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Abstract – Hysteresis of a piezoelectric actuator is rate-
dependent. Most hysteresis models are based on elementary 
rate-independent operators and are not suitable for 
modeling actuator behavior across a wide frequency band. 
This work proposes a rate-dependent modified Prandtl-
Ishlinskii (PI) operator to account for the hysteresis of a 
piezoelectric actuator at varying frequency. We have shown 
experimentally that the relationship between the slope of the 
hysteretic loading curve and the rate of control input can be 
modeled by a linear function. The proposed rate-dependent 
hysteresis model is implemented for open-loop control of a 
piezoelectric actuator. In experiments tracking multi-
frequency nonstationary motion profiles, it consistently 
outperforms its rate-independent counterpart by a factor of 
two in maximum error and a factor of three in rms error.   

I. INTRODUCTION 

A piezoelectric ceramic is an excellent choice as a 
micropositioning actuator because of its high output force, 
large bandwidth and fast response time. However, the 
existence of nonlinear multi-path hysteresis in 
piezoelectric material complicates the control of a 
piezoelectric actuator in high precision applications. The 
maximum hysteretic error is typically about 15% in static 
positioning applications. Still worse, the hysteresis is rate-
dependent, increasing with the rate of control input, as 
shown in Fig. 1.  
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Fig.1. Hysteresis of piezoelectric material is rate-dependent. The 
plots show the response of a TS18-H5-104 (Piezo Systems, Inc.) 

piezoelectric actuator at two different driving frequencies. 
 
While the formation theory of hysteresis [1] and its 

complex looping behavior [2] have been well 
documented, literature on piezoelectric hysteresis rate 
dependence is scarce. Lacking a more profound 
understanding of the underlying physics, any attempt to 
account for the hysteresis rate dependence has to be 
phenomenological. Current research in hysteresis 
modeling and compensation can be broadly classified into 
three categories: (I) electric charge control; (II) closed-

loop displacement control; (III) linear control with 
feedforward inverse hysteresis model. 

The first category exploits the fact that the 
relationship between the deformation of a piezoceramic 
and the induced charge has significantly less hysteresis 
than that between deformation and applied voltage [3, 4]. 
However, this approach requires specialized equipment to 
measure and amplify the induced charge and will 
inevitably reduce the responsiveness of the actuator. 
There has been little or no discussion of the effectiveness 
of this method in tracking more complex, nonstationary 
motion profiles, where the hysteretic rate dependence 
comes into play. 

Most commercial systems (e.g. Polytec PI, Inc., 
Dynamic Structures and Materials, LLC., Melles Griot, 
Inc., Michigan Aerospace Corp. etc.) fall into the second 
category, normally using strain gauges as the feedback 
sensors. These systems can achieve sub-micron and even 
nano-level positioning precision but are generally only 
suitable in static positioning applications. Among the 
closed-loop schemes capable of tracking control, a few 
use different varieties of linear control schemes after 
linearizing the hysteretic nonlinearity [5, 6]; Tao et al. [7] 
uses adaptive control with an approximate model of the 
hysteresis; others propose using a neural network to learn 
the nonlinearity [8] or a combination of neural network 
with adaptive control [9].  

The main idea of category III is to obtain a 
mathematical model that closely describes the complex 
hysteretic behavior, then to feed forward the inverse 
model to linearize the actuator response (see Fig.2).  
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Fig.2. Piezoelectric actuator linearization with feedforward 
inverse hysteresis model. 

 
Among the proposed hysteresis models, e.g. the 

generalized Maxwell’s slip model [10], polynomial 
approximation [11], etc., the Preisach model [12] and its 
variations are by far the most well known and widely used 
in both closed-loop and open-loop systems. Ge and 
Jouaneh [13] combine the feedforward model with a PID 
feedback loop and their implementation attains a 
maximum error of about 1.5–3.5% in tracking 13 µm p-p 
stationary sinusoids from 0.1–20 Hz. However, this 



method does not work for nonstationary sinusoids because 
of the intrinsic properties of the classical Preisach model. 
Galinaitis [14] uses a Preisach type Kransnosel’skii-
Pokrovskii (KP) operator to model and control 
piezoelectric actuators in open loop and reports a 
maximum tracking error of 3.9% with a 0.05 Hz 
stationary sinusoid. The tracking errors increase to about 
6–9.4% when tracking sinusoids with reduced amplitudes.  

Another important subclass of the Preisach model is 
the Prandtl-Ishlinskii (PI) model. The main advantages of 
this approach over the classical Preisach operator are that 
it is less complex and its inverse can be computed 
analytically, thus making it more attractive for real-time 
applications. These PI approaches reduce maximum 
hysteretic error to about 1–3% in open-loop control with 
quasi-static tracking [15, 16] and to about 1% in tracking 
of a nonstationary constant-rate saw-tooth profile with 
closed-loop adaptive control [17].    
 One basic assumption of the Preisach type model is 
that hysteresis is rate-independent. To date, little work has 
been done to explicitly model the rate dependence of 
hysteresis. Tan and Baras [18] extend the Preisach 
operator to model and control magnetostrictive actuators 
at > 5 Hz where hysteresis can no longer be assumed to be 
rate-independent. They report a maximum error of about 
7.5% when tracking a nonstationary dynamic motion 
profile in closed-loop control. Smith et al. [19] report that 
hysteresis of piezoelectric materials is rate-dependent 
even at very low frequencies (< 1 Hz).   
  In this paper, we present an extension to the PI 
operator to also model the rate-dependent hysteresis 
characteristic of a piezoelectric actuator. We implement 
the rate-dependent PI hysteresis model with open-loop 
control and compare the experimental results with the 
rate-independent case. A discussion on the significance of 
the result and the limitations of our model is also 
presented. 

II. PRANDTL-ISHLINSKII (PI) HYSTERESIS MODEL 

This section describes the modeling of hysteresis using 
the modified PI operator proposed by Kuhnen et al. [16, 
17], with a slightly different treatment to account for the 
one sided characteristic of many commercial piezoelectric 
actuators that are driven by non-negative control voltage. 
  
A. Prandtl-Ishlinskii (PI) Operator 

The elementary operator in the PI hysteresis model is 
a rate-independent backlash or linear-play operator. It is 
commonly used in the modeling of backlash between 
gears with one degree of freedom. A backlash operator is 
defined by 
 y(t) = Hr[x, y0](t) 
       = max{x(t) – r, min{x(t) + r, y(t−T)}}  (1) 

where x is the control input, y is the actuator response, r is 
the control input threshold value or the magnitude of the 

backlash, and T is the sampling period. The initial 
consistency condition of (1) is given by 
 y(0) = max{x(0) – r, min{x(0) + r, y0}}   (2) 

with y0 ∈ ℜ, and is usually but not necessarily initialized 
to 0. Multiplying the backlash operator Hr by a weight 
value wh, we have the generalized backlash operator,  
 y(t) = wh⋅Hr[x, y0](t).       (3) 

The weight wh defines the gain of the backlash operator 
(wh = 1 represents a 45° slope) and may be viewed as the 
gear ratio in gear mechanical play analogy (see Fig.3). 
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Fig.3. The rate-independent generalized backlash operator 
is characterized by the threshold or backlash magnitude, r, and 

the weight or backlash gain, wh. 
 

Complex hysteretic nonlinearity can be modeled by a 
linearly weighted superposition of many backlash 
operators with different threshold and weight values,  
 y(t) = wh

T⋅Hr[x, y0](t).       (4) 

with weight vector wh
T = [wh0 … whn] and Hr[x, y0](t) = 

[Hr0[x, y00](t) … Hrn[x, y0n](t)]T with the threshold vector r 
= [r0 … rn]T where 0 = r0 < … < rn, and the initial state 
vector y0 = [y00 … y0n]T. The control input threshold 
values r are usually chosen to be equal intervals.  

Equation (4) is the PI hysteresis operator in its 
threshold discrete form. The hysteresis model formed by 
the PI operator is characterized by the initial loading curve 
(see Fig. 4). It is a special branch traversed by equation 
(4) when driven by a monotonically increasing control 
input with its state initialized to zero (i.e. y(0) = 0). The 
initial loading curve is defined by the weight values wh 
and threshold values r, 
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The slope of the piecewise linear curve at interval i is 
defined by Whi, the sum of the weights up to i, 
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The subsequent trajectory of the PI operator beyond 
the initial loading curve, with non negative control input 
is shown as the dotted loop in Fig. 4. The hysteresis loop 
formed by the PI operator does not return to zero with the 
control input and each of the piecewise linear segments 
now has a threshold width of 2r because of the backlash 
operators.  This behavior of the PI operator closely 
resembles the hysteresis of a piezoelectric actuator. 



C. Parameter Identification  y 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. The PI hysteresis model with n = 4. The hysteresis 

model is characterized by the initial loading curve. The 
piecewise linear curve is defined by the equally spaced threshold 

values r and the sum of the weight values wh.   
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To find the hysteresis model parameters, we first have to 
measure experimentally the responses of the actuator 
subjected to some control inputs. Then we set the 
threshold values r and d as described in the previous 
section. The weight parameters wh and ws are found by 
performing a least squares fit of equation (9) to the 
measured actuator response. 
 
D. Inverse Prandtl-Ishlinskii (PI) Operator 

The inverse of a PI operator is also of the PI type. The 
proof of existence of an inverse can be found in [15]. The 
inverse PI operator is given by 
 Γ  −1[z](t) = w’h

T⋅Hr’[w’sT⋅Sd’[z], y0’](t)   (10)   
The key idea of computing the inverse is to find the 
reflection of the resultant hysteresis looping curves about 
the 45° line as shown in Fig. 6. 

B. Modified Prandtl-Ishlinskii (PI) Operator 

The PI operator inherited the symmetry property of the 
backlash operator about the center point of the loop 
formed by the operator. The fact that most real actuator 
hysteretic loops are not symmetric weakens the model 
accuracy of the PI operator. To overcome this overly 
restrictive property, a saturation operator is combined in 
series with the hysteresis operator. A saturation operator is 
a weighted linear superposition of linear-stop or one-sided 
dead zone operators. A dead zone operator is a non-
convex, non-symmetrical, and memory free nonlinear 
operator given by 
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)z(t) = wsT⋅Sd[x](t).        (8) 
Fig.6. The
actuator. where y is the output of the hysteresis operator, z is the 

actuator response, wsT = [ws0 … wsm] is the weight vector, 
Sd[x](t) = [Sd0[x](t) … Sdm[x](t)]T with the threshold vector 
d = (d0 … dm)T where 0 = d0 < rn < d1 < … < dm. Equal 
intervals are chosen between d1 and dm. The last interval 
of the hysteresis operator, rn, is selected to be at the 
midpoint of the control input range (see Fig.5).   
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 solid curve is the modified PI model of a piezoelectric 
The inverse model in dotted line is the mirror image of 

hysteresis model about the 45° line. 

ading the inverse hysteresis model with the 
steresis model gives us the identity mapping 

the control input x(t) and actuator response z(t), 
= Γ [Γ  −1[x]](t) = I[x](t) = x(t)    (11)    

inverse model parameters can be found by 
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III. RATE-DEPENDENT PRANDTL-ISHLINSKII (PI) 
HYSTERESIS MODEL 

We observed that the hysteresis slope of the 
piezoelectric actuator varies linearly with the rate of input. 
Thus the rate-dependent hysteresis slope model would be: A. Rate-dependent Hysteresis Slope 

),(ˆ))(( txcWtxW iriri && += i = 0 … n    (15) We propose in this section an extension to the modified PI 
operator to also model the rate-dependent characteristics 
of the piezoelectric hysteresis. 

where ci is the slope of the best fit line through the Whi’s 
and the referenced slope Ŵhi is the intercept of the best fit 
line with the vertical Wh axis or the slope at zero input 
rate. The individual rate-dependent hysteresis weight 
values can be calculated by 

 One of the advantages of the PI hysteresis model is 
that it is purely phenomenological; there are no direct 
relationships between the modeling parameters and the 
physics of the hysteresis. Therefore we would model the 
rate-dependent hysteresis with reference only to the 
experimental observations. 

 i = 1 … n; )),(())(())(( )1( txWtxWtxw ihhihi &&& −−=

 ))(())(( 00 txWtxw hh && =       (16) 
While the rate dependency of hysteresis is evident 

from Fig.1, the sensitivity of actuator saturation to the rate 
of control input is not apparent. Hence we assume that 
saturation is not rate-dependent and hold the saturation 
weights, ws, as well as the threshold values, r and d, 
constant while attempting to construct a relationship 
between hysteresis and the rate of the control input . 
We model the slope of the hysteresis curve (i.e. sum of the 
hysteresis weights) at time t as the sum of the referenced 
hysteresis slope and a rate-dependent function, 

)(tx&

C. Rate-dependent Modified Prandtl-Ishlinskii Operator 

The rate-dependent modified PI operator is defined by 
 z(t) = Γ [x, ](t) x&

= wsT⋅Sd[wh( )x& T⋅Hr[x, y0]](t).    (17) 

The inverse rate-dependent modified PI operator is also of 
the PI type:  
 Γ  −1[z](t) = w’h( )x& T⋅Hr’[w’sT⋅Sd’[z], y0’](t).  (18) 

The inverse rate-dependent parameters can be found by 
(12), replacing wh with the rate-dependent wh( (t)). x&  i = 1 … n.   (14) )),((ˆ))(( txfWtxW hihi && +=

Equation (14) will be reduced to the referenced hysteresis 
slope, Ŵhi, or to the rate-independent case if the rate-
dependent term is zero.  

IV. EXPERIMENTAL RESULTS 

To model the hysteretic nonlinearity of a TS18-H5-104 
(Piezo Systems, Inc.) piezoelectric actuator, we use a 
modified PI model of n = 9, and m = 2, for both the rate-
independent and rate-dependent case.  

 
B. Rate-dependent Model Identification 

The response of a piezoelectric actuator is measured 
subject to sawtooth control inputs at different rate values 
over the range of 0−1200 µm/s. With an amplitude of 12.5 
µm p-p, this corresponds to the maximum rate of 
sinusoidal control input up to about 30 Hz with the same 
amplitude. We perform the modified PI parameters 
identification for the measured actuator response at 
different rate values. The sum of the hysteresis weights 
Whi, i = 0 … n, are plotted against the control input rate as 
shown in Fig. 7. 

 Fig. 8 and 9 compare the experimental results of the 
rate-independent and rate-dependent PI operators tracking 
a 10 Hz, 12.5µm p-p stationary sinusoid and a multi-
frequency, nonstationary dynamic motion profile 
(modulated 5, 20, and 35 Hz sinusoids with time-varying 
amplitudes). The rate-independent model parameters are 
identified from the measured response of the piezoelectric 
actuator subjected to a 10 Hz, 12.5 µm p-p stationary 
sinusoidal control input.  Table 1 summarizes the 
performance of the rate-independent and rate-dependent 
hysteresis models in tracking experiments. 
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Table 1. Measured experimental errors of the rate-independent 

and rate-dependent hysteresis models in tracking a 10 Hz, 
12.5µm p-p stationary sinusoid (Stat) and a multi-frequency, 

nonstationary dynamic motion profile (Dyn). 
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Fig.7. Plot of the hysteresis slopes Whi, n = 4, vs. input rate. 
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Fig.8. Experimental open-loop tracking results of a stationary 
12.5 µm p-p sinusoid at 10 Hz. The rate-independent model 

parameters are identified from measured response a TS18-H5-
104 (Piezo Systems, Inc.) piezoelectric actuator subjecting to the 

same control input.  
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V. DISCUSSIONS 

The proposed rate-dependent PI hysteresis model reports 
very similar performance as the rate-independent model in 
tracking a stationary sinusoid. In tracking more dynamic 
motion profiles involving frequencies other than the one 
on which the rate-independent model is based, the rate-
dependent model consistently outperforms the other by at 
least a factor of two in maximum error and a factor of 
three in rms error. Although the proposed model registers 
a higher maximum error in the dynamic tracking case, the 
rms error, a more important tracking performance 
yardstick, remains almost the same. 
 Creep is not modeled in the proposed model because 
its effect is negligible for sinusoids of > 1 Hz. If quasi-
static tracking is desired, since the rate-dependent model 
and its inverse are also of the PI type, the creep model 
proposed by Krejci et al. [15] can be easily incorporated. 
 One limitation of all PI-type hysteresis models is that 
it has singularity when the slope of the hysteresis loading 
curve becomes zero. The inverse model near the 
singularity is highly sensitive to noise and extra care has 
to be taken in real-time implementation to avoid modeling 
error. The singularity of the proposed rate-dependent 
model occurs at around 1450 µm/s or the maximum rate 
of a 36 Hz, 12.5 µm p-p sinusoid.      

VI. CONCLUSION  

We presented a rate-dependent Prandtl-Ishlinskii (PI) 
hysteresis model to account for the behavior of a 
piezoelectric actuator in multi-frequency tracking. The 
proposed method uses a linear function to model the 
relationship between the slopes of the hysteretic loading 
curve and the rate of control input. Compared with a rate-
independent model, our model yields significantly better 
experimental results. 
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