
1355

0-7803-7651-X/03/$17.00  2003 IEEE 1

A Generic Framework for Robotic Navigation

Chris Urmson Reid Simmons Issa Nesnas
 Carnegie Mellon University Carnegie Mellon University Jet Propulsion Laboratory
 5000 Forbes Avenue 5000 Forbes Avenue California Institute of Technology

 Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pasadena, California 91109
 412-268-3978 412-268-2621 818-354-4321
 curmson@ri.cmu.edu reids@ri.cmu.edu nesnas@jpl.nasa.gov

Abstract— This paper describes progress in the
development of a navigation framework for the Coupled-
Layer Architecture for Robotic Autonomy (CLARAty). As
part of CLARAty, the framework shares the goals of
enabling code reuse while maintaining efficiency and
accessibility. The framework is roughly divided into
generic components along sense-think-act lines. A
discussion of the role and structure of each component is
presented. An illustrative example is presented of an
implementation of a Morphin/D*-based navigation
algorithm using this framework. Early results from
experimentation in simulation are also presented.

TABLE OF CONTENTS
...
1. INTRODUCTION1
2. NAVIGATION ARCHITECTURE.................2
3. EXAMPLE IMPLEMENTATION..................4
4. SUMMARY..7
REFERENCES ...7

 1. INTRODUCTION

This paper describes progress in the development of a
navigation framework for the Coupled-Layer Architecture
for Robotic Autonomy (CLARAty) [13]. As part of
CLARAty, this framework shares the design goals of
maximizing code reuse while maintaining an efficient and
accessible implementation.

CLARAty is designed to ease the transition from research
to flight-ready software. It attempts to achieve this goal by
developing a set of standard interfaces and a basic set of
reusable components. CLARAty is being developed using
object-oriented design principles to enable code reuse and
to provide an avenue for extension. An open source
development model is being used to allow collaborators to
contribute component extensions, which helps the
architecture achieve and maintain a critical mass. A
detailed discussion of the motivation for CLARAty can be
found in [14].

One novel feature of the CLARAty architecture is its two
layer structure, illustrated in Figure 1. The top level, or
decision layer, provides a combination of procedural
planner and operational executive. The lower level, or

functional layer, provides a hierarchical interface to
hardware components and rover services. The decision
layer may access services in the functional layer at any
point in the hierarchy, allowing the decision layer to plan at
a granularity appropriate for a given task.

The motivation for developing a generic navigation
framework comes from our experiences implementing
navigation algorithms for a variety of robots. For example,
a combination of a local obstacle avoidance algorithm
(Morphin) [9] and a real time path planner (D*) [11] has
been used on a number of robotic platforms. A first
implementation was developed for Ratler [5]. Since then, it
has been used on a progression of robots including Nomad
[15], an ATRV [10], and most recently Hyperion [12].
Each new implementation has made gains in performance
and capabilities but a major effort has been required to port
the software, often involving a complete reimplementation.
 A goal of this work is to simplify this process, allowing
researchers to focus on developing and testing new
capabilities rather than dealing with the mundane details of

Figure 1 - The relationship between the functional and
decision layers in CLARAty.

 2

creating a platform specific implementation of an existing
algorithm.

We believe that the navigation framework described here
will enable a large family of navigation algorithms to
readily run on a variety of robotic platforms. This “write
once, run anywhere” paradigm is a fundamental goal of
CLARAty. Not only will the framework simplify
development, it will also enable the direct comparison of
algorithms in controlled experiments.

This framework has been developed by first analyzing the
fundamental components of a variety of navigation
algorithms. Then, through judicious design, a modular
framework that is efficient, portable and easily extensible
was developed. The framework breaks navigation
algorithms into a set of decoupled components. Through
this decomposition, gains are made in code reuse and
maintainability. This decomposition is discussed in detail
in the following section.

 2. NAVIGATION ARCHITECTURE

The role of a navigation algorithm is to generate safe paths
through terrain while achieving specific goals. The
navigator uses sensor data to evaluate terrain and
locomotion components to execute motor and robot
trajectories.

Our navigation architecture is divided into modules roughly
along sense-think-act lines: traversability analysis, cost
functions, and action selection. In the traversability
analysis components, sensor data is converted into a model
of the world. Cost functions transform these models into a
form that can be used for planning. Action selectors then
use this planning space to determine how the robot should
move. Once a course of action is determined, the resulting
trajectory is then passed to the locomotion system for
execution. The navigator provides the basic interface

between decision layer processes and the navigation and
locomotion systems. Figure 2 illustrates the relationship
between the generic components of this framework. Each
component provides a standardized set of interface
functions that can be overridden in descendant classes to
provide specific behavior.

Waypoints

Navigation goals are expressed as waypoints. Waypoints
provide a simple interface that returns whether or not a state
is in a set of desired states. The basic implementation is a
two dimensional goal location specified with some error
tolerance. Descendent waypoint classes may provide more
complicated goal conditions, such as a goal line to cross or
achieving a position with a desired orientation.

Navigator

The navigator tracks the progress of the robot as it
progresses towards a waypoint. Through this interface, the

while (!done) {
update pose
execute callbacks
if (cur_waypoint->achieved()) {

if (!waypoint_queue->is_empty()) {
cur = waypoint_queue->pop()

} else {
done = true

 }
} else {
 traversability_analyzer->update()
 action = selector->get_best_action();
 locomotor->execute(action)
}

}

Figure 3 - The navigation loop.

Figure 2 – The structure of the navigation framework.

 3

decision layer may queue a list of waypoints for the robot to
pass through. The navigator also provides an interface
through which callbacks can be registered. The callbacks
can be used to monitor the progress of the navigator or, in a
more complex way, to trigger non-navigation tasks to
execute (e.g. opportunistic science). Figure 3 shows the
basic sense-think-act loop that makes up the navigator’s
execution loop.

Traversability Analysis

Traversability analysis involves the conversion of sensor
data into a model of the world. This may be as simple as a
binary occupancy grid or as complicated as a statistical
evaluation of the terrain (illustrated in Figure 4).

The decoupling of terrain analysis from the details of the
navigation algorithm allows for a straightforward
interchange of sensors and processing techniques without
changing the underlying approach used to select actions.
The traversability analyzer class provides a simple hook to
trigger this analysis. Objects that require terrain
information register with the traversability analyzer; when
data becomes available (e.g. the sensors have been sampled
and the terrain analysis has been performed) each registered
object has its callback function executed. By using a
publish/subscribe paradigm in this way, information can
flow to classes outside of the navigation subsystem (i.e. for
monitoring or map building) while unnecessary interfaces
are not forced upon classes that do not need traversability
data. Furthermore, the sensor update rate can be decoupled
from the navigation rate, within the constraints imposed by
the sensor footprint and speed of the robot [4].

Cost Functions

Cost functions transform the terrain evaluation data into a
form that can be used for planning. They are divided into
two types: local and global. Local cost functions return the
instantaneous cost for traversing a particular patch of
terrain. Global cost functions provide the estimated cost to
reach a goal from a particular location. This division is
based on the assumption that, in the large scale, robot
motion can be approximated as holonomic, while locally
there are a variety of constraints that limit the motion of a
robot. Both types of cost functions provide a cost per unit
distance scale factor to allow them to be weighted
appropriately.

Local cost functions may simply return a binary cost stating
whether a location is traversable or they may use the output
of a complicated traversability analyzer to provide a
continuous cost measure. Similarly, global cost functions
may be as simple as the distance to the goal or may be as
complicated as the cost to go returned by an information
optimal planner. By combing these two types of cost

functions, the local minima problems associated with purely
local path planners can be avoided.

Action Selection

The action selector class is where the specifics of a
navigation algorithm are implemented. Fundamentally, the
role of the action selector is to determine the appropriate
next action(s) for the robot to perform given its current
state and information from local and global cost functions.

Through the decoupling of action selection from
traversability analysis, it is straightforward to modify the set
of trajectories over which the navigation algorithm searches
(for example searching arcs instead of point-turn/straight
line paths). The generic action selector interface provides
accessor functions to get and set the current waypoint, and
a function that returns the next action the robot should take.

To enable a generic implementation of algorithms, action
selectors are provided with a model of the locomotion
capabilities of the rover. At minimum, the model provides
a kinematic projection of trajectories and important
kinematic properties, such as the number of wheels and the
wheelbase of the robot. Action selectors may use this
information to generically integrate terrain costs over the
expected path of a robot.

Locomotion

The locomotor classes provide an abstract interface to the
underlying robotic locomotion mechanism. The
locomotion framework is structured in a double-bridge
software pattern [2], allowing independent specialization of
the kinematic configuration and control interface. The
wheel locomotor class provides the interface used by other

Figure 4 - Representation of a statistical evaluation of
terrain.

 4

components to maneuver the vehicle. The wheel locomotor
interface defines functions that descendants must provide
to encapsulate the specifics of the protocol used to
command the mechanism. The wheel locomotor model
describes the kinematics of the robot. This structure allows
for maximal code reuse, which is particularly important in
a research environment where changes to the robot may
occur incrementally, e.g. the control system may be
redeveloped while the mechanical robot remains the same,
or vice versa. Figure 5 illustrates this structure.

Locomotor interface classes provide an abstraction to the
different control interfaces potentially available on a robot
(e.g. independent motor control, bank control, high level
arc control). Drive commands are used as a high level
interface to the locomotor. Each command encodes one of
six basic motions a mobile robot can perform (see Figure
6). An instantiation of the locomotor uses its associated
interface class to convert the given drive commands into a
set of low-level motor commands.

Information about the kinematic properties of the robot is
provided through the same locomotion model that is used in
the action selector. By maintaining this information in a
single location, the possibility of a mismatch between the
navigation and locomotion systems is eliminated, allowing a
robust decoupling of the generation of robot level motion
commands and individual motor control commands.

Framework Implementation

As with all parts of CLARAty, the navigation framework is
designed to operate on a variety of software and hardware
platforms. Operating system support includes various
flavors of Linux, VxWorks, and Solaris. The navigation
framework also operates on both Intel and Motorola
processors. To simplify the task of developing for multiple
platforms, the Adaptive Communication Environment
(ACE) [7] is used as a hardware and operating system
abstraction layer. ACE provides operating system
independent implementations of a variety of common
programming constructs including mutexes, threads, and
inter-process communication structures. Through the use

of ACE, porting the framework to other operating systems
(e.g. QNX) should be straightforward.

 3. EXAMPLE IMPLEMENTATION

To demonstrate the use of the framework, an example
implementation of a navigation architecture that utilizes
both local and global knowledge to traverse unknown
terrain is now presented. This implementation is being used
to operate a variety of simulated and real rovers, both at
Carnegie Mellon University and at NASA.

Prior implementations of this navigation algorithm
[5][10][12] were closely tied to the robot for which they
were developed. With each new robot, the software would
generally need to be reimplemented to provide
modifications to allow it to run on a specific platform. For
example, in each module the arcs selected for evaluation
implicitly encode a model of how the vehicle moves.
Furthermore, since each version of the navigation software
was implemented for a different robot with different
capabilities, it was difficult to directly compare the

Figure 5 - The double-bridge structure of the locomotion
framework.

Figure 6 - Six basic motions (A) idle, (B) turn in place, (C) drive straight, (D) drive along an arc, (E) crab in an arbitrary
direction, and (F) crab along an arc.

 5

performance of these algorithms.

Terrain Analysis

The Morphin algorithm [9] is used to perform terrain
analysis. It operates by generating statistical metrics of the
terrain from range data. To do this, the local terrain is
divided into cells. Groups of cells are combined into
overlapping robot-sized patches. For each patch the
algorithm finds the best plane that represents the perceived
terrain (see Figure 4).

Traversability is determined by analyzing three metrics:
slope, roughness, and “step height”. Each metric is
normalized so that they can be compared directly. The
traversability of a patch is determined by the worst of the
three values.

In general, regions of the sensor footprint that contain more
data points generate better estimates of the actual terrain.
To encode this, a certainty value is computed for each
patch. Certainty is calculated as a function of the number
of points in a patch and the evenness of the distribution of
the points over the patch.

Cost Functions

The traversability map generated by Morphin is used
directly as the local cost function. The cost returned is
calculated as the inverse of the traversability score
multiplied by the certainty of the data in a cell.

Dynamic A* (D*)[11] is used to provide information-
optimal global costs. D* generates an initial cost map from
available a priori information and then modifies the map as
new terrain analysis data becomes available. The advantage
of D* over basic A*-like algorithms is that it replans in
regions of the space that are affected by new information,
rather than replanning over the entire space. This provides
a significant performance advantage, particularly in the case
of mobile robotics where new information about the world
is localized due to the nature of the sensors used.

Action Selection

In this implementation, the action selector chooses among a
set of forward and backward arcs. The action selector
utilizes data from both the Morphin local cost evaluation
and the D* global cost function to determine the best
trajectory to execute.

Prior Implementations

In prior implementations, the navigation system was not
decomposed along the lines described here. Morphin and
D* independently determined costs for each arc the robot
could traverse. Morphin would attempt to avoid difficult
terrain in the local sensor map, while D* would try to
minimize the distance to a goal. These “votes” were then
either summed or passed through an arbitration system.
The combined lowest cost arc was then selected for
execution.

Figure 7 - Class Diagram of a Morphin/D* navigator. Light grey boxes represent classes added for visualization. Dark grey
boxes represent classes that were added to extend the navigation framework for this navigator.

 6

The capabilities of a robot were also implicitly encoded in
each algorithm, which decreased the reusability of
developed components. The functionality of the action
selector was also distributed to both algorithms, requiring
independent implementations of models to predict the
outcome of executing various arcs. Since the action
selector was encoded within each algorithm, modifying the
types of trajectories executed by a robot was difficult.

Navigation Framework Based Implementation

To address these problems, Morphin and D* were ported to
the navigation framework discussed in this paper. Figure 7
shows the resulting structure of the software. The Morphin
algorithm provides traversability data to the navigation
system through the callback interface described earlier.
Three classes register to receive this data:

• Goodness Callback: this class updates a local
traversability map used as a local cost function.

• D* Goodness Callback: this class transfers the
traversability analysis to the map used by the D*
global cost function.

• Goodness Streamer Callback: a debugging class
which is used to broadcast this data to an off board
user interface.

The local and global cost functions are used by an
implementation of the action selector interface which
searches for the best arc to traverse.

This framework addresses many of the problems associated
with prior implementations of the algorithms. In this
framework, the model used to describe the motion of the
robot is centralized, so all cost evaluations are consistent.
Furthermore, the scaling data in the cost functions allows
for arbitrary cost functions to be used while still providing

reasonable summations.

Within the framework, each component (e.g. the action
selector, Morphin traversability analyzer, D* cost function,
and locomotion model) is independent of the others.
Changing the types of motion the robot performs therefore
does not require changes to any module other than the
action selector. For example, to have a robot move along
straight line segments connected by point turns would
require only the implementation of a new action selector.
Similarly, by replacing the Morphin traversability analyzer
with a port of the GESTALT terrain analyzer [3], the two
traversability analyzers could be compared directly, without
the need to change other software.

The fundamental nature of the algorithm can also be easily
changed. For example, by removing the D* global cost
function and replacing the action selector with a new
module, a new navigation system that resembles the Rover
Bug [6] algorithm could be quickly implemented.

Results

This implementation has been tested in simulation and is
currently undergoing testing in the JPL Marsyard. As
described earlier, the framework operates on both VxWorks
and Linux and on both Intel and Motorola processors.
Through the use of an appropriate locomotion model and
interface, the navigator operates on both Rocky 7 and
Rocky 8, as well as with a generic rover in simulation.

Though more general, the new implementation appears to
be approximately as efficient as the original
implementation. Timing results show that the navigation
loop, excluding the time required to perform stereo vision,
executes in under 0.1s on a 900Mhz Pentium III. This is
approximately the same amount of computation time as
required by the most recent prior implementation.

Figure 8 - Navigation camera image and visualization tool showing Morphin terrain analysis and action selection for
an arbitrary pose in the scene.

 7

To evaluate and debug our new implementation, the
visualization tool shown in Figure 8 was developed. It is
used to perform traversability analysis on recorded images,
and to test the behavior of an action selector given the
traversability analysis. In previous implementations, a
similar tool was developed to evaluate the traversability
analysis, but it was not possible to visualize the action
selection process. Using components from the new
framework, the tool was straightforward to develop and
provides the enhanced ability of rendering the reasoning
being performed by the action selector.

In simulation, the navigation software has repeatedly driven
the robot between waypoints spaced approximately 40m
apart. Figure 9 shows a composite navigation map
generated as the robot traveled through two consecutive
waypoints. The first waypoint was located to the right of
the image; the second is represented by the blue
hemisphere.

True to its goal, this implementation of the navigation
algorithm can be directly utilized on a variety of robotic
platforms. The core navigation software requires no
changes to transfer it between platforms. The only software
that differs between various platforms is the wheel
locomotor model, wheel locomotor interface and the
software used to generate range data. These changes are
localized, and the required components can be used across a
variety of other navigation algorithms.

4. SUMMARY

The navigation framework presented in this paper provides
a generic approach to implementing algorithms so that they
may operate on a variety of robotic platforms. The
framework defines a set of basic interfaces and callback
hooks that provide broad flexibility in the algorithms that
can be implemented.

Most navigation approaches fit well within this framework,
though some, such as the Fuzzy Logic navigator [8] would
likely not benefit from the reuse of many of the components
described in example implementation. Other completely
reactive approaches, such as the subsumption architecture
[1], do not fit well within this framework. That being said,
a large family of navigation algorithms can be implemented
using this framework, and will greatly benefit from reusing
available and robust components.

In the near future we intend to more thoroughly test and
evaluate our current navigation implementation. Within the
next year we intend to implement both the Rover Bug [6]
and GESTALT [3] algorithms within this framework and
compare them in controlled experiments.

Acknowledgments

This paper describes work contributed by the entire
CLARAty team at CMU, NASA Ames and the Jet
Propulsion Laboratory. The authors would like to
particularly acknowledge and thank Max Bajracharya, Kam
Lasater, Eric Leese, and Andy Yang for their contributions.
 This work is supported by NASA under contract #1229340.

 REFERENCES

[1] R. Brooks “Elephants Don’t Play Chess”, Robotics and
Autonomous Systems, No 6, 1990.

[2] E. Gamma et al., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Reading, Mass:
Addison- Wesley, 1995.

[3] S. Goldberg et al., “Stereo Vision and Rover
Navigation Software for Planetary Exploration”, Proc.
IEEE Aerospace Conference, March 2002.

[4] A. Kelley and A. Stentz. “Rough Terrain Autonomous
Mobility – Part 1: A Theoretical Analysis of
Requirements”, Autonomous Robots, May 1998, pp 129-
161

[5] E. Krotkov et. al., “Evolution of a Prototype Lunar
Rover: Addition to Laser-Based Hazard Detection, and
Results from Field Trials in Lunar Analogue Terrain”,
Autonomous Robots, July, 1997

[6] S. Laubach and J. Burdick. “An Autonomous Sensor-
Based Path-Planner for Planetary Microrovers”, Proc. IEEE
International Conference on Robotics and Automation,
Detroit, USA, May 1999.

[7] D. Schmidt, “An Architectural Overview of the ACE
Framework: A Case-study of Successful Cross-platform
Systems Software Reuse”. USENIX login magazine,
Tools special issue, November, 1998.

[8] H. Seraji et al. “Safe Navigation on Hazardous
Terrain”, Proc. IEEE International Conference on Robotics
and Automation, Seoul, Korea, May 2001. Figure 9 - An example composite navigation map

generated during a simulation experiment.

 8

[9] R. Simmons et al., “Experience with Rover Navigation
for Lunar-Like Terrains”, Proc. Conference on Intelligent
Robots and Systems, Pittsburgh PA, August 1995.

[10] S. Singh et al. “Recent Progress in Local and Global
Traversability for Planetary Rovers”, Proc. IEEE
International Conference on Robotics and Automation, San
Francisco, USA, April 2000.

[11] A. Stentz. “Optimal and Efficient Path Planning for
Partially-Known Environments”, Proc. of IEEE
International Conference on Robotics and Automation,
volume 4, pp.3310-3317, 1994.

[12] C. Urmson, et al., “Stereo Vision Based Navigation for
Sun-Synchronous Exploration”, Proc. of IEEE/RSJ
Conference on Intelligent Robots and Systems, October
2002.

[13] R. Volpe, et al., "The CLARAty Architecture for
Robotic Autonomy." Proceedings of the 2001 IEEE
Aerospace Conference, Big Sky Montana, March 10-17
2001.

[14] R. Volpe, et al., "CLARAty: Coupled Layer
Architecture for Robotic Autonomy." JPL Technical Report
D-19975, Dec 2000.

[15] D. Wettergreen et al. “Developing Nomad for Robotic
Exploration of the Atacama Desert”, Robotics and
Autonomous Systems, February 1999.

Chris Urmson is a Ph.D. student at
Carnegie Mellon University. He earned
his B.Sc. from the University of
Manitoba. While at Carnegie Mellon, he
has been involved with the development of
a variety of space and terrestrial robots.
His current research focuses on the
development of a real time dynamical
constraint cognizant planner for outdoor
mobile robots.

Reid Simmons is a Principal Research
Scientist in the School of Computer
Science at Carnegie Mellon University.
His research focuses on developing self-
reliant robots that can autonomously
operate over extended periods of time in
unknown, unstructured environments.
This work involves issues of robot
control architectures that combine deliberative and
reactive control, probabilistic planning and reasoning,
autonomous indoor and outdoor sensor-based navigation,
and robust error detection and recovery. Dr. Simmons has
been involved in the development of over a dozen
autonomous robots, and was part of the Remote Agent team
that won the 1999 NASA Software of the Year Award.

Issa A.D. Nesnas, Ph.D. is the Task
Manager for the Architecture and
Autonomy Research collaborative task.
His research interests include software
and hardware architectures for robotic
systems and sensor-based robot control.
Issa received a B.E. degree in Electrical
Engineering from Manhattan College,
NY, in 1991. He earned the M.S. and Ph.D. degrees in
Mechanical Engineering from the University of Notre
Dame, IN, in 1993 and 1995 respectively. In 1995, he
joined Adept Technology Inc. as a senior project engineer.
He has joined NASA at the Jet Propulsion Laboratory in
1997. At JPL he has worked on several robotic and flight
projects researching autonomous sensor-based systems. He
has received several Notable Organizational Value Added
(NOVA) Awards and an Exceptional Achievement Award
for his work at JPL. Issa holds a patent for the Impulse-
based flexible parts feeder and is a member of Eta Kappa
Nu and Tau Beta Pi National Honor Societies.

