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Abstract

We propose a model- and exemplar-based approach for face
recognition. This problem has been previously tackled using
either models or exemplars, with limited success. Our idea
uses models to synthesize many more exemplars, which are
then used in the learning stage of a face recognition system.
To demonstrate this, we develop a statistical shape-from-
shading model to recover face shape from a single image,
and to synthesize the same face under new illumination. We
then use this to build a simple and fast classifier that was
not possible before because of a lack of training data.
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1. Introduction

The task of automatic face recognition has been actively re-
searched in recent years, with researchers employing both
model-based and exemplar-based techniques. Although
great strides have been made after almost three decades, the
task remains unsolved in general. Current systems work
very well whenever the task image to be recognized is cap-
tured under conditions similar to those of the training im-
ages. However, they are not robust enough if there is varia-
tion between task and training images [14]. Changes in in-
cident illumination, head pose, facial expression, hairstyle
(including facial hair), cosmetics (including eyewear) and
age, all confound the best systems today.

As a general rule, we may categorize approaches used
to cope with variation in appearance into three kinds: in-
variant features, canonical forms, and variation-modelling.
The first approach seeks to utilize features that are invari-
ant to the changes being studied. For instance, the Quo-
tient Image [15] is (by construction) invariant to illumina-
tion and may be used to recognize faces (assumed to be
Lambertian) when lighting conditions change. The second
approach attempts to “normalize” away the variation, either

by clever image transformations or by synthesizing a new
image (from the given task image) in some “canonical” or
“prototypical” form. Recognition is then performed using
this canonical form. Examples of this approach include
[23, 24]. In [23], for instance, the task image under arbi-
trary illumination is re-rendered under frontal illumination,
and then compared against other frontally-illuminated pro-
totypes. The third approach of variation-modelling is self-
explanatory: the idea is to learn, in some suitable subspace,
the extent of the variation in that space. This usually leads
to some parameterization of the subspace(s). Recognition
is then performed by choosing the subspace closest to the
task image, after the latter has been appropriately mapped.
In effect, the recognition step recovers the variation (e.g.
pose estimation) as well as the identity of the person. For
examples of this technique, please see [6, 8, 9, 21].

Despite the plethora of techniques, and the valiant effort
of many researchers, face recognition remains a difficult,
unsolved problem in general. While each of the above ap-
proaches works well for the specific variation being stud-
ied, performance degrades rapidly when other variations
are present. For instance, a feature invariant to illumina-
tion works well as long as pose or facial expression remains
constant, but fails to be invariant when pose or expression
is changed. This is not a problem for some applications,
such as controlling access to a secured room, since both the
training and task images may be captured under similar con-
ditions. However, for general, unconstrained recognition,
none of these techniques are robust enough. Moreover, it is
not clear that different techniques can be combined to over-
come each other’s limitations. Some techniques, by their
very nature, exclude others. For example, the Symmetric
Shape-from-Shading method of [23] relies on the approxi-
mate symmetry of a frontal face. It is unclear how this may
be combined with a technique that depends on side profiles,
where the symmetry is absent.

We can make two important observations after surveying
the research literature: (1) There does not appear to be any



feature, set of features, or subspace, that is simultaneously
invariant to all the variations that a face image may exhibit.
(2) Given more training images, almost any technique will
perform better. These two factors are the major reasons why
face recognition is not widely used in real-world applica-
tions. The fact is that for many applications, it is usual to
require the ability to recognize faces under different varia-
tions, even when training images are severely limited.

Another way to categorize face recognition techniques is
to consider whether they are based on models or exemplars.
Models are used in [15] to compute the Quotient Image,
and in [6] to derive their Active Appearance Model. These
models capture prior class information (the class of faces),
and provide strong constraints when dealing with appear-
ance variation. At the other extreme, exemplars may also
be used for recognition. The ARENA method in [18] sim-
ply stores all training images and matches each one against
the task image. Obviously, scalability is an issue. However,
the visitor identification system reported in [19] that uses
ARENA appears to naturally handle illumination changes,
as exemplars under new lighting conditions are added to the
system. Some subspace-methods are also based on exem-
plars. For example, the eigenface approach in [20] and the
Fisherface method in [3] embed exemplars in their respec-
tive subspaces, and recognition is performed via nearest-
neighbor classification in these subspaces.

As far as we can tell, current methods that employ mod-
els do not use exemplars, and vice versa. This is surprising,
since these two approaches are by no means mutually ex-
clusive, and we can leverage the strengths of each to better
solve the problem. In this paper, we propose a way of com-
bining models and exemplars for face recognition. We will
use models to synthesize additional training images, which
can then be used as exemplars in the learning stage of a face
recognition system. To illustrate this, we develop a model
that recovers the shape of a face from a single image under
an arbitrary but unknown illumination, and that re-renders
the same face under new illumination [17]. We then synthe-
size many more images to be used for learning in a simple
eigenface classifier.

2. Shape-from-Shading M odel

We begin by developing a model that allows us to recover
the face shape, in terms of surface normals, from a single
image. We assume that the image is taken under a sin-
gle point light source at infinity. The direction of the light
source is unknown. This shape-from-shading problem has
had a long history [10], and is in general underconstrained:
many 3D shapes give rise to the same 2D image. To over-
come this, we build a statistical model to guide the shape-
recovery process. Similar work is reported in [23, 7, 8], but
we differ in a few key areas. Unlike [23], we do not ex-

plicitly depend on face symmetry, so our method will work
for other non-frontal poses too. And unlike [8], we do not
require multiple images to be available. We work with as
few as one image, which means we cannot use photometric
stereo. In [7], a method is also presented to recover sur-
face normals from a single image, using symmetry and in-
tegrability constraints. By contrast, both these contraints
are implicit in our statistical model, rather than explicit. We
argue that this affords us greater latitude to use our method
for other non-symmetric objects, or even to exploit other
symmetries in our statistical model which may not be read-
ily apparent. Another difference is that we do not require
faces to be strictly Lambertian; instead, we model the non-
Lambertian component statistically. In terms of rendering
the recovered face under new illumination, our technique is
similar to the Quotient Image of [15] in that we also rely on
class-based information. In their case, it takes the form of
face images taken under 3 linearly independent illumination
directions. In ours, the class-based information is a statisti-
cal model of the variation of surface normals from person to
person, and of the non-Lambertian component of surface re-
flection. Our statistical model is explained in detail in [17],
but for completeness we will describe it here.

2.1. Augmented Lambertian equation

At the heart of our method is the following equation, which
is the standard Lambertian equation [11] augmented with an
additive term. This is done because the standard Lamber-
tian equation does not handle shadows nor specular reflec-
tions, which occur naturally in face images. The augmented
model is then:

i(x) =n(x) s+e 1)

which says that at pixel position x, the pixel intensity,
i € R, is related to dot product of the surface normal (in-
cluding albedo) at that pixel, n € R3, and the single light
source, s € R3, plus an error term e € R. The purpose of
this error term is to model shadows and specular reflections,
without explicitly recovering the full 3D shape (depth) of
the face. Itis clear that e = e(z, s), since it is just the differ-
ence between i and n " s. We assume that surface normals
at different pixels are independent of one another. For the
error term however, we assume that e(z, s) is independent
of e(y, s) for other pixels y, but correlated with e(x,t) un-
der some other illumination ¢. This assumption allows us to
synthesize more realistic images while remaining computa-
tionally tractable. More details will be given in Section 2.2.
Note that Equation (1) is really a system of equations, one
equation for every pixel positionz = 1, --- , d in the image.
Note also that unlike [15], our model does not assume that
every person has the same face shape, nor constant albedo,



Figure 1: Two Yale faces under the same set of four illumination
directions.

but allows both to vary from pixel to pixel and from person
to person.

Given only a single d-pixel input image, Equation (1) is
underconstrained: there are 4d + 3 unknowns (the compo-
nents of the vectors n and s, and the scalars e) but only d
equations. Moreover, there is an inherent ambiguity, since
we may insert any 3 x 3 invertible matrix A and its inverse
togetn's =n' (A4 Y)s = (nTA)(A71s) = A T3 We
will use knowledge about the class of faces in general to
solve for the unknowns. More specifically, we will learn
a statistical model for n(z) and e(z, s) from a set of boot-
strap images. This is the Yale dataset [8], comprising 15
people each taken under roughly 60 known illumination di-
rections (Figure 1). Some basic preprocessing was done: all
faces were aligned to an arbitrarily chosen reference face by
manually marking 3 points (the centers of the eyes, and the
base of the nose) and performing an affine warp; the gray-
scale images were then cropped to remove the background
and scaled to 120100 pixels.

2.2. Learning the statistical model

Our statistical model is to learn the probability density func-
tion (pdf) for n(z) and e(z, s). We assume that the pdf’s are
Gaussian distributions of unknown means and covariances,
which we will estimate using maximum likelihood. This
turns out to be the sample mean and sample covariance,
computable from the bootstrap images. More precisely, let
B be a d x m matrix whose columns are the d-dimensional
images taken under illumination directions {s;}7,. Let N
be a 3 x d matrix whose columns are the vectors {n(z)}2_,.
Also, let S be a 3 x m matrix of the illumination directions,
and let E be a d xm matrix of the error terms. Then for each
person in the bootstrap set, we compute the least-squares
solution for N and E as follows:

B=N"S+E
= N=(88")"'sB' 2)
and E=B-N'TS

From this we compute the sample mean vector p,,(z)
and sample covariance matrix C,(z) for n(z). Since
e(z, s) is a scalar, we compute the sample mean p.(z, s)
and sample variance o2(z, s). To produce better synthetic
images, we also compute the correlation coefficient p;, be-
tween e(x, s;) and e(x, s ). Statistically, we are modelling
e(z, s;) and e(z, s) as a jointly Gaussian distribution, with
correlation coefficient p;;. We will make use of this in Sec-
tion 3.4.

3. Using the M odel

Having learned the statistical model, we make use of it in
the following algorithm:

1. Given an image, estimate the unknown illumination s
(which may be different from those in the bootstrap
set).

2. Compute . (z,s) and o2 (x, s)

3. Recover n(z) at each z by computing the max-
imum a posteriori (MAP) estimate, nu.(z) =
arg max,(,) Pr(n(z)|i(z)).

4. Synthesize a new image 4’ (x) under novel illumination
s' using nyae(x) and the joint statistics of e(x, s) and
e(zx,s"). Note again that s’ may be different from the
illumination in the bootstrap set.

The next few sections elaborate on these steps.

3.1. Estimating s

Estimating the unknown illumination is a well-studied prob-
lem [22, 25], since it is part of the shape-from-shading prob-
lem. This turns out to be easier than recovering the shape.
For our purposes, we use the simple method of kernel re-
gression [1]. We note that since the bootstrap set is labeled
with known illumination, we can recover s by viewing it as
a continuous-valued classification problem. More precisely,
we first store all the .J training images, {a;}7_,, along with
their labeled illumination, {s;}7_,. Given a new image, b,
we recover its illumination s using simple kernel regression:

J

J
s= ijsj/(ij)

T ©
where w; = exp[—(D(b, a;)/0;)’]

and D(b,a;) = || b — a; ||2 , the Ly norm



We use Gaussian kernels of widths o, which control the
extent of influence of a;. These values are pre-computed
so that approximately ten percent of the bootstrap images
lie within 1 x ¢; at each a;. Basically, kernel regression is
a smooth interpolation method in which bootstrap images
near b get weighted more than those farther away. How
accurate is this method of estimating s? We compared the
estimated illumination of the 60 images of a test face against
their actual values. Details of the test are given in [17], but
on average, the estimated s differ from the actual value by
6.3°, with a standard deviation of 3.8°. Our method is thus
reasonably accurate.

3.2. Computing the statistics of e(z, s)

Our statistical model has learned the statistics (i.e. pe(z, s5)
and o2(z, s;)) of e(z, s;) at the known illuminations s ;. We
need a way to compute these same statistics for any new
illumination s. Again, we use kernel regression. The mean
and variance at s are smoothly interpolated from the known
values at {sj}jzl. The kernel regression equation used here
is similar to that in (3).

We also need a way to interpolate from the known cor-
relation coefficients p;;, to obtain a new correlation coeffi-
cient pyo between illuminations s; and s, (one or both of
which may be different from the bootstrap set). To do this,
we need a slight modification. We view the problem now
as interpolating the (unknown) function g(¢) : R® — R,
where g(t12) = p12 and t12 is the concatenation of s; and
s9: t1a = [s{,54]". We will now use kernel regression
to interpolate g(¢). Note that because p12 = p21, We can
actually obtain two estimates g(¢12) and g(¢21). By averag-
ing these two values, we obtain a better (smaller variance)
estimate.

3.3. Computing the MAP estimate

Using Bayes’ rule, the MAP estimate becomes nyp(z) =
arg max(,y Pr(i(z)|n(z)) Pr(n(z)). The second term is
simply the Gaussian pdf learned in the previous section,
while the first term may be obtained from Equation (1).
Given n(z), Equation (1) says that i(x) is a scalar random
variable with Gaussian pdf of mean n(z) " s + p. (x, s) and
variance o2 (z, s). It can be shown [17] that the MAP esti-
mate may be computed from solving linear matrix equations
of the form:

Asxnyp=0>
_ Ll o7 -1
where A_U—gss +C, @
and b:(zt_jiz“e)sjtc,;lun

€

Note that our algorithm recovers each n(z) indepen-
dently of other n(y). We have not explicitly used any other
constraints such as smoothness or symmetry. These con-
straints are implicit in our statistical model, and we have
found them to be sufficient for our purpose. Imposing the
symmetry constraint explicitly, for example, will limit the
applicability of our method to symmetric objects only. Be-
sides, faces are not perfectly symmetric [13], so this con-
straint may actually hurt our algorithm.

If we have multiple images from which to recover
n(x), we can easily extend the MAP estimation proce-
dure. Let w(z) = [i1(x),i2(z), - ,im(z)]" be the
vector of m intensity values at pixel . We now seek
argmax Pr(n(z)|w(z)), which by Bayes’ rule becomes
argmax Pr(w(z)|n(z)) Pr(n(z)). The second term is as
before, while the first term is now a multivariate Gaus-
sian pdf with mean STn + p, and covariance matrix C.
The new variables are defined as: S, a 3 x m matrix
whose columns are the estimated illuminations of the m
images; u, an m x 1 mean vector containing the scalar
means p.(z,s1), -+, pe(z,5m), and C, an m x m co-
variance matrix whose diagonal entries are the variances
o%(z,81), - ,02(x,5m), and whose off-diagonal entries
are the covariances o, between e(z,s;) and e(z,sy).
Again, the solution takes the form of Equation (4), but
now the terms are: A = SC~'ST + C,', and b =
SC(w —p) + C, i

Note that these m images must differ only in illumina-
tion. ldentity, facial expression, etc., must remain the same,
otherwise the method may fail. Since it is difficult in real-
world applications to acquire several images of one person
that differ only in illumination and nothing else, the oppor-
tunity to use multiple images is rare. Nevertheless, we are
pleased that our statistical model is theoretically able to han-
dle multiple input images.

3.4. Synthesizing new images

We now have the tools to synthesize images under any new
illumination s’. We can simply use the standard Lamber-
tian equation and compute n,.-(2) T s’. But this generates
images that do not look realistic: specularities and shadows
are not properly synthesized. This is because real faces are
not perfectly Lambertian.

To do better, we note that having computed nyas(x), we
can obtain the actual error at the original illumination s,
frome = e(z,s) = i(z) — nusp(z) " 5. We now ask for the
most probable ¢’ = e(x,s’) given knowledge about e. In
other words, we want argmax,.: Pr(e’|e). Since we have
modelled the joint pdf of e’ and e as a Gaussian distribu-
tion, this turns out to be £[e’|e], the conditional expecta-
tion of ¢’ given e. From basic probability theory, we know
that if two random variables (z, ) are jointly Gaussian with
means p, and p,, variances o2 and 02, and correlation co-



Figure 2: Image rendered using the strict Lambertian equation
(left) versus one that uses the error term (right). Specular reflection
on the cheeks are more accurately rendered in the right image.

efficient p,,, then y|x is also a Gaussian pdf with mean 4 =
fy + Poyoy(75=), and variance o® = o (1 — p3, ). The
variances and correlation coefficient terms are computed us-
ing kernel regression as described in Section 3.2. The syn-
thesized image is thus: i’ (z) = nuas(z) T 8" + E[€’]e].

The effect of the error term may be seen in Figure 2,
which compares an image rendered under strict Lamber-
tian assumption versus one rendered using the additive error
term. Clearly, the use of the error term produces a more vi-
sually pleasing result.

4. Face Recognition

Let’s recall our proposed approach for face recognition. We
proceed in two stages: first, we will use models to generate
additional synthetic images; these are then be used as ex-
emplars to train a face recognition system. Using our syn-
thesis method of the previous section, we can easily render
images under many illumination directions. The effect of
multiple light sources is also readily produced: since light
is additive, we simply add the images created under single
light sources. From our literature survey, we note that hav-
ing more training images will almost always improve the
performance of any classification system. It is the dearth of
training images that cripples many a classifier. However, we
are particularly interested in using these synthetic training
images in an exemplar-based classifier.

4.1. Exemplar-based classifiers

The simplest exemplar-based method is to use the training
images directly in a k-nearest-neighbor search [19]. The
obvious drawback is the enormous amount of storage space
required, and the time it takes to perform a single classifi-
cation. Clearly, this method is not readily scalable. We can
improve things somewhat by reducing the dimensionality
of the problem. A standard way to do this is via Principal
Components Analysis (PCA) [5].

From the set of d-dimensional training vectors {z}}Z,,
we compute a d x k projection matrix W and ad x 1 mean
vector m. We then project all the training data into a lower-
dimensional PCA subspace usingy = W ' (z — m). The
benefit is that often, ¥ < d, allowing us to greatly reduce
the dimensionality while preserving the information in the
original images. We can then work with {y} instead of {z},
since they are just compressed versions of the original. The
problem is that given the size of our images, and the fact that
we are synthesizing thousands more, the usual way of com-
puting W from the Singular Value Decomposition (SVD)
of {z} becomes intractable. The time and space complex-
ity are O(M?) and O(M?) respectively. Instead, we need
away to compute W incrementally, as new images are syn-
thesized.

We use the method of [4]. The idea is to incrementally
update the SVD (and hence the PCA subspace) as more im-
ages are added. Furthermore, not every additional image
will affect the SVD; only those that are significantly out-
side the PCA subspace need to be considered, others can
be safely ignored since they are well represented in the
subspace. Using this technique and requiring that the re-
construction error to be no more than 1%, we found that
the PCA subspace so computed spans only 40 dimensions,
much smaller than the 12000 dimensions of our original im-
ages.

Despite this, working in this reduced subspace still re-
quires a substantial amount of memory. The main culprit is
the fact that we are synthesizing so many images. One way
to overcome this is to embed the exemplars in their own sub-
space, one for each person to be recognized. This is readily
done by computing individual PCA subspaces (W,,m,) for
each person p. This is different from the global PCA sub-
space W described above, which is computed from all the
exemplars, regardless of identity. Recognition is now per-
formed using reconstruction error, as follows:

1. Given a task image z, project it into each individual
subspace using y, = W, (z — my).

2. Reconstruct the image z, = Wpyp, +m,, and compute
the reconstruction error || e,, ||*=|| z — z, ||*.

3. Pick the subspace that has the smallest || e, ||2.

The memory requirements for this individual eigenspace
approach is linear in the number of classes, and does not de-
pend on number of synthetic exemplars generated. Recog-
nition speed is also fast: linear in the number of classes,
and independent of the number of exemplars. In terms of
pattern recognition theory, each || e, ||? is just a quadratic
discrimination function [5].



4.2. Analysis

An important and natural question to ask is this: instead
of synthesizing all these training images and then design-
ing a classifier from them, can we exploit the structure of
the synthesis procedure to more directly produce an equiva-
lent classifier? If we can do so, we will have completely
avoided the synthesis step and its concomitant problems
described in the previous section. We shall attempt to do
this for the individual PCA approach. We begin by writ-
ing the synthesis equation of Section 3.4 in matrix form:
b; = N's; + Ws;|s» Where b; is the ith synthesized image
(expressed as a d-dimensional column vector) under new il-
lumination s;; N is the 3 x d matrix of recovered surface
normals; and p,,, = &[€’|e] is the column vector of the
conditional mean of the error term given the error at the
original illumination s.

To aid our analysis, we assume that the illumination s; is
moved around in front of the face (there is no need to illu-
minate from behind). Specifically, assume that s; is varied
on the surface of a hemisphere of unit radius, centered at the
face. To compute the individual PCA, we need the eigen-
vectors of the covariance matrix of the images B = {b;}.
We should therefore see how varying s; contributes to the
covariance. Appendix A derives the mean and covariance
to be:

B = 5[1)1] = NTg[Sz'] + g[ps”s]
cou[B] = N7 E[sis] IN + N lssel ] +
g[NSilsszT]N + g[usilsﬂl\s] - ,UBME

where  E[s;] = [0,0, %]T

Elsisi | =

O Owl-
Quwim O
wrkr O O

®)

Observe that all expectation terms are constant of V.
They do not change for different people, and can there-
fore be pre-computed. Thus, to determine the individual
eigenspace for each person, we simply compute cov[B] by
the above equations, and then solve for its eigenvectors.
However, there are several problems with this approach.
Aside from the two expectations computed as shown, the
others are too difficult to obtain analytically as they involve
fairly complicated functions of random variables (see Ap-
pendix A). We can obtain numerical estimates for them us-
ing simulation or Monte Carlo techniques, but even this is
problematic because of the huge sizes of the matrices in-
volved. For instance, the term &[us, sp,). [S] isad xdma-
trix, which for our images of dimensionality d = 12000 re-
quires about 1 Gb of memory. Assuming we can overcome
this problem (e.g. by reducing the size of the images), we

would still like a way to quickly compute the eigenvectors.
Unfortunately, there is no obvious relationship between the
eigenvectors of the individual terms in Equation 5 and those
of cov[B]. Neither is there an easy way to compute the next
set of eigenvectors when N changes for different people.

If we knew the rank of cov[B], or even an upper bound
on the rank, we can speed up our eigenvector calculations.
Assuming that the upper bound, L, is much smaller than d,
there are methods to compute the L dominant eigenvectors
quickly, in O(Ld) time instead of the usual O(d?) time for
standard eigenvector algorithms. See ARPACK [12] for ex-
ample. Looking at the above equation, it is tempting, but
wrong, to conclude that cov[B] has a rank of at most 5 be-
cause it is a sum of five terms containing rank-1 outer prod-
ucts of vectors. The reason is that the expectation operator
&[] can affect the rank of its argument. A case in point is
&[sis] ], which has been computed above to be of rank 3,
even though sisiT has rank 1. Thus the first three terms of
cov[B] each has rank < 3, the fourth term has rank < d,
while the last term has rank 1. We can of course numeri-
cally estimate S[pms,u;ls] and its rank, r, barring memory
requirements. Then an upper bound on the rank of cov[B]
is L =r +10. If L < d, we can now resort to ARPACK to
compute the eigenvectors; otherwise it does not appear that
we can do much better.

5. Experiments and Results

5.1. Synthesis experiments

We tested our shape-from-shading algorithm by compar-
ing the synthesized images against the actual ones. Testing
the recovered surface normals is not particularly meaning-
ful because we do not have ground truth data. Even if we
used Equation (2) to attempt to recover the ground truth,
what we would end up computing is just the least-squares
estimate of the true surface normals. Furthermore, since
our purpose is to generate more exemplars, what matters is
how realistic our synthetic images are, not how well inter-
mediate parameters are recovered. Quantitative results of
our synthetic images are reported in [17], and show that the
more extreme the illumination (whether in the task image or
in the synthetic ones), the greater the error. These quantita-
tive errors, do not, however, tell us about the visual quality
of the synthetic images. For this we can only rely on human
judgement. Figure 3 shows some synthetic images, com-
pared to the actual ones.

A more interesting and instructive test case is when the
task image is completely black. Our algorithm proceeds to
recover and synthesize a face, in effect hallucinating one
into existence [2]. This is the natural consequence of using
class-based prior information. Our algorithm is generating
the most probable face, based on other bootstrap faces it
has seen. Not surprisingly, this turns out to be the average



Figure 3: Synthesized images (top row) versus actual images un-
der the same illumination (bottom row).

Figure 4: (Left) Hallucinated from an all-black image. (Right)
Average of all bootstrap faces.

of all the bootstrap images (Figure 4): substituting s = 0
(because there is no illumination) into Equation (4) yields
Nuap = . This effect also comes into play when large
regions of the face are occluded, or in shadow. For instance,
a task image illuminated from one side (and therefore has
the other side in the dark) produces a synthetic face with
mixed identity. The side that is illuminated is one person,
while the side that is not visible is replaced with the average
face (Figure 5).

Overall, our algorithm synthesizes reasonable faces, es-
pecially when illumination is not extreme. For the purpose
of face recognition, this seems adequate. A natural question
to ask is therefore: how does the quality of the synthetic im-
ages affect recognition accuracy? This is something we will
investigate in future.

5.2. Recognition experiments

We built three simple exemplar-based classifiers and com-
pared them. The first classifier performs single nearest-
neighbor search directly in image space. We call this 1NN.
The second classifier searches for the nearest exemplar in

Figure 5: (Left) Input image: face illuminated from one side.
(Middle) Face recovered and re-rendered under frontal lighting.
The side of the face in shadow is hallucinated from the model,
resulting in a mixed identity. (Right) Actual image.

Figure 6: Two PIE faces under four illumination directions.
These subjects are different from those in the Yale dataset. The
illumination is also different.

the global PCA subspace (dimensionality 40). We denote
this as globalPCA. Finally, the third classifier computes in-
dividual PCA subspaces from the exemplars (dimensional-
ity between 35 and 45), and classifies using the smallest re-
construction error. Call this indivPCA. All PCA subspaces
were computed to have an average reconstruction error of
1%.

For our recognition experiments, we used a subset of
ten people from the CMU PIE dataset [16]. These persons
are distinct from those in the Yale dataset (see Figure 6).
Each person has 21 images taken under different illumina-
tion (different from those in the Yale dataset). All images
were pre-processed as in the Yale dataset: affinely aligned
and tightly cropped. For each person, one image was ar-
bitrarily selected as the training image, and from this 900
additional exemplars were synthesized. These synthetic im-
ages were created under illumination directions that range
from —90° to +90° in both azimuth and elevation angles
on a hemispherical surface in front of the face. The remain-
ing 20 images per person were used to test the classifiers.
Note that because our images are large (d = 12000), we
cannot bypass synthesizing images and compute cov[B] di-
rectly using Equation 5.

The results are as follows: 39% recognition accuracy for
both INN and globalPCA, and 95% accuracy for indivPCA.
We postulate that the 1NN and globalPCA classifiers are
distracted by “noise”: many faces under extreme illumina-



tion look alike because large regions are shadowed. We
further speculate that the 40 eigenfaces in the globalPCA
subspace capture mostly illumination variation, rather than
identity. The eigenfaces beyond these 40 (which have been
excluded from globalPCA) are probably more discriminat-
ing. As for indivPCA, we pleased to see that it is a vi-
able classifier. For this method to work, large numbers of
training images must be available for each person to be rec-
ognized. This is required in the computation of the indi-
vidual PCA subspaces, otherwise the computed subspaces
will not be accurate. Since training images are often scarce
in face recognition applications, this technique is not com-
monly used. By using our approach of synthesizing exem-
plars from even a single training image, we can overcome
this limitation. indivPCA now becomes a feasible classifier.

6. Discussion

The results from our simple experiments are encourag-
ing. They show that our model- and exemplar-based ap-
proach for face recognition can overcome the limitations
that plague other methods. We must emphasize that our ap-
proach is not tied to specific synthesis techniques nor clas-
sifier designs. We could have used the Quotient Image [15]
to generate new face images, or a neural network for our
classifier, and it would not change our idea. The synthesis
method in Section 3.4 and the indivPCA classifier in Section
5.2 were chosen merely to illustrate our idea of combining
models and exemplars, and to show that some mathematical
analysis can be done when we know the structures of both
the synthesis method and the classifier. In fact, a number of
major points may be raised at this juncture.

Firstly, whereas other classification algorithms focus on
features — finding discriminating and invariant features, and
extracting them from images — we focus on synthesizing
training images and designing an exemplar-based classifier
that is feature-free.> As we have noted in our introduction,
finding discriminating features that are truly invariant to all
types of appearance variation is very hard, if not impossible.
Even if these features are found, it is time-consuming and
error-prone to locate them on a face image, extract and pro-
cess them for recognition. By avoiding features in our clas-
sifier, we also avoid these problems. To be sure, our syn-
thesis method does require some features — locating three
points on the face for image alignment — but this is con-
fined to the synthesis stage. The classifier itself is feature-
free. In general, we expect the model-building and synthesis
stage to require features. But as long as the resulting clas-
sifier does not explicitly depend on features, we will not be
bogged down by feature-processing during recognition.

1Although we have not stated it explicitly, it should be obvious that any
exemplar-based classifier does not rely on features directly. Rather, the
exemplars themselves provide the information necessary to discriminate
one pattern from another.

Secondly, our method need not be fully automatic. Note
that there is no reason for our model-based synthesis not
to require manual intervention from a human expert. As
long as our classifier works automatically, the learning stage
can use as much manual help as possible to create realistic
images. For example, in Figure 3, we could have manu-
ally corrected the deficiency of our algorithm and improved
the quality of the synthetic images before using them in
our classifier. Doing so will only help indivPCA learn a
more accurate eigenspace. Other classification schemes try
to make both the learning and recognition stage fully auto-
matic, but we feel that this is unnecessarily burdensome.

Thirdly, our approach has the potential to handle many
more kinds of appearance variation, simply by synthesiz-
ing images that exhibit those variations. For example, to
simultaneously cope with pose, illumination and expres-
sion changes, synthesize training images under many dif-
ferent combinations of lighting, pose and expression. The
exemplar-based classifier will learn them all, regardless of
variation. Of course, we have yet to demonstrate this con-
clusively, but the extension is logical and waiting to be ex-
plored. We envisage using different models to synthesize
different kinds of variations: the one in this paper for il-
lumination, another for pose, yet a third for facial expres-
sion. We can even imagine synthesizing mustaches, beards,
and eye glasses. Obviously, the number of synthetic im-
ages will grow combinatorially with the kinds of variations
to be synthesized. This imposes some constraints on the
exemplar-based classifier: (1) it must be able to learn in-
crementally, as more training images are synthesized; and
(2) its storage requirements and classification time must not
increase as quickly as the number of exemplars. Classifiers
such as 1NN and globalPCA clearly will not work, whereas
indivPCA is good candidate.

Finally, we should point out that our approach is appli-
cable to other non-face objects as well. In fact, our ap-
proach should be seriously considered for recognizing non-
rigid, deformable objects, where finding suitable features
has proven to be difficult. As long as models can be built
to synthesize images of these objects realistically, we can
combine them with an appropriate exemplar-based classi-
fier to do the job.

7. Conclusion

We conclude by summarizing the key points in this paper:
We have proposed a new approach for face recognition.
The main idea is to utilize models, statistical or otherwise,
to synthesize many more images from a given few, which
can then be used to train an exemplar-based classifier. We
demonstrated this idea by showing how a statistical shape-
from-shading model may be used to synthesize images un-
der novel illumination, and next by using this set of aug-



mented training images to build a simple, exemplar-based
classifier. We also analyzed the mathematical structure be-
hind the synthesis and classification scheme and suggested
ways to improve the construction of the classifier. We note
that our synthetic images are not perfect; they degrade under
extreme illumination, but we can expect better techniques
to correct for this in future. Indeed, the computer graph-
ics community is relentlessly perfecting the art of synthe-
sizing realistic faces. We should be able to leverage their
techniques to further our own goals, that of perfecting face
recognition.

In the near future, we intend to further develop this ap-
proach in several ways. On the synthesis side, we hope to
use graphics models to generate pose and expression vari-
ations. As for classifier design, we want to explore clas-
sifiers that can compactly represent all the synthetic exem-
plars without combinatorially exploding, or those that were
never possible before due to a lack of training data. Where
the structure permits, we intend to mathematically analyze
both the synthesis algorithm and classification method in
order to design better classifiers.

A. Derivation of up and cov|[B]

We first compute &[s;] and E[s;s; ]. Consider s; to be a
point moving randomly on the surface of a unit hemisphere.
We assume that the pdf of s; is uniform for all points on
this surface. Let this be p. Then: fc,p dC = 1, where C'is
the surface of the hemisphere. Using Spherical coordinates,
with « and 8 denoting azimuth and elevation angles, re-
spectively, and noting that the elemental area on the surface
is cos 8 da dg, this may be written as:

/2 w2
/ / pcosfdadf =1
—n/2—m/2
/2 /2
=>p /l.da /cosﬁdﬁ =1
—m/2 —m/2
= p(m)(2) =1,
1
sothat p= 2

Now, let s; = [z,y,2]" in Cartesian coordinates. Then:
E[si] = [€[z], €[], E[2]]T. We convert into Spherical co-
ordinates using x = —sinacos8,y = sinf and z =
cos a cos 3. So for instance,

/2 w/2
Elz]=p / / —sinacosBcos B da df
—7/2—7/2
/2 /2
1
= — / —sina da / cos? 8 dj
2w
—/2 —/2
= (%) =0
Tom 2 T

Note that the second cos 3 term comes from the elemental
area of the hemisphere. Similarly, we may compute £[y] =
0,and £[z] = 5. Hence, £[s;] = [0,0,3]T. As for £[s;s; ],
we get:

22 xy w2

vy Yy oyz
Tz yz 22

Elsis{ | =&

We compute the expectation of each element of the matrix
as before, by converting into Spherical coordinates. This
results in:

Elsisi | =

O Owl-
Qwim O
w=O O

Proceeding on, we have ug = E[b;] = E[N Ts; + ps, 5] =
NTElsi] + E[ps,5]. From Section 3.4,

Os

Hs;|ls = Ms; + Psi,s° Os; (

Note that us;, ps;,s, and o, are computed using kernel re-
gression (see Section 3.2). Because of this, these terms are
random variables, since they are functions of the random
vector s;. Recall, however, that s is the estimated illumina-
tion of the input image, which is constant as s; varies on the
hemisphere. Thus,

Elpn o] = Elpa] + Elpae - 0] (L2 )
And finally,
cov[B] = E[bib] ] — unpp
= E[(NTsi + pas) (N s+ pings) | = il
=E[N"sis{ N+ N"sip], |, + pis;s5] N +
s sthes)s] — HBUE
= NT"¢&[s;is] |N + NTS[SWLS] +
Eltss)s8i IN + Elias sty 5] — IS
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