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Abstract: This paper overviews path planning methods, systematic versus probabilistic for robotic demi-
ning, and a robot development project. We outline a complete sensor-based coverage algorithm that uses an
exact cellular decomposition method. To decrease coverage duration, we introduce a probabilistic method

that takes advantage of a priori known mine patterns.

Then, we give a comparison of random versus

coordinated coverage. Finally, we present a summary of the development of the mobile test platform.
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1 Introduction

The problem of detecting mines in a surface-laid
minefield using autonomous robots is of interest
to civilians and military alike. The use of robots
decreases the danger and the cost involved in man-
ual mine detection. [Trevelyan, 1998] gives an
overview of the world-wide demining problem and
outlines the challenges. We believe that the main
challenge for demining is the development of bet-
ter mine detection methods. Currently, metal de-
tectors are widely used mine detectors. However
there are efforts to build detectors such as infrared
imaging, TNT sniffing etc.. In this paper, we focus
on path planning methods for demining, assuming
that a mine detector is available to us (not neces-
sarily perfect).

The robot can employ a coverage algorithm,
a path planning technique where the robot ex-
plicitly passes over all points in the minefield at
least once. We achieve complete coverage using an
exact cellular decomposition and a coverage algo-
rithm. The coverage algorithm incrementally con-
structs the cellular decomposition and covers the
space simultaneously. Our algorithm only requires
a sensor suit that can guide the robot along the
boundaries of the obstacles. This feature of the
algorithm leads to development of low cost robots
that can be perishable.

When resources are limited, the robot’s plan-
ner can use a priori information to opportunisti-
cally guide its search. We assume that the mines
are laid out using a regular pattern characterized
by six parameters. The robot covers only a small

portion of the field to estimate these parameters
using our probabilistic algorithm. Once the pa-
rameters are determined the robot can visit each
mine location and does not need to cover the entire
field.

The present state of the art for path planning
for demining is to move around randomly. Even
though performing random motions does not re-
quire sophisticated sensor suits, making sure that
a minefield is completely covered is not feasible.
In section 2.3, we compare the coverage time tak-
en by our complete coverage algorithm to the time
required by random motions in the presence of a
variety of obstacle configurations.

Finally, we discuss about the choices that we
made concerning the cost of the robot platform,
maneuverability, positioning, and on-board com-
puting. Our intentions are not to describe the
ultimate how-to-build a bread-box sized outdoor
mobile robot, but rather share with the communi-
ty some of experiences and choices in developing
an outdoor demining robot.

2 Path Planning for
Demining

Humanitarian demining requires complete cover-
age of a minefield in order to locate and then re-
covery of all the mines. Thus the first algorithm
that we consider is complete sensor-based coverage
(Section 2.1). However rather than performing ex-
haustive coverage, if we know a priori that a mine
pattern exists, we can direct the robot to certain
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Figure 1: The boustrophedon decomposition of an
environment and its adjacency graph. Nodes are
the cells and edges represent adjacency informa-
tion.

locations where existence of a mine is very like-
ly. This can be useful in military demining where
time is critically limited. In Section 2.2, we give
an outline of this probabilistic approach. Then we
compare the performance of a robot that is execut-
ing our complete coverage algorithm with a robot
that moves around randomly.

2.1 Sensor-based
Demining

Coverage for

There exists a variety of coverage algorithm-
s ([Zelinsky et al., 1993],[Cao et al., 1988], [Lumel-
sky et al., 1990],[Hert et al., 1996]) using different
approaches and making certain assumptions about
the environment and the sensors. Our method for
coverage is based on a geometric structure called
cellular decomposition [Latombe, 1991], which is
the union of non-overlapping subregions of the free
space, called cells. An adjacency graph encodes
the topology of the cells in the environment, where
nodes are cells and edges connect nodes of adjacent
cells (Fig. 1). We define our cells such that simple
back and forth motions cover each cell, and thus
complete coverage is reduced to finding an exhaus-
tive walk through the adjacency graph [Choset and
Pignon, 1997].

Our cells are defined such that simple motions,
such as back and forth motions, can simply cov-
er the cell. We use a particular function, called a
Morse Function', to model this type of “simple”
motion. The cell boundaries are then defined by
critical points? of these Morse functions [Choset
et al., 2000]. It is worth noting that for the work
in this paper, the critical points occur on the

IFunctions with non-degenerate critical points [Milnor, 1963].

2 At the critical points, a function takes its extrema.
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Figure 2: (a) Exact cellular decomposition of the
environment in terms of critical points Cpy. (b)
Graph representation of the environment. Nodes
represent critical points, edges represent cells.

boundary of the robot’s free space. If the robot
knows the critical points, then it effectively knows
the decomposition. When the environment is not
known, neither are the critical points and thus sen-
sor based coverage is reduced to covering the envi-
ronment while determining the locations of critical
points. We presented a method to sense critical
points in unknown environments using range mea-
surements in an earlier paper [Acar and Choset,
2000].

Generically, each cell is characterized by two
critical points®. Instead of forming an adjacency
graph with nodes as cells, we form a graph where
nodes are critical points and edges are the cell-
s (Fig. 2). This particular graph representation
encodes all the information we need to incremen-
tally construct the cellular decomposition. Each
time the robot encounters a new critical point, a
new node is created, the edge corresponding to the
current cell is terminated at the new node, and
depending on the type of the critical point, two
more edges are instantiated or no edge is creat-
ed. If the robot encounters an already discovered
critical point, then the edge corresponding to the
current cell is terminated at the critical point and
the “dangling” edge (i.e. it only has one node)
of the already discovered critical point is delet-
ed. When all the nodes have edges ending with
another node, coverage is completed. We present-
ed a coverage algorithm that guarantees that the
robot will encounter all the critical points while its
is achieving coverage in [Acar and Choset, 2000].
An experimental result obtained running our cov-
erage algorithm on Nomad Mobile robot [Nomad,
1996] is shown in Fig. 3.

3Handling multiple critical points defining a single cell’s boundary is an implementation detail.
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Figure 3: The coverage path followed by the robot in an unknown environment is shown by dotted black
lines. The gray dots represent the back track paths. The robot incrementally constructs the graph represen-
tation by sensing the critical points 1,2,3,4,2 (in the order of appearance) while covering the space. Since
all the critical points have explored edges, the robot concludes that it has completely covered the space. For
the sake of discussion, we outlined the boundaries of the obstacles and cells in (d).

2.2 Probabilistic Demining

Exhaustive coverage is the best strategy when the
robot has unlimited time and a perfect mine de-
tector. However, in many situations time or power
limitations may not permit covering a target en-
vironment completely. Probabilistic planning can
significantly improve the search efficiency in such
demining applications. Probabilistic search in an
unknown environment raises two major questions:
(1) How we can efficiently construct a probabilis-
tic map of mine locations by navigating the tar-
get area? (2) Given a priori information, what is
the optimal search path to guide a robot to locate
mines. [Gelenbe and Cao, 1998] have discussed
their Simplified Infinite Horizon Optimization al-
gorithm to answer the second question. In our re-
search, we focus our efforts to solve the first ques-
tion.

Extracting characteristics of a dispersion pat-
tern of a minefield helps to quickly build a prob-
ability map and plan a demining path. There are
two types of typical dispersion patterns: scattered
and regular pattern. Scattered patterns are usu-
ally produced by sub-munitions released from a
plane or projectile. Elliptical impact pattern with
the higher density of impacts towards the center
is also a common dispersion pattern. When mines
are deployed by ground vehicles or human, it is
possible that minefields follow some forms of regu-
larity, because of the military doctrine, tactical ef-
ficiency and inherent limitations in the mine laying
process [Lake and Keenan, 1995]. Typical charac-
teristics of regularity are collinearity and equal-

spacing.

As a start-up problem, we work on extracting
the characteristics of a regular pattern and we will
move to model the scattered pattern in our future
work. We focus on a particular minefield pattern
shown in Fig. 4. The key to this work is to extract
the “true” pattern parameters of the spatial distri-
bution during the process of the detection. The ex-
tracted pattern information can be used to design
optimal search strategies and provide real-time de-
cision models for spatial orientation of robots.

The following are the constraints that we con-
sider:

¢ The method should be able to deal
with uncertain information. The detec-
tor error complicates the problem. Detector
produces false negative, false positive errors
and inaccurate reading about the location
of a detected mine. Moreover, the model of
the minefield pattern is generally inaccurate.
Possible reasons for deviations of the model
from the real world are deployment errors,
mine explosions and model simplifications.
All of these random errors increase the diffi-
culty to decode the underlying pattern.

e The method should be computational-
ly efficient. It is important that the com-
putation can be finished in real-time on the
robot.

The robot first covers a small portion A of the
minefield. The observed information is a set of de-
tected mines at positions y = (y1,...,yx), where
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Figure 4: The grid pattern with one row shifted with respect to the neighboring row. The pattern can be
characterized by six parameters, inter-row and column spacing, amount of row shift, orientation and position
of the minefield with respect to a fixed-frame. Sample of possible intended minefields simulated from MCMC
algorithm (11 ”found” mines). Simulated minefield matches the “true” intended minefield.

yi € A, i =1,...,k. A Bayesian approach is used
to solve the pattern parameter estimation prob-
lem using the information collected in the covered
region. A Bayesian approach calculates the pos-
terior distribution fay(dly) = %&))fﬂa) af-
ter observing the locations of some mines (A is
the set of parameters). Meanwhile, the observed
mines y depend on the true minefield pattern x(9)
through a known conditional probability density
fy|a(y[x(0)), which is also called likelihood func-
tion. fy|a can be specified based on a noise mod-
el. The posterior distribution is often impossible
to compute in closed form, and even if it were pos-
sible, the density fa|y is typically impossible to
recognize as anything familiar. Instead of trying
to calculate the density, we will use Markov Chain
Monte Carlo (MCMC) to create a sample from the
posterior distribution of the parameters.

Results from simulation experiments indicate
that our approach works well in terms of perfor-
mance and efficiency. A set of “found” mines in a
covered region is randomly generated based on the
noise model from a “true” intended minefield char-
acterized by the parameters A. In Fig. 4, we show
the sample of possible intended minefield simulat-
ed from our MCMC algorithm based on the pos-
terior distribution of A.

2.3 Random versus Coordinated
Coverage
Currently, the state of the art for robotic demining

is to drive the robot randomly in a minefield. To
establish the trade offs between the random ver-

sus coordinated strategies, we provide the analy-
sis of simulation experiments. In our simulations
we place 100 mines uniformly on a 100 x 100ft2
area. Simulation algorithms are used to obtain
the search time by both random and coordinat-
ed strategies. The mine search follows the follow-
ing procedure: the robot first locates a mine, then
picks the mine, delivers it to the boundary and fi-
nally drops the mine on the boundary. The width
of the detector is 1f¢. The robot moves at 1ft/s.
It rotates at 0.1 revolution/s. It spends totally two
minutes to pick and drop the mine, not including
the travel time.

First, we compare both random and coordinat-
ed coverage methods in an environment without
obstacles. Figure 5 shows the plot of the number of
found mines versus total search time in the random
search. Table 2.3 summarizes what we have found.
With a perfect sensor (100% detection rate), in or-
der to find 100% of targets, random search takes
much longer time compared to the coordinated
search. With imperfect sensor, difference in mean
search time between random search and coordinat-
ed search becomes smaller when the detection rate
becomes worse. However, the variability of search
time for random search is much larger than the
coordinated search. Therefore achieving complete
coverage with random motions is not feasible.

With obstacles, coverage duration of random
search could increase drastically; coverage dura-
tion for coordinated search is proportional to the
size of the target area and it will not change dra-
matically with the presence of obstacles. Here,
we present two types of obstacle configurations



Ewven, 100x100, Total Time, YLRT, 1FY/S, 0.1Res/S

Number of found mines

Figure 5: Plot of the number of found mines versus
total search time by random search using different
detection rates (100 x 1002, no obstacles).

(Figs. 6, 8). In the first configuration, the robot
bumps among obstacles; which make it difficult
to move to uncovered area. Figure 7 shows the
amount of found mines versus total search time.
The search time is longer in this case. In the
second obstacle configuration, we place all of the
mines inside the area surrounded by the obstacles.
In random search, once the robot moves outside
the area enclosed by the obstacles, it has very s-
mall chance to move back the enclosed area, be-
cause the size of the exit is very small. In this
case, the random search time increases dramati-
cally. Figure 9 shows the amount of found mines
versus total search time.

3 Development of the Test
Platform

The conceptual design of the demining robot be-
gan with evaluating several existing mechanism-
s for outdoor navigation. We considered advan-
tages and disadvantages of locomotion exhibited
by robots such as the Nomad Antartica Meteorite
Search Robot, iRobot’s Real World Product Line
(RWI), the Marsokhod, Swiss Federal Institute of
Technology Pemex robot, and the Free University
of Brussels Tridem robot. The type of locomo-
tion used can generally be divided into four cate-
gories: skid steering robots, legged robots, differ-
ential drive robots, and articulated drive mecha-
nisms. Nomad, Marsokhod and Tridem are exam-
ples of complex mechanisms that allow high mobil-
ity but are more difficult to control, have greater
power requirements, and are more expensive to
manufacture. Legged robots provide discretized
movement which is helpful for reducing position-
ing error and perhaps in the future, greater maneu-

Detection rate  60%  80%  100%

Find 100% Random - - 20.0h
targets Coordinated - - 7.25h
Find 80% Random 11.6  9.70h  8.9h
targets Coordinated  8.75h 6.38h  5.80h
Ratio 1.3 1.5 1.53

The mean search time for random and
coordinated search methods.

verability. However, legged robots, like the com-
plex wheeled mechanisms, are prohibitively expen-
sive and require more power than simple wheeled
mechanisms. Less power translates to less cost,
weight and size.

Skid steering serves as a simple drive mecha-
nism that has the advantage of bulldozing through
rugged terrain quite easily. The RWI outdoor A-
TR’s have skid steering mobile platforms. Unfor-
tunately, for our purposes, a skid steering robot
has two drawbacks. First, the robot must over-
come a great deal of friction in order to make a
simple turn. The RWI ATR’s use four one horse
power motors, which again increase cost, power,
size, and weight budgets of the robot for our needs.
The second reason why we chose against skid
steering is controllability in terms of being able
to precisely cover an area. Using dead-reckoning
to determine the robot’s position with skid steer-
ing is impossible because the point of contact with
the ground is constantly changing during rotation.

The final alternative is a simple differential
drive robot that uses casters to provide support.
This affords a simple and cost effective design that
is easy to manufacture and implement. Unfortu-
nately, what we gained in cost, low-weight, low
power, and small size, we lost in maneuverabili-
ty. The casters that supported the back-side of
our robot also caused problems, especially when
driving on soft damp ground. Our first robot,
named Finder (Figure 10), is a differential drive
robot that uses inexpensive materials and parts
commonly found in catalogs. We recently manu-
factured a second mobile platform that has some
improvements over Finder. This robot is named S-
lugger (See Figure 10). A unique aspect of Slugger
is the mounting of its twenty-six ultrasound sen-
sors. We designed a modular sonar track which fits



Figure 6: The search path by the coordinated
search in a 100 x 100ft? environment with 25 ob-
stacles.
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Figure 8: The search path by the coordinated
search in a 100 x 100ft? environment with 4 ob-
stacles.

around the chassis of the robot and is mounted to
the top of the frame. Ten sensors are placed along
the length of the robot. The front and back of the
track each holds eight sensors. These sensors are
positioned at twenty-two and a half degrees apart.
We determined that this is the optimal configura-
tion of sensors for a rectangular robot when the
dimensions and the range of the sensors are con-
sidered. At completion, Slugger had dimensions of
88 cm (long) by 40cm (wide) by 40cm (high). It
has two pneumatic wheels, two casters, twenty-six
ultrasonic transducers, and two DC motors with
built-in encoders. Three 12V, 12.0 Amp/hr bat-
teries power the robot. See Figure 10 for the final
assembly.

3.1 Computer Architecture

The obstacle sensors, motors, and localization are
driven by a set of embedded computers on board
Finder. A Pentium single-board computer running
a custom Linux distribution provides high-level
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Figure 7: Plot of the number of found mines versus
total search time by random search using different
rate of detectors (100 x 100ft* environment with
25 obstacles).
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Figure 9: Plot of the number of found mines versus
total search time by random search using different
detection rates (100 x 100f#* environment with 4
obstacles).

control of the robot, communicating via standard
RS-232 serial lines with two Motorola 68HC16
slave microcontrollers. One microcontroller drives
the sonar and buffers the distance-to-object val-
ues returned by the sonar board; the other han-
dles low-level motor control and servoing. This
other board also manages an external positioning
device, described below. We chose the 68HC16’s
as motor controllers because we had previous ex-
perience using them (i.e., we did not have any spe-
cial reason). The second 68HC16 interfaces with
custom circuitry that drives 16 ultrasonic sensors
multiplexed off of one TI Sonar Ranging Board.
The high-level path planning resides on the em-
bedded Pentium processor. This computer con-
stantly receives sonar information from the sonar
68HC16 and sends “goto” commands to the motor
controller 68HC16. Essentially, the 68HC16s are
transparent to the programmer on the Pentium
board.
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Figure 11: The linear encoder box and a top view of the geometric locations of the box and poles.

3.2 Positioning

Finder has a high precision, low-cost, and low-
range external positioning device. Positioning
is a perhaps the largest challenge facing mobile
robotics. For the near-term, we have developed a
temporary solution that involves linear encoders.
Two strings wrapped around reels inside the robot
are attached to two poles at given locations. Us-
ing simple trigonometry given the lengths of the
strings and the known fixed distance between the
two poles, the robot determines its location.

The disadvantage of this system is the error
involved in the reliability of the strings wrapping
around the reels. When covering large areas, error
is created because the string used does not wrap
exactly the same each time it is reeled in and out.
However, this process can produce an accuracy of
0.3 cm in spaces up to 10 meters by 10 meters.
This has been tested over a variety of surfaces, in-
cluding being taken outside and tested on grass.
In addition to the level of accuracy, the entire sys-
tem can be implemented for less than $50, which is
very inexpensive in comparison to other position-
ing methods such as GPS or DGPS. However, we
are not suggesting that this linear encoder is the
cure-all for all positioning problems. First, it as-
sumes that all obstacles are lower than the height
of the wire. Second, for distances greater than
10 meters, we experienced a stochastic process in

which wire was wrapped and unwrapped on the
reel allowing for inaccurate readings at 30 meters.

Instead of trying to perfect this technology, we
opted to develop a vision system where the robot
looks at engineered landmarks to determine its po-
sition. The benefit of this approach is that we can
localize the robot at great distances, on the order
of a 50 meter by 50 meter field, but the drawback
is cost.

4 Conclusion

We presented two path planning approaches,
sensor-based complete and probabilistic. Sensor-
based coverage was based an exact cellular decom-
position in terms of critical points. The robot ex-
ecuting the coverage algorithm incrementally con-
structs this cellular decomposition while it is cov-
ering the space with back and forth motions. Our
algorithm that is presented in [Acar and Choset,
2000] guarantees complete coverage of unknown s-
paces.

For demining scenarios where time is limited
and there exists a priori information about the
minefield, we developed a probabilistic method
that extracts the minefield parameters. Once
these parameters were determined, the minefield
layout was fixed. Then one can guide the robot
opportunistically to decrease demining time.



The common path planning approach for dem-
ining is a random walk. However, we showed that
a coordinated search out performs random strate-
gies. Even though general belief is that coordinat-
ed strategies require high cost robot systems, our
complete sensor-based algorithm requires a sensor
suit that can guide the robot along the boundaries
of the obstacles such as infrared rings, tactile sen-
sors. Therefore, it leads to development of low
cost robots.

We designed a mobile mechanism that might
not be novel, but was a result of tradeoffs between
cost, performance, and transportability. This had
led us to the standard differential drive robot. We
are currently developing smart casters and hope to
use them to improve our performance. One mea-
sure of performance was the robot’s ability to po-
sition itself, i.e., overcome dead-reckoning error.
Ultimately, we would like to use our obstacle sen-
sors (range sensors) to bypass this problem or in
the future, some new GPS-like technology will be
developed that will work in all sorts of conditions,
at high resolution and at low cost, but today we
are using two forms of a triangulation system. The
first is the linear encoder that measures the length
of fishing wire; although this may seem like a clum-
sy solution, it is incredibly accurate and inexpen-
sive. Unfortunately, its range is limited, so we are
moving to a visual system.
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