
The SR-tree: An Index Structure for High-Dimensional
Nearest Neighbor Queries *

Norio Katayama Shin'ichi Satoh
Research and Development Department

NACSIS (National Center for Science Information Systems)

Research and Development Department

NACSIS (National Center for Science Information Systems)
katayama@rd.nacsis.ac.jp satoh@rd.nacsis.ac.jp

Abstract

Recently, similarity queries on feature vectors have been
widely used to perform content-based retrieval of images. To
apply this technique to large databases, i t is required to de-
velop multidimensional index structures supporting nearest
neighbor queries efficiently. T h e SS-tree had been proposed
for this purpose and is known to outperform other index
structures such as the R*-tree and the K-D-B-tree. One
of its most important features is that it employs bounding
spheres rather than bounding rectangles for t h e shape of re-
gions. However, we demonstrate in this paper tha t bounding
spheres occupy much larger volume than bounding rectan-
gles with high-dimensional d a t a and that this reduces search
efficiency. To overcome this drawback, we propose a new
index structure called the SR-tree (SpherelRectangle-tree)
which integrates bounding spheres and bounding rectan-
gles. A region of the SR-tree is specified by the intersec-
tion of a bounding sphere and a bounding rectangle. In-
corporating bounding rectangles permits neighborhoods to
be partitioned into smaller regions than the SS-tree and im-
proves the disjointness among regions. This enhances the
performance on nearest neighbor queries especially for high-
dimensional and non-uniform da ta which can be practical
in actual image/video similarity indexing. We include the
perforniance test results tha t verify this advantage of the
SR-tree and s h o i v that the SI<-tree outperforms both the
SS-tree and the R*-tree.

1 Introduction

liccently. similarity queritbs oii feature vectors have been
lvidely used to perform the content-based retrieval of images
[l]. To apply this technique to large databases, i t is required
to develop multidimensional index structures efficiently sup-
porting nearest neighbor queries. For example, the Infor-
media project (21, a digital video library project a t Carnegie
hlellon University, is working to incorporate the content-

'This work is based on the resenrcli acti\,ity while the author-s had
beeii visiting at the Robotics Institute. Carnegie Mellon University.
Norio Katayama had trisited at the Robotics Institute fi-om March
18 to April 3 , 1996 by the support of JSPS (Japan Society foi- the
I'roinotion of Science). Slriii'iclii Satoli had been a visiting researcher-
at tlie Robotics Institute, Carnegie 1Ielloii University, from April 1995
to April 1997.
Copyright 0 1 9 9 7 by the Association for Con,puting Machinery, Inc. Per-
n1issnon to make digital or hard copies of part or all of this work for personal
o r c lassrootu use IS granted without fee provided that copies are not made
or distribrtttd f o r profit o r ~ o i i i i i i e r ~ i a l advantage and that copies bear this
not ice and t l i e full citation on thr firs1 [>age. Copyrights for components of
I l l i s worh owmed 1,). o t l i e i ~ than \C'hl t i i u a t Ire honored. Abstracting ~ . i t l i

(crcdgt I F perinittPd. To copv O I I B P C U I O c e p u b l ~ s h . to post on scrvets .
"1 I O I-rdlstl-lbute to I,5t>. 1 P I (I I I I (1 . 1)) ,I,-clfic pPrln lss lon and/or a f

, l , < ~ i l t , ' > l l S I><.PI. . A r k 1 Inc., fax + I (2 1 2) 8(

Tliis p q w i 11as I i r c I i p u l ~ l i ~ l ~ ~ d 111 I IIC I'wceedings of tlie 1997 . . \ (' \ I
S I (; h l O l) 1ntern:~tiuIlai C ' (l i i f c , L t , i i < - ' , O I I Pllanagcwient of Data. 1:{-1:
hiity i w ~ . ~r l l c so l l . A ! lz,jll:, .

based retrieval capability into its digital video library and
expecting the development of an index structure efficient
for similarity queries on ten or more dimensional feature
vectors. A feature vector is extracted from image charac-
teristics, e.g., hue, saturation, intensity, texture, etc., and
stored in a database along with images. Similarity queries
are performed by conducting nearest neighbor queries in the
feature vector space. A set of the images similar to a par-
ticular image can be retrieved by searching feature vectors
close t o tha t of the given image.

T h e SS-tree [3] had been proposed for this purpose and is
known to outperform other index structures such as the R*-
tree [4] and the K-D-B-tree [5] in high-dimensional nearest
neighbor queries. One of its most important features is that
i t employs bounding spheres rather than bounding rectan-
gles for the shape of regions. The center of a sphere is the
centroid of underlying points and the SS-tree divides points
into isotropic neighborhoods b!. utilizing centroids in the
tree construction algorithm. Ilotvever, we demonstrate in
this paper tha t bounding spheres occupy nruch larger volume
than bounding rectangles with Iiigh-diniellsional da ta and
that this reduces search efficiency. To overcome this draw-
back, we propose a netv index structure called the SR-tree
(Sphere/Rectangle-tree) which integrates bounding spheres
and bounding rectangles.

The approach of the SI%-tree is a kind of region shape re-
finement which can be found i n the I"-tree [GI and in the re-
gion approximation method of the spatial join algorithm [:].
The former employs multiple bouuding rectangles with dif-
ferent orientations and composes polyhedra regions by their
intersection. The resultant polyhedra region is smaller than
a single bounding rectangle and achieves better selectivity
i n the search. The latter exploits the i i s ~ of convex hulls, el-
lipses, circles, etc., t o achieve inore accurate approxi~nation
of spatial objects than using iiiiniiiiuni bouuding rectangles.

The distinctive feature of the SR-tree is that it speci-
fies a region by the intersection of a bounding sphere and a
bounding rectangle. T h e introduction of bounding rectan-
gles permits neighborhoods to I)e partitioned into smaller re-
gions than the SS-tree and improvcs t.lic disjointness among
regions. This enhances the pcrforwance on nearest neigli-
bor queries especially for high-dirriensioltal and non-uniform
data which can be practical i n actual iniage/video similarity
indexing. We include the performaircc tcst results to verify
this advantage of the SIt-tree aiid slio\v that the SIt-tree
outperforms both the SS-tree and the It*-tree.

This paper is organized as follo\vs. Section 2 describes
related work. Section 3 comparcs boiiiiding spheres with
Iiounding rectangles I,!. shotring I l i v rctsult of perforniance
tc'sts aiid discussing their ~) I O ~ I ~ ~ I . (i(,s. I i i Src-t ion 4. \ve prcsent
t I i c i iv \ \ - index struct ure. SI<-I I(-('. an(l c.\xlriatc, its pcidor-
i i i ~ i i i w in Scct ion 5 . Sect ion (i (' 0 1 1 1 i t i t i s c-onclrisioiis.

mailto:katayama@rd.nacsis.ac.jp
mailto:satoh@rd.nacsis.ac.jp

*
-..*.

I 7
* - -

:

Figure I: The R*-tree structure

2 Related Work

2.1 The K-0-B-Tree

The K-D-B-tree (51 is a n index structure for multidimen-
sional point data. It is a height-balanced tree similar t o
the B+-tree and its tree structure is constructed by divid-
ing the search space into subregions with coordinate planes
recursively. Nodes and leaves correspond t o subregions and
a disk block is allocated for each of them. The distinctive
characteristics of t h e K-D-B-tree is t h e disjointness among
subregions on the same tree level. This makes the search
path of a point query t o be a single branch from the root
to a leaf. Therefore, the search time of a point query is
definitely logarithmic to the size of a d a t a set.

However, the forced splits, i.e., the propagation of splits
from a node to its descendants, are required to keep the
disjointness among sibling regions. A forced split occurs
ulien a region of an intermediate node is divided crossing its
child regions. It can cause the creation of empty or nearly
empty leaves and nodes. Therefore, the K-D-B-tree cannot
ensure tlie minimum storage utilization. This reduces the
performance of the I<-D-B-tree on range queries and nearest
neighbor queries.

2.2 The R*-Tree

The It*-tree [4], the most successful variant of the R-tree [8),
is a inultidirnensional index structure for rectangle data. It is
a height-balanced tree corresponding to a hierarchy of nested
rectangles. Nodes and leaves correspond to rectangles in tlie
hierarchy and a disk block is allocated for each of them. The
rectangle of a node is determined by the minimum bounding
rectangle of those of its children. The rectangle of a leaf is
determined by tlie minirnuni houtiding rectangle of the data
eiitrirs contained i n that leaf. Therefore, the rectangle of the
root node corresponds to the minimum bounding rectangle
of tlie whole data entries, while tlie rectangle of an interme-
diate node corresponds to the minimum bounding rectangle
of the da ta entries contained in its lower leaves.

The R*-tree improves the performance of the R-tree by
inodifying the insertion and tlie split algorithm and by in-
t roduciiig the forced reinsertion mechanism. Although the
It-tree and tlie R*-tree is originally designed for rectangles.
it can be used solely for points (Figure 1) and known to
Ire effective also as a point access method [4]. T h e R-tree
and the R*-tree are different from the I<-D-B-tree in the fol-
lowing respects: (1) the regions associated with the nodes
and the leaves are determined by bounding rectangles rather
than disjoint subregions and (2) the regions of the R-tree
and Llie R*-tree are allowed to overlap each other. Because
s i lhng regions can ovrr lap car11 other, the search time of a
I) o i i i t query depends to t I I P aiiisliirt of overlap and is not
(Iot(~rmiiiec1 by the Iirigllt o f I I I C t r w . 0 1 1 the other hand.
tlir 1l-tl-w aiid t l i c i t*-tr(v, (' i t i i riisure tlie niiiiinium storage
~itilization. I~rcai~sc~ t l i (>\- rt~(1iiii.v no forcttl split.

Figure 2: T h e SS-tree structure

2.3 The SS-Tree

The SS-tree [3] is an index structure designed for similarity
indexing of multidimensional point data . I t is a n improve-
ment of the R*-tree a n d enhances the performance of nearest
neighbor queries by modifying the following respects.

Firstly, it employs bounding spheres rather than bound-
ing rectangles for the region shape (Figure 2). The center
of a sphere is the centroid of underlying points and the SS-
tree permits t o divide points into isotropic neighborhoods
by utilizing centroids in the tree construction algorithms,
i.e., the insertion algorithm and the split algorithm. On
the insertion of a point, the insertion algorithm determines
the most suitable subtree to accommodate the new entry
by choosing a subtree whose centroid is tlie nearest to the
new entry. When a node or a leaf is full, the split algo-
rithm calculates its coordinate variance on each dimension
from the centroids of its children and chooses the dimension
with the highest variance for splitting it. These algorithms
divide points into isotropic neighborhoods and enhance tlie
performance on nearest neighbor queries. Another advan-
tage of using bounding spheres for the region shape is that
it only requires nearly half storage compared t o bounding
rectangles. Since a sphere is determined by tlie center and
the radius, i t can be represented tvith as many parameters
as tlie dimensionality plus one. On the other hand, the
number of parameters required for a rectangle is tlie double
of the dimensionality, because a rectangle is determined by
the lower and the upper bound of every dimension. This
advantage permits almost doubling the fanout of nodes and
reduces the height of trees.

anism of the R*-tree. M'lien a node or a leaf is full. the R*-
tree reinserts a portion of its entries rather than splits it.
unless reinsertion has been made on tlie same tree level. 0 1 1

t.he other hand, the SS-tree reinserts entries unless reinser-
tion has been made at the same node or leaf. This promotes
tlie dynamic reorganization of the tree structure.

Secondly, the SS-tree modifies the forced reinsertion mech-

2.4 The VAMSplit R-Tree

The \'AhlSplit R-tree [9] is an optiiiiized R-tree, i.e., it is
constructed in the top-do\vn niaiiner with a given da ta set.
The tree construction algorithiii of the VAMSplit R-tree is
based on tha t of the k-d tree [lo) , a main memory index
structure for multidimensional points. The VAMSplit R-tree
coiistructs a tree structure by partitioning points recursively
with a coordinate plane which is orthogonal to tlie dimension
with the highest variance. This split algorithm has beeri
used by tlie optimized k-d trees [l l] . The VAhlSplit R-tree
applies this algorit,lini to tlir K-tree and refines tlic 1r.a.t. of
selecting a split point to griararitce t l i e i i i i n i i i i u r i l i i u i i i l w r o f
disk I)locks to be used. ;\ccorc(iiig t o tlir r t w i l t r c p o r t c d i i i

[!I]. t Iir \..\AISplit R-tree o i i t o t ~ r f o i - u ~ . ; I ~ o t Ii t l i c l < * - t r (~ l i \ i i (i

t lie SS-t rec

K-D-B-tree
R*-tree
VAMSplit R-tree

'rable 1: The niaxiniuiii nulnber of entries in a iiodr: alld in
a leaf

10 20 3 0 4 0 5 0 6 0 ' 7 0 80 90 100
4 4 4 4 4 4 5 5 5 5
4 4 4 4 4 4 4 4 4 4
4 4 4 4 5 5 5 5 5 5

2.5 The TV-Tree

T h e TV-tree [12] improves the performance of the R*-tree
for high-dimensional feature vectors by employing t h e reduc-
tion of dimensionality and the shift (telescoping) of active
dimensions. Dimensionality is reduced by ordering dimen-
sions based on their importance and by activating only a
few of more important dimensions for indexing. The shift
of active dimensions occurs when feature vectors in a sub-
tree have the same coordinate on the most important ac-
tive dimension. Then, tha t dimension is made inactive and
the less important dimension is newly activated for index-
ing. This approach is effective for such feature vectors that
satisfies the following conditions: (1) dimensions can be or-
dered by their significance and (2) there exist such feature
vectors tha t allow the shift of active dimensions. As men-
tioned in [3], the second condition does not always hold for
real-valued feature vectors because their coordinates usually
have wide diversity. If the second condition does not hold,
the effectiveness of the TV-tree results in only the reduc-
tion of dimensions which can be commonly applied t o other
index structures. Thus, the effectiveness of the TV-tree is
dependent t o applications.

SS-tree
SR-tree

2.6 The X-Tree

T h e X-tree 1131 is a variant of the R*-tree and improves
the performance of tlie R*-tree by employing the overlap-
free split and the supernode mechanism. The overlap-free
split enables the search space t o be divided into disjoint. re-
gions like the I<-D-D-tree and improves the performance of
point queries. A supernode is a n oversized node which is
arranged t o circumvent the overlap among nodes and en-
hances the 1 / 0 throughput for reading and writing nodes.
These approaches are not incompatible with the SR-tree.
The effectiveness of these methods for the SR-tree is an open
question.

3 3 4 4 4 4 4 4 4 4
4 4 4 4 5 5 5 5 5 5

3

3.1 Performance Test

We evaluated t lie performance of the multidimensional in-
dex structures. t h e Ii-D-B-tree: the R*-tree, the SS-tree.
and the \-.4hlSplit [<-tree. to clarify their advantages and
disadvantages.

T h e following t \vo data sets were used for the perfor-
mance test:

Bounding Rectangles vs. Bounding Spheres

(1) uniform data sct

(2) real data set

Each data set consists of 16 dimensional points. The
uniform data set is a synthetic d a t a set which consists of
the points distributed uniformly in the range [O, 1) on each
dimension. The real data set consists of the real feature vec-
tors of images n-hich are 16-element histograms computed
over a quantized version of the color space.

U'e constructed indices for these d a t a sets and measured
the CPU tinic and tlie number of disk reads on nearest ncigh-
Iior queries. \\'c c~iiiploycd t lie nearest neighbor search algo-
r i t l i in presviited i i i [I-!]. A query is to find the iicai-est 2 1
j m i r i t s relati \(, t o it pirticti lar point in the data w t . Tlic
r(,sltl t \vas (~ \ ~ ~ l i l i i t < ~ (l as tlic avcrage of 1.000 raitdoiir t r i a l h .

Index I Node Leaf
K- D-B-tree I 3 0 10
R*-tree
VAMSplit R-tree 1 ii
SS-tree
SR- t ree 20 12

Table 2: Tree heights (uniform data set)

Index I Da ta set size (X 1000)

All tests are computed on a Sun Microsysterns Ivork-
station, SPARCst.ation-20 (CPIJ: IlyperSPARC 125 hlHz,
main memory: 224 Mbytes, OS: Solaris 2.4). All programs
are implemented in C++*. The size of nodes and leaves is
set t o 8192 bytes t o meet with the disk block size of the op-
erating system. The size of the d a t a area associated to each
leaf entry is 512 bytes. The maximum number of entries in
a node and in a leaf are shown in Table 1. Following the
suggestion of the R*-tree [4) and the SS-tree [3] , the mini-
mum utilization parameter of each block is set to 40% for all
of the index structures and the reinsert fraction parameter
of the R*-tree and the SS-tree is set to 30%. The heights of
the constructed trees are shoivn in Table 2 and 3 . For I<-D-
B-trees, we employed the split, algorithm of the R+-tree [15];
which is a n extension of the I<-D-B-tree to spatial objects.
instead of the algoritlim presented in [lo], because the cyclic
choice of splitting dimensions presented in [lo] is likely to
cause forced splits as reported in [lG] .

The results for the iiniforin and the real data sct are
shown in Figure 3 and 4 rcspectively. I n t.llese fig~rres. the
graph (a) sholvs the CPU time and the graph (b) slio\vs the
number of disk reads. The horizontal axis indicates the size
of the da ta set. The size varies from 10,000 to 100,000 for
the uniform da ta set and froni 2,000 to 20,000 for tlie real
da ta set.

These results slio\v that the VAklSplit R-tree outper-
forms the other index structures. However, tllc coinparison
between the \ri\hlSplit It-tree and the other index struc-
tures is not necessarily fair. Iiecause tlie VAhlSplit R-tree is
an optimized index structure taking advantage of full kno\vl-
edge of the da ta set while the others are designed to be fully
dynamic [9]. Among tlie dynamic index structures, the SS-
tree exhibits the best performance and performs mucli better
than the R*-tree and tlie I<-D-B-tree. This supports the re-
sults reported i n [3] and tlie superiority of tlie SS-tree to tlie
R*-tree is confiriiied.

1 2 m

35

30

Bmo
25 8 - B c x

: 20 o m

2 e '6

t
0

15
um

10

m
3

0 0
0 u m o s o a o 0 m U a m s o a o B x a O I m O J , xnm

0.- set 41. 0.f. Y e r .

(a) CPU time (b) Number of dish reads

Figure 3 Performance of I<-D-B-trees, R*-trees, SS-trees, and VAhlSplit R-trees (uniform da ta set)

l igure 4: Performance of I<-D-B-trees. R*-trees,

3.2 Properties of Bounding Rectangles

T h e significant feature of the test results in Section 3.1 is
the sriprriority o f the SS-tree t o the R*-tree and tlie I<-D-
13-tree. T l i c ~ SS-ti-ee performs much better than both the
R*-trw aiitl t l i t , I<-D-B-tree especially for the real data set.
The SS-tree is about four times faster than the R*-tree.

This superiority can be explained by the following prop-
erties of the SS-tree and the R*-tree:

?'lie SS-t ree divides points into isotropic neighborhoods
I,?. iitiliziiig Ilounding spheres.

'I'hc It*-tiwe divides p0int.s into sniall regions by uti-
lizing I x l i i i i t l i n g rectangles.

To \.erif\- t Iicsc properties, we measured the volumes and
tlie diaiiieters of the leaf-level regions of the SS-trees and
the R*-trees coiistructed for the uniform da ta set in Section
3.1. Here. t he diameter of a region means the diameter
of a bounding sphFre for the SS-tree and the diagonal of a
bounding rtc.taiiglc for the R*-tree. The results are slioirn in
Figtins 5. f:igiiri, %(a) and 5-(b) graph the al'erage volume
and t 1 1 1 . a\-i%r;igc ilianieter respectivel>-.

l ' l i c ~ - t , i . c ~ s i i I t h hl io \v that the average voluiiie of hounding
i-vt.titiigli>h i, i i i i i i . 1 1 siiialler than that of I) o r i i l d i i i g splieres.

0 1 I
0 lmm I Y M 2 w o O mo

0.Y sa 5 l S

(b) Number of disk reads

SS-trees, and \..-\hlSplit R-trees (real data set)

The former is about 2% of the latter. By contrast. the av-
erage diameter of bounding rectangles is inricli longer than
tha t of bounding spheres. T h e former is about 2 . 5 . \vhile
the latter is about 1.5. Thus. the SS-tree divides Imints into
short-diameter regions. while the R*-tree divic1i.s 1)oiiits into
small-volume regions. This is why the SS-tree out performs
the R*-tree. Since t.he diameter of regions has more influence
on the performance of nearest neighbor queries tlian their
volumes, the SS-tree, whose average diameter is smaller than
that of the R*-tree, exhibits better performance on nearest
neighbor queries.

It may seen1 strange that a region tvitli a si i ia l ler \-olurne
has a mucli longer diameter. However, it is 1mssilAe for a
rectangle in high-dimensional space, because t lie dilference
between its edge length and its diagonal lengtli gi-o\vs as tlic
number of diiiiensions increases. For exainplc. t lie diago-
nal lengtli of a D-dimensional unit cube is tlioiigli its
edge lengtli is just one, e.g., for a 2-diiiieiisioiial unit
square and 4 for a 16-dimensional unit hypercube. Tliere-
fore, a bounding rectangle does not necessarily have a short
diameter even if its volume is sinall.

\Yitli the above iiimsurement and the mii5idvrnt ion . Ive
can coiicludr tliat the reason of tlic si i l) i~r io i . i t \ . 0 1 I I i c SS-
tree is tlie shortiiess of regioii diameters aiitl t 11at i i 1)oiiiidiiig

rectangle of t lie ll*-tree suffers from I I i c (l i l r t ~ r l ~ l l (. (~ I)(.1\\-ccii

4

(a) Volume (b) Diameter

Figure 5: The average volume and the average diameter of the leaf-level regions of the SS-trees and the R*-trees constructed
for the uniform d a t a set

1.02 \
t I

of the R*-trees are also plotted for comparison. These re-
sults show tha t the average volume of the bounding rectan-
gles of the SS-tree leaves is much smaller than that of the
bounding spheres. When tlie d a t a set size is 100,000, the
average volume of the bouridirig rectangles of the SS-tree
leaves is about 1/900 of that of the bounding spheres and
about 1/18 of the bounding rectangles of the R*-tree Iraves.
This means that the average volume of the leaf-level regions
of the SS-trees will be about 1/900 if the regions are deter-
mined by bounding rectangles instead of bounding spheres

3.4 Discussions

According t o the performance test and the measurement
above, the properties of bounding recLangles and bounding

j -.#--.*.- , ,

*-----~.+ ..~... --..... *~...~.. --...... t -....

0 *Mo3 6 M w gyao lmaa spheres are summarized as fo1lon.s:
Dam Sat 5 z s

2 m
,*a

1:igrire 6 : The average volume and the average diameter of
the leaf-levrl regions of tlie SS-trees constructed
for the uniform d a t a set

its edge length arid its diagonal length in high-dimensional
space.

3.3 Properties of Bounding Spheres

The SS-tree outperforms the R*-tree by employing a bound-
ing sphere whose center is the centroid of underlying points.
flowever, as shown in Figure 5-(a): the bounding spheres of
tlic SS-tree occupy much larger volume than the bounding
rectangles of the R*-tree. Regions with larger volume tend
to produce more overlap aniong themselves. This reduces
the search efficiency of range queries and nearest neighbor
queries. Thus, bounding spheres are not necessarily superior
to bounding rectangles i n every respect. They are disadvan-
tageous in terms of volume.

To clarify this property, we measured the average volume
of the leaf-level regions of SS-trees when they are determined
bv hounding rectangles instead of bounding spheres. The re-
sult of the SS-trees constructed for the uniform da ta set i i i

Scctioii 3.1 is slio\vn i i i Figiire 6. ‘t’lic 1iorizont.al axis iiidi-
(‘;\trs tlic sizc of tlir data sct ant1 t lie vertical axis indicates
1 IIC avc’ragc. v o l u i n ~ ~ o f t l i v 1)oiindiii.g spheres and the bouii~l-
iiig wct anglcs. ‘ l I i t * a\ .(wg,c \ ~ o I ~ i i i i e i oC tlic lcaf-level regioiis

Bounding rectangles permit to divide points into small-
volume regions. However. they have much longer di-
ameters than bounding spheres, because of the dilfer-
ent behavior of their edge length and their diagonal
length especially in liigli-dinlensional space.

0 Bounding spheres permit to divide points into short-
rlo\wvrr. they tend to Iiaw larger diameter regions.

volumes than bounding rectangles.

Thus, bounding rectangles and bounding spheres have
both merits and demerits. Bounding rectangles are advan-
tageous in terms of volume. On the other hand, bounding
spheres are advantageous i n terms of diameter. For nearest
neighbor queries: bounding spheres are more advantageous
than bounding rectangles, because the lengths of region di-
ameters have more influence to t lie performance on nearest
neighbor queries than the volumes of regions. IIowevrr: the
most desirable property is to divide points into regions both
with small volumes and iv i t l i short diameters.

Based on these considrration, \ve come to think of t.lie
combined use of a bounding rectangle aiid a bounding sphere.
Because their properties are conIpletrientary to each other,
their intersection seems to Iwriiiit tli\iding points i n t o I(’-
gions with small voluiires aiid s1ioi.t diaiiictcrs. ‘lo rcalizc.
I liis idea. we deidopet l t l i c SI{-(r (v ~ (Sj)lic~rc/l~cct;iiiglc-t Im,)
1)resented in the nest sectioii. T l i , ~ c l l (~ t ivc,iic*ss of this coiti-

Ijination will bc disclos<>cl i i i I I i (2 i.(,st o f I 1ii.s 1);ij)t’r.

4.2 Insertion

Figure 7: The SR-tree structure

3

(a) Leaf level (b) Node level

Figure 8: Regions specified by the intersection of a bounding
sphere and a bounding rectangle

4 The SR-Tree

4.1 Index Structure

The structure of the SR-tree is based on tha t of the R-tree
[8] , in common with the R*-tree [4] and the SS-tree (31, and
corresponds to the nested hierarchy of regions as shown i n
Figure 7. However, the distinctive feature of the SR-tree is
that it specifies a region by the intersection of the bounding
sphere and the bounding rectangle of underlying points as
shown in Figure 8.

A leaf of the SR-tree has the following structure:

L : (El, E ") (rnL 5 12 5 A I L)
E, : (p , data).

A leaf L consists or entries E ~ , . . . , E,, (m L 5 12 5 A I L)

where T n L and .A[, are the minimum and the niaxiniuni
number of entries in a leaf. Each entry contains a point
p and its attribute dota . This structure is the same Ivith
that of the SS-tree.

A node of the SR-tree has the following structure:

N : (CI , . . . , C,,) (r n N 5 72 L M N)
C, : (S . R, [I ' , child-poznter) .

A node Ar coiisists of entries C1;. . . , C,, (m,v 5 r i 5 . \ l . y)
where n t N aiid .'1J.y are the minimum and the maxiniuni
number of entries in a node. Each entry corresponds to a
child of the node and consists of the following four conipo-
nents: a bounding sphere S, a bounding rectangle R , the
number of points t i ' . and a pointer to the child chzld-poznter.
The way to compute S and R is explained in the next sec-
tion. The variable ill is the total number of points contained
in the subtree \vliose top is the child pointed by child-pointer.
The diffcrcncc of this striicture to that of the SS-tree is the
introdiictioii of t l i c , I)oiiiiding rectangle R. On tlir otlirr
Iiancl, t11c i l i f f ~ ~ i x ~ i i ~ . (- o f this structure to that of tlic R*-trcc
is t I I P introriii(.f i o i i i) f I I i c Iwunding sphere S and the iiuriilwi-
of p i l i (s 1 1 ' .

T h e insertion algorithm of the SR-tree is based on Lhat of
the SS-tree. We applied the centroid-based algorithm of the
SS-tree to the SR-tree, because its effectiveness for nearest
neighbor queries is confirmed through our performance test
as shown in Section 3.1. Since the algorithm of the SS-
tree can be understood by referring to the papers of the
SS-tree (31 and its predecessors, Le., the R-tree [8] and the
R*-tree [4], we only mention its outline and the difference
between the algorithm of the SS-tree and that of the SR-
tree. The insertion algorithm of the SS-tree determines the
most suitable subtree to accommodate the new entry by
choosing a subtree whose centroid is the nearest to the new
entry. When a node or a leaf is full, tlie SS-tree reinserts a
portion of its entries rather than splits i t unless reinsertion
has been made a t the same node or leaf. Otherwise, the
split algorithm calculates its coordinate variance on each
dimension from the centroids of its children and chooses the
dimension with the highest variance for splitting it.

T h e insertion algorithm of the SR-tree differs from that
of the SS-tree in the way of updating regions on the insertion
of a new entry. T h e SR-tree needs to update both bound-
ing spheres and bounding rectangles, while the SS-tree only
needs t o update bounding spheres. The way of updating
bounding rectangles is the same with that of the R-tree
and the R*-tree. However, the way of updating bound-
ing spheres is different from that of the SS-trrc. h c a u s e
a region of the SR-tree is the intersection of a 1)oundiug
rectangle and a bounding sphere, the SR-tree determines
the bounding sphere of a parent node by utilizing both tlie
bounding spheres and the bounding rectangles of its cliilclreii
as follows:

(1) The center of a bounding sphere, 2 (X I, s,, s n) ,
is computed as follonx

" (I 5 t 5 I)) .
!Y=l s, =

& = I

where I; (1 5 b 5 7 1) is an indcx to thc cliildrc~ii ('1 .

. . . C,, i (1 5 i 5 D) is an index to the dini<~iisioIls.
C~.I, denotes tlic i-th coordinate of the cciiter o f t he
child C k , and C k . i o denotes tlie number of points coil-
tained in the subtree whose top is the child C ' k . This
definition is the same with tha t of the SS-tree.

(2) The radius of a bounding sphere, T , is conii)utcd as
follows:

min (d s , d ?) ,

d, = max (nl .-1.~IulS'~'(a:,C'k.R)).
l < k < "

where k (1 5 b 5 n) is an index to thc cliiliircu (' 1 .

. . . , C,,, i (1 5 i 5 D) is an index to dinicii.;ions.
Ck.x and Ck.r denote the center and the radiiis of tlic
bounding sphere of t l i c child C'n. aiid Cl .R (ii.iiotcs

the bounding rectanglr of t l i c cliil(l C ' k . l ' l i (t l i i i i (. I i o i i

A J A .Y D I ST (p . R) coni 1) ut es t 11 cl i n ii si I I I i I i i I i I ib I i i I i c t x

from a point p to a wc.taiigl(~ R ancl is (l , ~ l i i i ~ , i l ;I> fo l -
lows:

30 I

I
x a o o r m m s m w e a X x , I m m ,

nam sm szc

(a) CPU time

25 I R’ Tree c
ss Tree -+

SR Tree 0

l

o

t

I
0 x a o o u m a s m w BOOOO 1 m

Dam Sea SIC

(b) Number of disk accesses

Figure 9: Insertion cost of R*-trees, SS-trees, and SR-trees (uniform d a t a set)

This can be computed easily by pursuing such a vertex
of the rectangle R that is the farthest from the point
P.

I n the above definition, d, denotes the maximum distance
from tlie center of a parent node to the bounding spheres
of its children. aiid d, denotes the maximum distance from
tlre center of a parent node to the bounding rectangles of
its children. Although the SS-tree determines the radius r
by d,, the SR-tree determines the radius T by choosing the
smaller one Ixtneen d, and d,. This permits the radius
of the SIt-tree to be smaller than that of the SS-tree and
reduces t lie overlap of bounding spheres.

4.3 Deletion

In coniiiioii \ v i t l i the R*-tree and the SS-tree, tlie deletion
algorithiu of the SR-tree is the same with that of the R-
tree [8]. \\.lrcn the deletion of an entry causes no under-
utilizatioii of any leaf or node, the entry is siniply removed
from the t rcc. Or lienvise, the under-utilized leaf or node is
removed froiii t I r c tree and orphaned entries are reinserted
t o tlie tree.

4.4 Nearest Neighbor Search

In common \vitl i the R*-tree and the SS-tree, the nearest
neighbor search of tlre SR-tree is performed by applping the
algoritlini prrscritrd i n [14). This algorithm finds a number
of points nearest to some given point. It is a depth-first
search ant1 consists of two stages. Firstly, it collects the
given nriiiilwr o f points t o make a candidate set. Secondly,
it revises tlic caiididate set with visiting every leaf whose
region overlaps (tic, range of the candidate set. I t terminates
when there aro no more leaves to visit and tlie final candidate
set is the search rtLsult.. The tree is traversed in order of
the distaiic-e froiii the search point to each region. . i t every
visited n o t l (. . t I r r clistancc from the search point to the region
of cac-li c - l i i l i l i \ coinl)iitcd arid tlre closer cliild is t-isited prior
to 1 I I (’ f;11.1 l l I , l 0 I l ~ ’ h .

.-\It Iioiigli I l i f , traversal algorithm is coiiriiroii to tlie R*-
t r i v . . 1) I (’ SS-I I . I . I . . a i t (I 1111, SIl-trcc,. tlic SI<-t~-cc, differs f r o m

both the R*-tree and the SS-tree in the way of computing the
distance from a search point t o each region. Because a region
of the SR-tree is the intersection of a bounding sphere and
a bounding rectangle, the minimum distance from a search
point t o a region is defined as the longer one between the
minimum distance to its bounding sphere and the minimum
distance t o its bounding rectangle. Therefore, the ininiinum
distance from a search point p to the region of a child Ck,
which is denoted by d , is computed as follo\vs:

d = max(d,,d,),
d, = inax(0, I(p - c k . z / l - C k . r) .

d, = AdIA’DIST(p,Ck.R).

where c k . Z and c k . r denote the center and the radius of
the bounding sphere of the child Ck, and C ‘ k . R denotes the
bounding rectangle of C k . The function A I I . V U I S T (p , R)
computes the n~in imum distance from a j’oiiit p t o a rect-
angle R and is defined as follows:

The algorithm of computing this furictioii is presented in

In the above definition. d, denotes tlic n i i i i i n i i r i i i distance
from the search point p to the bounding sphere of the child
Ck, and d, denotes the minimum distance to the bounding
rectangle of the child c k . While the R*-tree determines the
minimum distance d by d, and the SS-tree by d,, the SR-tree
determines the minimum distance d by choosing the longer
one betn.een d, and d,. This provides the better estimation
of the distance from the search point p to the iir,arcst point in
a region and enhances the performance o f nciirest neighbor
searching.

1141.

5 Evaluation of the SR-tree

5.1 Performance Test

\lie measured the performance of the S R - t r w i inder the same
conditions Lvith tlie test i n Section 3.1. ‘Ilw i i i a s i i i i i i i i i num-
ber of entries in a iiode and i n a leaf ai-(’ s l i o \ v n i i i Table 1
and the heights of trees are sliowri in ‘1;il)li~ ’L ; t i i d .<. I.‘igrirc ‘J
slrorrs t l i r . ar-cragc’ cost of inserting a I I P K (’ 1 1 1 11. i i i t o SI{-trees,
SS-trtscs. a i 1 1 1 I ~ * - I r t ~ s for tlrr i i i i i f o r i i i (la1 ,I X * I . i:igiirc, %(a)

(a) C P U time

O o 5 t

0 1 I
oza SM 51.

0 u x m M m o e w o a l m m o 2axn

(b) Number of disk reads

Figure 10: Performance of SR-trees (uniform d a t a set)

(a) CPU time (h) Number of disk reads

Figure 11: Performance of SR-trees (real d a t a set)

and 9-(L) sliow, respectively, the C P U time and the num-
IJW of disk accesses, i.e., the total number of disk reads and
disk \vrites. The SR-tree and the SS-t.ree require less CPU
tinie tlian the R*-tree, because the centroid-based insertion
algoritliiii of the SS-tree requires significantly less C P U time
tlLan the algorithm of the R*-tree [3]. The SR-tree requires
inore CPU time and more disk accesses than the SS-tree,
because the SR-tree contains not only bounding spheres but
also bounding rectangles.

Although the SR-tree requires more creation cost than
the SS-tree, i t enhances the query performance remarkably.
Figure 10 and 1 1 show the results of the SR-tree for the
uiiiforin and the real da ta set respectively. The results of

-tree and the VAMSplit R-tree, which are already
s l i o ~ . ~ i in Section 3.1, are also plotted for comparison. They
clcarl\. depict tha t the SR-tree outperforms the SS-tree for
bot11 data sets. For the uniform and the real d a t a set, the
SKtrce reduces t.lie C P U time to 91% and 67% of the SS-
tree and the number of disk reads to 93% and 68% of the
SS-trre respectively. In comparison with the VAMSplit R-
tree. the VAhlSplit R-tree outperforms the SR-tree for the
i i n i f o r i i i data set. Hobvever, the SR-tree slightly outperforms
tlic \..-\hlSi)lit It-tree for t l ip rcal data sct. I t is remarkable
I Irat I II(~ SI{-I r c ~ esliibits the c ~ ~ n i ~ i a r a l ~ l e performance to the
\'.-\\lSiilit I<-twe. coiisideriug I l ia1 tlie SI{-tree is a dynamic

irides structure while the VAhlSplit It-tree is a static, i.e..
op ti rnized, index s truc t ure.

5.2

The SR-tree outperforms the SS-tree Iiy dividing points into
regions i v i th both small volumes and short diameters. To
clarify this advantage of the SR-tree, we measured the vol-
umes and the diameters of the leaf-level regions of the SR-
trees constructed for the performance test in Section 5.1.
T h e results for the uniform and the real da ta set are shown
in Figure 12 and 13. Figure 12-(a) and 13-(a) graph the
average volume of the leaf-level regions, uhile Figure 12-(b)
and 13-(b) graph the average diameter of the leaf-level re-
gions. The results of the R*-tree and the SS-tree are also
plotted for comparison.

For tlie SR-trees, the precise volume and tlie precise di-
ameter are not measured, because it is quite dificult to coni-
pute them for the intersection of a sphere and a rectangle.
Instead, we measured the volumes and the diameters of their
bounding spheres and bounding rectangles. These rneasure-
ments indicate the upper limit of tlic rcal volrirne arid the
real tliaiiwtcr. because a region. \vliic.li is tlic intersection
of i t s I~ouiiding sphere and its I ~ o ~ i ~ i ~ I i i i ~ rty.tallgle. has a
sniallcr vo lume aiid a sliortc,r diairlctc.r 1 1ii111 its Iloiiiidiug
si)licrc and its lmiindiiig rrctaiigl~.. ' I ' l l < ~ ~ - c . f o ~ . ~ ~ . t I I V r(>al a\--

The Advantage of the SR-tree

8

(a) Volume (b) Diameter

Figure 12: The average volume and the average diameter of the leaf-level regions of R*-trees, SS-trees, and SR-trees
(uniform da ta se t)

E
0'

Figure 13: 'The average volume and the average diameter of the leaf-level regions of R*-trees. SS-trees, and SR-trees
(real da ta set)

erage volume of the leaf-level regions of the SR-tree is not
larger than the average volume of their bounding rectangles
\vliich is marked by x i n Figure 12-(a) and 13-(a). and the
real average diameter of the leaf-level regions of the SR-tree
is not longer than the average diameter of their bounding
spheres which is marked by 0 in Figure 12-(b) and 13-(b).

These results exhibit the following characteristics:

(1) Figure 12-(a) and 13-(a) show tha t the leaf-level re-
gions of the SR-tree have smaller volumes than those
of the R*-tree and the SS-tree on average. The). are
about 1/1000 of those of tlie SS-tree for the uniforni
da ta set and ahorit 1/10' of those of the SS-tree for
the real data set.

(2) Figure 12-(b) and I3-(b) show that the leaf-le\.el re-
gions of the SIt-tree have as short diameters as those
of the SS-tree.

'These characteristics verify that the SR-tree divides points
into regions \vitli bot Ii sriialler \rolumes arid shorter diaiiic-
tchrs. hiorcover. t l i v i r \-olriiiit,s are even smaller than those oC
t I I P It*-trcc. This iiii1)ro\.cs t Ire disjointness aiiioiig rt.gion~
nn(1 cnlianc-ts (l i t , j w r f o r i i i a i i c - e on nearest neiglilmr qlit-ric's
ns slion-II i n .Cjtx.t i o i i 5. 1

5.3 The Fanout Problem

It had been pointed out that the fanout, i.e., tlic iirasiiiiniii
number of branches in ali iutcrmediate node, decreascs in
the higher dimensionality, hecause tlie size of a node entry
grows as dimensionality increases [3]. Since a node entry of
the SR-tree contains both a bounding sphere and a bounding
rectangle, i ts size is three times larger than tha t of the SS-
tree and one-and-a-half of that of tlie R*-tree. Therefore,
the fanout of the SR-tree is one third of the SS-tree and
t n o thirds of the R*-tree. The reduction of the fallout ilia?

require more nodes to be read oii queries and possibly cause
the reduction of the query pcrforinance.

To analyze this problem. we measured tlie riurnlxr of
node-level reads and leaf-level reads separately. Figure 14
shows the results for tlie real da ta set. T h e SR-tree incurs
more node-level reads than the SS-tree. However, the total
number of disk reads of t he SR-tree is smaller t han that, of
the SS-tree, because tlie SR-tree saves leaf-level reads iiiore
than t,he increase of iiodc-lt.vcl reads. Thus, tlir SI{-trec
reduces tlie nuni lm of d i s k wads, c~vvn tliorigli i t sriff<~rs
from tlic fanout prol)l*~iii.

55 Tree c
SR-Tree r

(a) Node level (b) Leaf level

Figure 14: The number of node-level reads and leaf-level reads (real data set)

5.4 Evaluation on Dimensionality and Distribution

To investigate the characteristics of the SR-tree, we mea-
sured the performance of the SR-tree with varying the di-
mensionality and the distribution of data.

First, we measured the performance of the SR-tree for
the uniform da ta set with varying its dimensionality from
1 to 64. The data set size is fixed t o 100,000 for every di-
mensionality. Figure 15-(a) and 15-(b) show the CPU time
and the number of disk reads respectively. Figure 16 shows
the proportion of accessed leaves, and Figure 17 shows the
minimum, the average. and the maximum of the distances
between the points within the uniform da ta set. For all
figures, the horizontal axis indicates dimensionality. These
results show that the uniform da ta set is unsuitable for eval-
uating index structures on nearest neighbor queries in high
dimensionality, because the uniform da ta set is too hard for
the touchstone. As slion.ii in Figure 16, the proportion of ac-
cessed leaves reaches 100% i i i 32 and 64 dimensions for both
the SR-tree and the SS-tree. This means that these indices
completely failed to divide points into neighborhoods and
are forced t o access all leaves. This failure derives from the
distribution of the distances between the points within the
uniform da ta set. .As shoivn i t i Figure 17, the minimum of
the distances gro1t.s drastically as dimensionality increases
and the ratio of tlrc t i i i t i i n i u i n t o the maximum increases
up to 24% i n 16 dinietisiotis. 40%) in 32 dimensions, and
53% in 64 dimensions. This means that the variation in
the distances reduces as dirnerisionality increases and tha t
each point contained in the uniform data set has similar dis-
tances to the others in high dimensionality. This property of
the uniform da ta set niakes it essentially difficult t o divide
points into neighborlioods. Thirs, the uniform data set is un-
suitable for evaluating tlle performance of index structures
on nearest neighbor queries in high dimensionality.

Therefore, we devised atrother dat,a set, Le., the cluster
da ta set. We designed tliis data set to be more practical in
high dimensionality tllan tlie uniform da ta set. This d a t a
set consists of multiple cliisters and each cluster contains a
fixed number of points \v i t l l in a sphere. Therefore, the total
number of points is the n r ~ ~ ~ ~ l i r r of clusters multiplied by the
number of cliistkr elerntiits. ?'lie location and the radius of
each cluster is c11ov~i1 I - ~ ~ ~ I I I O I I I I ~ ivitliin the unit cube and the
location of each I J o i i i t is clioscil 1)y generating a point oii the
s1)lici-c siirfaccx i i i i i l o i . i i i l \ ; t i111 I I i (~ t i shifting it along radiiis
tadoi l l l \ . . III~+I.III l > c l I /I(' ll(~uf'or1iiance of the S 1 7 - t ~ ~ for

the cluster data set in which the number of clusters is 100
and t h e number of cluster elements is 1000. The results
are shown in Figure 18. Figure 18-(a) and 18-(b) show the
CPU time and the number of disk reads respectively. These
results show that the SR-tree is effective from the lower di-
mensionality to the higher dimensionality and improves t,he
performance about 100% compared to the SS-tree.

Secondly, we measured the performance of the SR-tree
with varying the distribution of data . To produce various
distributions, we varied the number of clusters from 1 to
100,000 for the cluster da ta set with fixing the dirnension-
ality to 16. The total numlxr of points is fised to 100,000.
Therefore, the number of points in a cluster is 100,000 di-
vided by the number of clusters. For the cluster d a t a set,
varying the number of clusters corresponds to varying its
uniformity. When the number of clusters is 1 points are dis-
tributed in a single sphere. \\'hen the number of clusters is
greater than 1 and less than 100.000, points are distril)uted
in multiple spheres located tvitllin t.lie unit cube. \\lieti
the number of clusters is 100.000, points are uniformly dis-
tributed within the unit cube. The results arc shown i n
Figure 19. Figure 19-(a) s1ron.s the CPU time and Figure
19-(b) shows the number of disk reads. The horizorital axis
indicates the number of cliisters. These results s l i o \ v that
the SR-tree impro\ses the perforniaiice iiiore ~vlieii t lie data
set is less uniform. For esaiiiplc. tlie SI<-tree iiiiprovcs t l i c
SS-tree by 42% when the nuinher of clusters is 1. 88% \\.lien
the number of clusters is 100. and 36% when the nritnber
of clusters is 100,000. This property is consistent with tlie
result of Section 5.1 where the SR-tree exhibits more per-
formance improvement. for tlie real da ta set than for the
uniform d a t a set. These results itnply that thr SI<-tree is
more effective for less unifortn data sets.

6 Conclusions

In this paper, a new tnuilidiiiierisional index structirre callccl
the SR-tree is proposed for high-dimensional nearest ticigli-
bor queries. The distinctive feature of the SI<-tree is tlic
combined utilization of bounding spheres and bounding rrct-
angles. T h e performance test of the R*-tree and tlic SS-t,rec
revealed that bounding sphert~s permit t o tlividc points i t i t o

regions with short diaiiietcrs a i i t l t I ia t IxJuiiditig rot-taiigli,b
pertiiit. to divide points iiito rcgions i v i t l i siiiall \ . o l i i i i i (' \ . . \ I -
tliougli the SS-tree out1wrforiiis tlic I l * - t r c c ~ 1)). t;il<itig :\<I-

10

(a) CPU time (t i) Number of disk reads

Figure 15: Performance of SR-trees and SS-trees with varying dimensionality (uniform da ta set)

L I
2 4 8 16 32 6.

h M S a M l l F l

0 0,

Figui-e 1G: The ratio of the accessed leaves t o the
\\hole leaves

vantage of I)ounding spheres, we demonstrated tha t bound-
ing spheres occupy larger volumes than bounding rectangles
011 averagr atid that this may reduce the disjointness among
regions. 'l'lir SICt rer permits t o divide points into regions
\vith Imt h siiiall \.oIriiries and short diameters by specifying
a region Ivitl i t l i c intersection of its bounding sphere and its
bounding wctaiiglc. This improves the disjointness among
regions and enhances the performance on nearest neighbor
queries. The performance test verifies tha t the SR-tree di-
vides points into regions with both small volumes and small
diameters and slio\vs that the SR-tree outperforms the SS-
tree aii(l t l i r I<*-trce. The performance evaluation tests show
that t l i c SI<-t ree is wpccially effective for high-dimensional
arid noti-uitiforin data sets which can be practical in actual
iniagc,/\-itleo sitiiilarity indexing. Although the creation cost
of tl it S1t-ti-c~. is higher than that of the SS-tree, the per-
forriiance ciiliance~nent by the SR-tree ivould be advanta-
geous to t lie al)plications which require such an index struc-
ture that arc rfficirnt for high-dimensional nearest neighbor
qucrrc5

...' _.'
..-.

Figure 17: The maximum, the average, and the niiiiimum
of the distances between the points contained in
the uniform da ta set

a t Carnegie RIellon University, for providing t l i cr i i icith the
da ta set of real feature vectors. T h e authors also \vould like
t o express their gratitude t o Prof Takeo Iiaiiade, Director
of the Robotics Institute, Carnegie h4ellori ITnirerslty, and
JSPS (Japan Society for the Promotion of Scic.iicc) for giving
us the chance to s tar t this research.

References

[l] M . Flickner. H. Sawhney, W. Niblack, J . Ashley, Q.
Huang. 8. Dom, M. Gorkani, J . IIaflic,r, D. Lee, D.
Petkovic. D. Steele, and P. Yankrr, .'Qrlcry by Image
and \'ideo Content: the QBIC System." Il<EE Coni-
puter. \'01.48. No.9, pp.23-32, Sep. 1995.

[2] H . D. \\'actlar, T . Kanade, A I . A . Smith, and S. hI.
Stevens, ..intelligent Access to Digital \.ideo: Informe-
dia Project ." IEEE Computer, Vo1.29, No.5. pp.46-52,
May 1996.

[3] D. A. \\'Iiite and R. Jain, "Similarity Indcxiug \vith the
SS-tree." I'roc. of thc 12th l i l t . CoiiT. on I M a ICtigineer-
ing. Nc\v Orleans. ITS..\. pp.516 -.52:<, I:c,l). l!)!Ki.

[J] N. I h ~ c k i i i a ~ i i i . H-1'. KrirgcI, I < . Sc.liiit,iiI(,r. and E.
Sc~gc.r . ..7'lir I<*-trcv: ail I<fficic.rit a t i (l I $ o l) i i \ t ;\cccss

(a) CPU time (b) Number of disk reads

Figure 18: Performance of SR-trees and SS-trees with varying dimensionality(c1uster d a t a set)

I I
1 10 1 10 rm I o a x) 1mQa 1W 1 0 m lm lmma

Numb., of Uu.ilerr

mI
rm NuWac, 01 uvrtcrr

(a) CPU time (b) Number of disk reads

Figure 19: Performance of SR-trees and SS-trees n i t h varying the distribution(c1uster da ta set)

hletliod for Points and Rectangles,” Proc. ACM SIG-
A’IOII. Atlantic City, US.4, pp.322-331, May 1990.

[.5] . I . T. Robinson, ‘ T h e I<-D-B-tree: a Search Structure
for Large Alultidimensional DJ-narnic Indexes,” Proc.
:\(‘h1 SIGhlOD, Ann ..\rbor, US.4, pp.10-18, Apr. 1981.

[C,] 11. \ . Jagadish, “Spatial Search with Polyhedra,” Proc.
of the 6th Int. Conf. on Data Engineering, Los Angeles,
LISA, pp.311-319, Feb. 1990.

[7] T. Urinklioff: H.-P. Iiriegel, R. Sclineider, B. Seeger,
..hlrilti-Step Processing of Spatial Joins,” Proc. ACM
SIGhIOD, hlinneapolis, USA, pp.197-208, May 1994.

[8] :\. Grrttrnan, “R-trees: a Dynamic Index Structure
for Spatial Searching,“ Proc. ACRI SIGMOD, Boston,
CTS.4: pp.47-57, Jun. 1984.

[!I] I). A . \4’liite and R. Jain, “Similarity Indexing: Al-
gorithms and Performance.” Proc. SPIE Vo1.2670, San
I)ic.go. USA, pp.G2-73, Jan . 19%.

[I O] . I . I.. I3ciitlc): ‘~hlriltidinre~rsio~~al I3inary Search Trees
I - h i ~ l for ;\ssociative Scarclring.“ C‘otlrm. of tlie AChl ,
\ .c1I. 18. N o . 9 , pp.509-517. Sep. 1975.

11) R. Sproull, “Refinements to Nearest-Neighbor Search-
ing in k-Dimensional Trees,” Algorithlrlica, ‘t’oI.6, No.4,
pp.579-589, 1991.

121 [<.-I. Lin, H. V. Jagadish, and c‘. 1:aloiltsos. T h e T\’-
tree: .An Index Structure for Iliglr-uillrelrsiolral Data,”
VLDB Journal, Vol. 3, No. 4, pp.517-542, 1994.

131 S. Berchtold, D. A. Keim, and H.-P. h i e g e l , “The X-
t.ree: An Index Structure for I-Iigh-Dimensional Data,”
Proc. of the 22nd VLDB Conf., Bombajz, India, pp.28-
39. Sep. 1996.

(141 N. Roussopoulos, S. Kelley, and F. Vincent, ”Nearest
Neighbor Queries,” Proc. AChl SIGhIOD, San Jose,
USA. pp.71-79, May 1995.

[l5] T. Sellis, N. Roussopoulos, and C . Faloutsos. “The R+-
tree: a Dynamic Index for Multi-Dinreirsional Objects,”
Proc. of the 13th VLDB Conf., Brighton. England,
pp.507-518, Sep. 1987.

[161 I>. Grecne, “An I in~~lei i r~i i ta t ion and P d o r i n a n c e
.-\iialysis of Spatial Data .~\crt-ss Rlcthods,“ I’roc. of tlie
. i t 1 1 I l l (. C‘onf. O I I Data Eugiiic*c,rirrg. 1,o.s :\ngc,lc.s. LTS.4.
~ i i) . (i O f i - G l . i . Feb. 1989.

12

