratory curiosi-
ties. Nor are they panaceas for many problems we face
today. Instead, they are viable technologies that provide a
fresh approach to solving many decision problems. Only
by removing myths, laying open legends, and recognizing
facts can we develop the technical and managerial skills
required to apply Al successfully.

Acknowledgments

My research has been supported, in part, by the De-
fense Advanced Research Projects Agency under contract
#F30602-88-C-0001. This article was inspired by ques-
tions posed to me over many years. and by a paper by
Liebowitz from which one of the myths was drawn.”

1. J. Bachant and J. McDermott, “R1 Revisited: Four Years in
the Trenches,” Al Magazine, Vol. 5, No. 3, 1984.

2. R.L. Osborne, “Online, Artificial Intelligence-Based Tur-
bine Generator Diagnostics,” Al Magazine, Vol. 7, No. 4,
1986, pp. 97-103.

3. R.S. Freedman and R.P. Frail, “Opgen: The Evolution of an
Expert System for Process Planning,” Al Magazine, Vol. 7,
No. 5, 1986, pp. 53-57.

4. A.Newell and H.A. Simon, “Computer Sciences as Empiri-
cal Inquiry: Symbols and Search,” Comm. ACM, Vol. 19,
No. 3, 1976, pp. 113-126.

5. E. Feigenbaum, “The Art of Artificial Intelligence,” Proc.
1JCAI, Morgan Kaufmann, Palo Alto, Calif., 1977.

6. E.D. Sacerdoti, “Planning in a Hierarchy of Abstraction
Spaces,” Artificial Intelligence, Vol. 5, No. 2, 1974,
pp. 115-135.

FEBRUARY 1990

19

20.

2

—_

22.

. M. Stefik, “Planning with Constraints (MOLGEN: Part 1).”

Artificial Intelligence, Vol. 16, No. 2, 1981, pp. 111-140.

. M.S. Fox, Constraint-Directed Search: A Case Study of

Job-Shop Scheduling, Morgan Kaufmann, Palo Alto,
Calif., 1987.

. L.D. Erman et al., “The Hearsay-II Speech Understanding

System: Integrating Knowledge to Resolve Uncertainty,”
ACM Computing Surveys, Vol. 12, No. 2, 1980.
pp. 213-253.

. S. Smith, M.S. Fox, and P.S. Ow, *Constructing and Main-

taining Detailed Production Plans: Investigations into the
Development of Knowledge-Based Factory Scheduling
Systems,” Al Magazine, Vol. 7, No. 4, 1986, pp. 45-61.

. S.F. Smith and P.S. Ow, “The Use of Multiple Problem

Decompositions in Time Constrained Planning Tasks.”
in Proc. IJCAI, Morgan Kaufmann, Palo Alto, Calif.,
1985, pp. 1013-1015.

. J.F. Allen, “Towards a General Theory of Action and

Time,” Artificial Intelligence, Vol. 23, No. 2, 1984,
pp- 123-154.

. R.Michalski, J. Carbonell, and T. Mitchell, Machine Learn-

ing: An Artificial Intelligence Approach, Tioga, Palo Alto,
Calif., 1983.

. G.S. Kahn, “From Application Shell to Knowledge Acqui-

sition System,” in Proc. IJCAl, Morgan Kaufmann, Palo
Alto, Calif., 1987, pp. 355-359.

. W.J. Clancey, “Classification Problem Solving,” in Proc.

Nat’l AAAI Conf., Morgan Kaufmann, Palo Alto, Calif.,
1984, pp. 49-55.

. E.H. Shortliffe, Computer-Based Medical Consultations:

MYCIN, Elsevier, New York, N.Y., 1976.

. J. McDermott, “R1: A Rule-Based Configurer of Computer

Systems,” Artificial Intelligence, Vol. 19, No. 1, 1982,
pp. 39-88.

. B.W. Boehm, “A Spiral Model of Software Development

and Enhancement,” Computer, May 1988, pp. 61-72.

. J. Kunz et al., “A Physiological Rule-Based System for

Interpreting Pulmonary Function Test Results,” Tech.
Report HPP-78-19, Computer Science Dept., Stanford
University, Stanford, Calif., 1978.

H.E. Pople, Jr., “The Formation of Composite Hypotheses
in Diagnostic Problem Solving: An Exercise in Synthetic
Reasoning,” in Proc. [JCAI, Morgan Kaufmann, Palo Alto,
Calif., 1975.

. J. Doyle, “A Truth Maintenance System,” Artificial Intel-

ligence, Apr. 1979, pp. 231-272.

L. Brownston etal., Programming Expert Systems in OPSS5,
Addison-Wesley, Reading, Mass., 1985.

23. L. Forgy, “OPS5 User’s Manual,” tech. report, Computer
Science Dept., Carnegie Mellon University, Pittsburgh,
Pa., 1981.

24. R. Kowalski, “Predicate Logic as a Programming
Language,” in Proc. IFIP. Elsevier North-Holland,
New York, N.Y., 1974,

25. W. Clocksin and C. Mellish. Programming in Prolog.

Springer-Verlag, New York, N.Y., 1981.

26. E.A. Feigenbaum, P. McCorduck, and H.P. Nii, The Rise of

the Expert Company, Times Books, New York, N.Y., 1988.
27. A. Stolfo and G.T. Vesonder. “Ace: An Expert System
Supporting Analysis and Management Decision Making,”
tech. report, Columbia University, New York, N.Y., 1982.

. M. Acock and R. Zemel, “Dispatcher: Al Software for
Automated Material Handling Systems,” in Proc. SME Al
Manufacturing Conf., Society of Manufacturing Engineers,
Dearborn, Mich., 1986, pp. 116-121.

29.

J. Liebowitz, “Common Fallacies about Expert Systems,”
Computers and Society, Vol. 16, No. 4, 1987, pp. 28-33.

Mark S. Fox rcceived his BSc from the University of
Toronto in 1975, and his PhD from Carnegie Mellon University
in 1983, in computer science. He joined CMU’s Robotics Insti-
tute as a research scientist in 1979, and was appointed director
of CMU’s Intelligent Systems Laboratory in 1980. In 1984, he
cofounded Carnegie Group Inc., a software company specializ-
ing in knowledge-based systems for solving engineering and
manufacturing problems. CMU appointed him associate profes-
sor of computer science and robotics in 1987 and, in 1988,
named him director of the new Center for Integrated Manufac-
turing Decision Systems — one of the largest US centers for
research in intelligent systems to solve engineering and manu-
facturing problems. He pioneered the application of Al to
factory planning and scheduling problems, project manage-
ment, and material design. He designed PDS/Genaid, a steam
turbine generator diagnosis system (which was a recipient of the
IR100) and created SRL (from which Knowledge Craft, the
commercial knowledge engineering tool, was derived). His
research interests include knowledge engineering, constraint-
directed reasoning and applications of Al to engineering and
manufacturing problems. An active member of /EEE Expert’s
Editorial Board for four years, he has published over 50 papers
and is a member of the IEEE Computer Society, AAAI, ACM,
SME, CSCSI, and TIMS.

20

IEEE EXPERT |

