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Abstract

Variation due to viewpoint is one of the key challenges
that stand in the way of a complete solution to the face
recognition problem. It is easy to note that local regions of
the face change differently in appearance as the viewpoint
varies. Recently, patch-based approaches, such as those of
Kanade and Yamada, have taken advantage of this effect re-
sulting in improved viewpoint invariant face recognition. In
this paper we propose a data-driven extension to their ap-
proach, in which we not only model how a face patch varies
in appearance, but also how it deforms spatially as the view-
point varies. We propose a novel alignment strategy which
we refer to as “stack flow” that discovers viewpoint induced
spatial deformities undergone by a face at the patch level.
One can then view the spatial deformation of a patch as
the correspondence of that patch between two viewpoints.
We present improved identification and verification results
to demonstrate the utility of our technique.

1. Introduction

Face recognition is a task that humans perform with great
facility. In spite of some early successes in automatic face
recognition and significant research in the area, this prob-
lem is far from being solved. In fact, variations in parame-
ters like viewpoint and illumination have been shown [10]
to be the major obstacles. In particular, recognizing a face
given a single image per subject is one of the key challenges
for the face recognition community.

Since a human head has non-planar geometry, por-
tions of the face containing significant 3D depth variation
undergo noticeable appearance changes as the viewpoint
varies (e.g. the nose). A way to handle this disparity of
variation amongst parts of the face is to model it as a collec-
tion of subregions/patches. An initial direction along this
line was proposed in the seminal work of Kanade and Ya-
mada [4]. In [4] the authors present a systematic analysis of
the discriminative power of different regions of the face as
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Figure 1. [llustration of how learning patch correspondences leads
to viewpoint invariance. In the above figure, s, represents a sim-
ilarity score between the r-th gallery and probe patch e.g. sum
of square differences (SSD). p(sr|w) is the distribution of the 7-
th SSD given that the gallery and probe have the same identity
(w = C : client) or they have different identity (w = Z : impos-
tor). (a) If we assume a correspondence between gallery and probe
patches [4], client and impostor distributions are overlapping. (b)
If we learn patch correspondences (proposed in this paper), the
distributions become separated leading to better recognition.

a function of viewpoint. For every subregion they derive a
utility score based on pixel differences leading to a proba-
bilistic framework for recognition. A drawback to this ap-
proach, however, is that it assumes perfect correspondence
between the gallery and probe patches. As pointed out in [8]
this assumption can lead to poor performance in the pres-
ence of large viewpoint mismatch.

To circumvent this limitation, Lucey and Chen [8] re-
cently described an approach for modeling the joint distri-



bution of gallery and probe appearances. They extend the
work of [4] by modeling the joint appearance of individ-
ual patches of the gallery image and the whole probe im-
age. A major benefit of this approach is that it does not
assume any alignment between the gallery and probe im-
ages, leading to improved performance over Kanade and
Yamada’s method. This approach, however, does have some
shortcomings. Specifically, the approach models redundant
information by learning a distribution for every possible
patch-whole pair. This is undesirable from two perspec-
tives. First, this makes the training of the joint distribution
models very slow. Second, at run time it is computation-
ally expensive to estimate a likelihood score for each patch-
whole combination.

To avoid these problems, ideally we would like to model
the distribution of the corresponding gallery and probe
patches only. Hitherto, it has been unclear how such corre-
spondences can be learnt. In this paper, we propose to learn
patch-level correspondences through the estimation of the
affine warp displacement between each gallery and probe
patch (see Figure 1). A motivation for employing an affine
warp lies in its natural ability to model planar surfaces un-
dergoing viewpoint change [3].

To fulfill the above goal, we have made the following
novel contributions in this paper:

e We propose a data-driven framework to learn corre-
spondences between patches coming from two dif-
ferent viewpoints of a face. We refer to this ap-
proach as “stack-flow”. Additionally, we demon-
strate that our proposed approach is far more effec-
tive for learning patch-correspondences than tradi-
tional optical-flow methods. (Section 2.3)

e We extend Kanade and Yamada’s work [4] to learn the
discriminative power of the warped patches estimated
through stack-flow. (Section 3.2)

e Finally, we demonstrate the utility of our proposed
techniques by showing improved identification and
verification performance on the FERET face dataset.
(Section 3)

1.1. Related Work

A number of previous studies have presented approaches
that attempt to recognize a non-frontal probe image, given a
single gallery image (usually frontal). In what is commonly
considered one of the key seminal works in the area, Blanz
and Vetter [2] employed an approach that was able to fit a
pre-learned 3D model to an input face and perform recog-
nition using the implied 3D representation of the face. This
approach, although giving good results, has a number of
drawbacks: (i) the requirement for a large amount of offline
depth information, (ii) a need for dense registration, (iii) a
costly model fitting step. A related approach was proposed

K Probe mage, I Gallery Image, Tj

Figure 2. Image-to-image alignment. The goal is to find warp
parameters p, that achieve a correspondence between the probe
patch I, and the gallery patch 7;..

by Liu and Chen [5] in which the authors approximated the
human head with a 3D ellipsoid. This method, like [2], suf-
fers from the computational expense involved in online fit-
ting of the model to a test image. Another direction is to
look for features that are invariant to viewpoint, as proposed
by Prince and Elder [7]. Although promising, this technique
requires manual labeling of a significant number of feature
points, and also involves online model fitting like [2] and
[5]. Moreover, the above discussed approaches are gener-
ative in the sense that they rely on fitting their respective
models to a test image based on minimizing reconstruction
error. Their expressability is thus constrained by the pre-
learned model.

2. Learning Patch Correspondences

In this section we shall investigate how patch-level cor-
respondences can be learnt between gallery and probe im-
ages. The key idea is to allow the patches to deform spa-
tially (see Figure 1(b)) under the influence of a parametric
affine warp. Let the warp function be parameterized by the
vector p = [p1,P2; ., Pm)., Where m = 6 for an affine
warp. We can express the warp function as x’ = W (x, p),
where x and x’ represent the input and warped coordinates
respectively. Using this framework, the patch correspon-
dence problem can now be formulated as the problem of
finding the N warp displacements between the N gallery
and probe face patches,

®=[p1ps - pn] (1)

Let us begin by exploring how we can learn the above warp
displacements .

2.1. Image-to-Image Alignment

An obvious method to learn @ is to employ conventional
methods in computer vision for image-to-image alignment.
The Lucas-Kanade algorithm [6] is one of the most effective
techniques for image alignment. In this section we explain
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Figure 3. Methods based on image-to-image alignment. (a) Online
flow : Learns IV patch warps between the probe and gallery images
in an online fashion. (b) Offline average flow: Learns N patch
warps ®avg between average profile and frontal faces.

how the Lucas-Kanade algorithm can be used to find warps
that achieve patch-by-patch alignment between two images.

Consider two images captured at two different view-
points as shown in Figure 2. We divide the images into
subregions/patches, and then seek to find a warp that aligns
the r-th region in the two images. Let I and 7T represent
the probe and gallery images respectively. Also, let the sub-
script r be an index to the r-th patch in each image. Our
main goal now is to find the warp parameters that would
make the r-th patch in both images as similar as possible.
In other words we seek a p that minimizes the following
error term:

E, =Y (IL(W(x,p)) - T,(x))* @)

X

Minimizing E, is a non-linear optimization task. The
Lucas-Kanade algorithm is able to find an effective solution
to Equation 2 by iteratively linearizing E, and refining the
initial guess p. This linear approximation can be seen in,

ow
E, =Y (I, (W(x,p)) + VIT%AP X)) 3)

where we are now attempting to estimate Ap (rather than
p). The parameter p is then updated ( p < p + Ap ) until
convergence.

In Equation 3, VI, = (%I;, %Iy) is the gradient of I,

computed at W (x, p), and %—Vg is the Jacobian of the warp
given by:
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Figure 4. [llustration of stack-flow. Learning N patch warps ®Pstk
(consistent across the entire stack) that align the patches of the two
stacks as a whole.

Equation 3 is given by:
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where H;,,4) is the pseudo Hessian matrix for image-to-
image alignment given by,
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We can now update the warp parameters (p < p + Ap)
and iterate till the parameters p converge. This procedure is
applied independently for every patch.

2.2. Employing Image-to-Image Alignment

To learn patch correspondences using image-to-image
alignment we employed two methods as shown in Figure
3. In the first strategy (Figure 3(a)), we attempt to learn N
patch warps between an input probe image and the proposed
gallery image. A match score can then be computed based
on the degree of correspondence achieved by the learned
warps. Since no training is required and warps are learnt
in an online fashion, this strategy can be termed as “online
flow”.

In the second method, which we refer to as “offline av-
erage flow” (Figure 3(b)), we first compute an average face
image for the frontal and profile viewpoints respectively
from an ensemble of offline face images. We then learn
N patch warps between the two average faces. Learning of-
fline warps has the advantage of relieving the online stage of
the burden of warp fitting. The employment of multiple ex-
amples is advantageous as it allows us to “average” across
noisy artifacts that may be present in a single face example.



2.3. Stack-to-Stack Alignment

A disadvantage, however, of taking the average in the
“offline average flow” method is that we may lose person
specific texture variation in the averaging process. To fully
span the extent of variation contained in the offline data, we
propose to learn a warp that aligns two stacks of images as a
whole. For this we learn a warp that is consistent across the
entire stack and aligns a patch in the stack of profile faces to
a patch in the stack of frontal faces. We call this technique
“stack-flow”. The idea is illustrated in Figure 4.

In Figure 4, Stack-I consists of images of subjects in the
profile viewpoint. Stack-II contains images of the same sub-
jects but in a frontal viewpoint. The goal of stack-flow is to
find a warp which, when applied to the r-th patch of Stack-I
images, achieves the best alignment for the r-th patch across
the two stacks. We can express the above stated goal as the
minimization of the following error:

Ey(stry = Z Z(Ij,T(W(Xa p) - T, (x)* (7

where I . and T} ,. represent the r-th patch in the j-th image
of Stack-I and Stack-II respectively. The error in Equation
7 can also be minimized in an iterative fashion starting with
an initial estimate of parameters p. Following a similar pro-
cedure as in Section 2.1 we can find the following solution
for stack-flow,

=H ) > Y AT (T(x) = [.(W(x,p)))
j %
()

where A, = (VIM%), and the pseudo Hessian matrix
for stack-flow is given by:

AD(sth)

ow oW
H ) = E E I — T (v, ——
(stk) — < (V Jsr op ) (v Jir ap ) )

The warp parameters for every patch are found indepen-
dently through iteratively applying Equation 8 until conver-
gence where,

T
Pt = [Pi(sth) P2(sth) PN (sth)] (10)

are the final warps for each patch.

If we compare Equations 6 and 9 for H ;,,) and H )
respectively, we can see that the Hessian matrix for the
stack-flow method incorporates steepest descent images for
the entire stack unlike the Hessian matrix for image-to-
image alignment which includes only one steepest descent
image.

Moreover, the image-to-image alignment solution
(Equation 5), when used to align average images, will fail
to accommodate texture variation, whereas the stack-flow
solution (Equation 8) will handle it. This problem is il-
lustrated in Figure 5. In Figure 5 we face the problem of
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Figure 5. Illustration of how the average warp fails to handle tex-
ture variation. In this extreme example, the images in Stack I are
clearly a displaced version of the images in Stack II. However, by
taking the average of these two stacks this difference is no longer
clear. Our proposed “stack-flow” technique can obtain the correct
alignment for this extreme case.

aligning images in Stack-I to images in Stack-II. Clearly,
the images in Stack-I are displaced versions of the images
in Stack II. The average images for both the stacks are ex-
actly the same, so that any image-to-image algorithm would
deem them to be in perfect alignment. The stack-flow tech-
nique, however, is able to handle this extreme situation as
it attempts to align the two stacks rather than two images.
The stack-flow procedure thus has the following desirable
attributes:

e It achieves immunity to noise by using the stack of im-
ages as a constraint and thus avoids the averaging pro-
cess.

e By virtue of avoiding averaging, it is also better at han-
dling texture variation which an average warp fails to
do.

3. Experiments

We conducted our experiments on the FERET database.
FERET consists of images from approximately 200
subjects. We randomly divided the database into two
groups based on subjects (Group-I and Group-II).
For each subject, images have been captured at view-
points  bi, bh,bg,bf, ba,be,bd,bc,bb  which  roughly
correspond to viewpoint angles of —60°, —40°,
—25°, —15°, 0°, 15°, 25°,40°, 60°. The faces were
first coarsely registered so that the eye coordinates align,
the line joining the eyes is horizontal and the distance
between the eyes is nominal. The face area was cropped to



Figure 6. Example of warp learning using stack-flow. (a) A non-
frontal face with the learned warps superimposed. Tracking along
the nose is especially interesting, as the learned warps find good
patch correspondence in spite of 3D depth variation around the
nose (b) A frontal viewpoint of the same subject. (c) A “rectified”
version of (a) by applying the learned warps on the non-frontal
face.

give a 100x130 image. The face was then divided into 27
non-overlapping patches each of size 16x16.

To learn patch correspondences, we parameterized the
warp (between patches at two viewpoints) as an affine warp.
To start the iterative process of warp learning (Sections 2.1,
2.3), warp parameters were initialized to a zero vector for
all the patches. Example output of warp learning using
stack-flow is shown in Figure 6. It is encouraging to ob-
serve how our algorithm learns warps for areas with signif-
icant 3D depth variation (e.g. the nose), and achieves good
patch-level correspondences. It is also interesting to note
how patches on the near side of the face have grown in size,
while the patches on the far side have reduced in size.

3.1. Evaluating Warp Strategies

To evaluate the warping strategies described in Section
2, we ran recognition experiments using a nearest neighbor
classifier based on the sum of squared differences (SSD) be-
tween the warped probe and gallery patches. We first learnt
warps using images from Group-I and conducted recogni-
tion experiments on Group-II. To cross-validate, warps were
learnt on Group-II and experiments conducted on Group-I.
The results are shown in Figure 7. A similar trend was ob-
served in the cross-validated results. For both the plots in
Figure 7, stack-flow gives better performance than the other
warping strategies. A few observations stemming from Fig-
ure 7 are as follows.

The online flow has the lowest performance, and is
hardly different from raw-SSD’s (SSD’s computed without
warping). The main reason behind the low performance of
online flow is its susceptibility to noise. Since this tech-
nique attempts to find warps between a pair of images at a
time, it has more tendency to respond to noise. The average
flow performs better than the online approach because it fil-
ters out the noise in the averaging process. However, in the
process, it becomes deficient in handling variation among
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Figure 7. Comparison of warp strategies. (a) Warps learnt on
Group-I and tested on Group-II. (b) Warps learnt on Group-II and
tested on Group-I. In both the plots stack-flow is better than the
other warping strategies.

faces as discussed in Section 2.3 (Figure 5). The stack-flow
addresses these concerns and hence outperforms the other
warping strategies.

3.2. Probabilistic Stack-Flow

Itis easy to note that local areas of the face change differ-
ently as the viewpoint varies. Recently Kanade and Yamada
[4] have made use of this effect resulting in improved view-
point invariant performance. Taking direction from [4], we
investigate the discriminative power of each warped patch
as a function of viewpoint. We call this technique “proba-
bilistic stack-flow”. We use the sum of squared differences
(SSD) as a similarity value between a gallery patch and a
warped probe patch. The aim is to derive the probability
distributions for patch SSD’s given the probe viewpoint i.e.:

p(srldp,w) , w € {C, T} (1)

where s, is the SSD score for the r-th patch, and ¢, is
the probe viewpoint. The variable w refers to classes when
gallery and probe images belong to the same subject (client
: C) or different subjects (impostor: 7). We compute the
SSD histograms for warped training images to learn these
distributions. Once the histograms are computed, we ap-
proximate the distribution in 11 with a log-normal distribu-
tion as follows:

1 (1 log(sr)—z/,f">2
e lops) = %wmsﬂp< (5
(12)

where the parameters v,.“ and ~,“ are the log-means and
log-standard-deviations respectively for the class w, and
w € {C,T}. These parameters can be estimated from the
SSD histograms as follows:

v,Y = E{log(s;)|w}
(%) E{(log(sr))*|w} — (1p)?

Lucey and Chen have argued in [8] that it is advantageous to
use a log-normal, rather than normal, distribution for mod-

13)
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Figure 9. Comparison of probabilistic stack-flow with Kanade &
Yamada’s approach [4]. (a) Warps learnt on Group-I and tested
on Group-II. (b) Warps learnt on Group-II and tested on Group-1.
Both the plots show similar trend. Probabilistic stack-flow out-
performs the probabilistic framework of [4]. The difference in
performance is more accentuated for larger viewpoint variations.

eling patch SSD values. A possible reason for this, as put
forth in [8], is the increased likelihood of client and im-
postor distributions to be skewed towards a zero SSD value
when there is less viewpoint mismatch. By using the inter-
viewpoint patch correspondences (Section 2.3) to rectify a
probe image, we reduce the expected viewpoint mismatch.
It is thus expected that the warps learnt through the stack-
flow procedure would further the capacity of the log-normal
distribution to model SSD values for warped probe patches.

We can now obtain the log-likelihood ratio £ that the
ensemble of probe and gallery patches belong to the same
subject,

L= logp(s|w=C,0,) —logp(s,|w =T,¢,) (14)

assuming the prior probabilities P(w) for w € {C,Z} are
equal. For the identification task we obtain an £ for each
gallery image and the claimant probe image. A correct deci-
sion is obtained if the maximum L across all the gallery im-
ages corresponds to the same identity as the claimant probe
image. Identification results are typically returned as a per-
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Figure 10. Illustration of composite warp learning. Warps are
learned between nearby viewpoints e.g. 40° —25°, then 25° —15°,
and then 15° —0°. These warps can be composed to give one com-
posite warp —®Pcomposite-

centage with 100% being the best performance and 0% be-
ing the worst. A comparison between stack-flow and proba-
bilistic stack-flow is given in Figure 8 for the task of identifi-
cation. The identification rate curve for probabilistic stack-
flow remains above that of stack-flow for all the viewpoints.

We now compare the probabilistic stack-flow method
with Kanade and Yamada’s probabilistic framework [4] and
the conventional Eigen-Faces based approach (Figure 9).
For all the viewpoints, our method outperforms the tech-
nique proposed in [4]. The difference in performance is
more pronounced as the probe viewpoint angle increases.
We observed a similar trend when the training and testing

sets were swapped for cross-validation, as shown in Figure
9.

3.3. Composite Warp Learning

With increasing viewpoint disparity between the probe
and gallery images, it becomes harder to learn a warp from
a profile face directly to the frontal face. To handle this
problem we propose to learn incremental warps between
near-by viewpoints e.g. between —60° and —40° etc. To
get to the frontal view, warps between intermediate view-
points can then be combined to give what we term as the
“composite warp”. This approach is illustrated in Figure
10.

A comparison between composite warp and direct warp
is given in Figure 11. For lesser viewpoint variations, both
the techniques performed equally well. However, at ex-
treme probe viewpoints, composite warp has better perfor-
mance. We now move on to assess our technique for the
task of face verification.
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Figure 12. Verification results. Comparison in terms of equal error
rate (EER) between probabilistic stack-flow and Kanade and Ya-
mada’s probabilistic framework [4]. (a) Warps learnt on Group-I
and tested on Group-II. (b) Warps learnt on Group-II and tested on
Group-1. Both plots show a trend in which probabilistic stack-flow
has the lowest EER for all the viewpoints.

3.4. Verification Experiments

In verification we have to accept or reject a claimant’s
claim of being a particular subject. Typically, the claimant’s
match score is compared to a threshold. The claim is ac-
cepted if the match score is greater than or equal to the
threshold, and rejected otherwise. There are two metrics
associated with a verification system: (i) False Rejection
Rate (FRR) that represents the rejection of a true client,
(ii) False Acceptance Rate (FAR), that represents accep-
tance of an impostor. These two rates vary according to
the choice of the threshold and the overall performance is
usually represented in terms of Receiver Operating Charac-
teristics (ROC), which is a plot of FAR vs. Hit Rate. The
hit rate is the rate of acceptance of true clients. Often, a
single measure, Equal Error Rate (EER) is used to gauge a
verification system. The EER is determined by finding the
threshold at which the two errors (FAR and FRR) are equal.

Using the log-likelihood ratio derived in Equation 14, we
can adapt our technique for the task of verification. We
compare our method probabilistic stack-flow with [4] in
terms of EER in Figure 12. EER for our technique remains
lower than that of [4] for all the viewpoints.

A detailed comparison in terms of ROC curves for differ-
ent viewpoints is given in Figure 13. The steeper the ROC,
the more desirable it is, as it indicates a high hit rate for a
low FAR. For all the viewpoints, ROC of our approach is
steeper than that of [4].

4. Conclusions and Discussion

In this paper we have presented a novel strategy which
we refer to as “stack-flow” for aligning a stack of images
at the patch-level. This approach is able to learn corre-
spondences between gallery and probe viewpoints in a su-
perior manner as compared to conventional image-to-image
alignment techniques. Based on this learnt correspondence
we have proposed an extension to Kanade and Yamada’s
viewpoint invariant face recognition work [4], which we
refer to as probabilistic stack-flow, to model the discrimina-
tive power of corresponding gallery and probe patches. We
have shown that our technique outperforms Kanade and Ya-
mada’s original method in both recognition and verification
tasks. We have also demonstrated the benefit of composing
incremental warps (composite warp) to handle large view-
point variations.

A limitation of our approach lies in its inability to han-
dle situations where patches become occluded at extreme
viewpoints. For example, our current method will fail if we
need to match a left profile face with a right profile face.
Future work shall try and remedy this situation through the
employment of “missing data” techniques. In the future we

also aim to integrate our work with a face detection front-
end such as [9].
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Figure 13. ROC curves for verification at different viewpoints. A comparison is shown between the ROC curves of our method probabilistic
stack-flow and Kanade and Yamada’s approach [4]. For almost all the viewpoints, ROC of our technique is steeper than that of [4]. The
difference is more prominent for larger viewpoint variations.
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