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Abstract 

Recently, similarity queries on feature vectors have been 
widely used to perform content-based retrieval of images. To 
apply this technique to large databases, i t  is required to  de- 
velop multidimensional index structures supporting nearest 
neighbor queries efficiently. T h e  SS-tree had been proposed 
for this purpose and is known to outperform other index 
structures such as the R*-tree and the K-D-B-tree. One 
of its most important features is that  it employs bounding 
spheres rather than bounding rectangles for t h e  shape of re- 
gions. However, we demonstrate in this paper tha t  bounding 
spheres occupy much larger volume than bounding rectan- 
gles with high-dimensional d a t a  and that  this reduces search 
efficiency. To overcome this drawback, we propose a new 
index structure called the SR-tree (SpherelRectangle-tree) 
which integrates bounding spheres and bounding rectan- 
gles. A region of the SR-tree is specified by the  intersec- 
tion of a bounding sphere and a bounding rectangle. In- 
corporating bounding rectangles permits neighborhoods to  
be partitioned into smaller regions than the SS-tree and im- 
proves the disjointness among regions. This enhances the 
performance on nearest neighbor queries especially for high- 
dimensional and non-uniform da ta  which can be practical 
in actual image/video similarity indexing. We include the 
perforniance test results tha t  verify this advantage of the 
SR-tree and s h o i v  that the SI<-tree outperforms both the 
SS-tree and the R*-tree. 

1 Introduction 

liccently. similarity queritbs oii feature vectors have been 
lvidely used to perform the content-based retrieval of images 
[l]. To apply this technique to large databases, i t  is required 
to  develop multidimensional index structures efficiently sup- 
porting nearest neighbor queries. For example, the  Infor- 
media project (21, a digital video library project a t  Carnegie 
hlellon University, is working to incorporate the  content- 
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based retrieval capability into its digital video library and 
expecting the  development of an index structure efficient 
for similarity queries on ten or more dimensional feature 
vectors. A feature vector is extracted from image charac- 
teristics, e.g., hue, saturation, intensity, texture, etc., and 
stored in a database along with images. Similarity queries 
are performed by conducting nearest neighbor queries in the 
feature vector space. A set of the images similar to  a par- 
ticular image can be retrieved by searching feature vectors 
close t o  tha t  of the given image. 

T h e  SS-tree [3] had been proposed for this purpose and is 
known to outperform other index structures such as the R*- 
tree [4]  and the K-D-B-tree [5] in high-dimensional nearest 
neighbor queries. One of its most important features is that  
i t  employs bounding spheres rather than bounding rectan- 
gles for the shape of regions. The center of a sphere is the 
centroid of underlying points and the SS-tree divides points 
into isotropic neighborhoods b!. utilizing centroids in the 
tree construction algorithm. Ilotvever, we demonstrate in 
this paper tha t  bounding spheres occupy nruch larger volume 
than bounding rectangles with Iiigh-diniellsional da ta  and 
that  this reduces search efficiency. To overcome this draw- 
back, we propose a netv index structure called the SR-tree 
(Sphere/Rectangle-tree) which integrates bounding spheres 
and bounding rectangles. 

The  approach of the  SI%-tree is a kind of region shape re- 
finement which can be found i n  the I"-tree [GI and in the re- 
gion approximation method of the spatial join algorithm [:]. 
The  former employs multiple bouuding rectangles with dif- 
ferent orientations and composes polyhedra regions by their 
intersection. The  resultant polyhedra region is smaller than 
a single bounding rectangle and achieves better selectivity 
i n  the search. The  latter exploits the i i s ~  of convex hulls, el- 
lipses, circles, etc., t o  achieve inore accurate approxi~nation 
of spatial objects than using iiiiniiiiuni bouuding rectangles. 

The distinctive feature of the SR-tree is that  it speci- 
fies a region by the  intersection of a bounding sphere and a 
bounding rectangle. T h e  introduction of bounding rectan- 
gles permits neighborhoods to I)e partitioned into smaller re- 
gions than the SS-tree and improvcs t.lic disjointness among 
regions. This enhances the pcrforwance on nearest neigli- 
bor queries especially for high-dirriensioltal and non-uniform 
data  which can be practical i n  actual iniage/video similarity 
indexing. We include the performaircc tcst  results to  verify 
this advantage of the SIt-tree aiid slio\v that  the SIt-tree 
outperforms both the SS-tree and the It*-tree. 

This paper is organized as follo\vs. Section 2 describes 
related work. Section 3 comparcs boiiiiding spheres with 
Iiounding rectangles I,!. shotring I l i v  rctsult of perforniance 
tc'sts aiid discussing their  ~ ) I O ~ I ~ ~ I . (  i(,s. I i i  Src-t ion 4. \ve prcsent 
t I i c  i iv \ \ -  index struct ure. SI<-I I(-('. an( l  c.\xlriatc, its pcidor- 
i i i ~ i i i w  in Scct ion 5 .  Sect ion (i ( ' 0 1 1 1  i t i t i s  c-onclrisioiis. 
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Figure I:  The  R*-tree structure 

2 Related Work 

2.1 The K-0-B-Tree 

The K-D-B-tree (51 is a n  index structure for multidimen- 
sional point data. It  is a height-balanced tree similar t o  
the B+-tree and its tree structure is constructed by divid- 
ing the search space into subregions with coordinate planes 
recursively. Nodes and leaves correspond t o  subregions and 
a disk block is allocated for each of them. The distinctive 
characteristics of t h e  K-D-B-tree is t h e  disjointness among 
subregions on the same tree level. This makes the  search 
path of a point query t o  be a single branch from the  root 
to a leaf. Therefore, the search time of a point query is 
definitely logarithmic to  the size of a d a t a  set. 

However, the forced splits, i.e., the propagation of splits 
from a node to its descendants, are required to keep the 
disjointness among sibling regions. A forced split occurs 
ulien a region of an intermediate node is divided crossing its 
child regions. It  can cause the creation of empty or nearly 
empty leaves and nodes. Therefore, the K-D-B-tree cannot 
ensure tlie minimum storage utilization. This reduces the 
performance of the I<-D-B-tree on range queries and nearest 
neighbor queries. 

2.2 The R*-Tree 

The It*-tree [4], the most successful variant of the R-tree [8),  
is a inultidirnensional index structure for rectangle data. It is 
a height-balanced tree corresponding to a hierarchy of nested 
rectangles. Nodes and leaves correspond to rectangles in tlie 
hierarchy and a disk block is allocated for each of them. The 
rectangle of a node is determined by the minimum bounding 
rectangle of those of its children. The  rectangle of a leaf is 
determined by tlie minirnuni houtiding rectangle of the data  
eiitrirs contained i n  that  leaf. Therefore, the rectangle of the 
root node corresponds to  the minimum bounding rectangle 
of tlie whole data  entries, while tlie rectangle of an interme- 
diate node corresponds to  the minimum bounding rectangle 
of the da ta  entries contained in its lower leaves. 

The R*-tree improves the performance of the R-tree by 
inodifying the insertion and tlie split algorithm and  by in- 
t roduciiig the forced reinsertion mechanism. Although the 
It-tree and tlie R*-tree is originally designed for rectangles. 
it can be used solely for points (Figure 1) and known to 
Ire effective also as a point access method [4]. T h e  R-tree 
and the R*-tree are different from the I<-D-B-tree in the fol- 
lowing respects: (1) the regions associated with the  nodes 
and the leaves are determined by bounding rectangles rather 
than disjoint subregions and (2)  the regions of the R-tree 
and Llie R*-tree are allowed to overlap each other. Because 
s i lhng regions can ovrr lap  car11 other, the search time of a 
I ) o i i i t  query depends to t I I P  aiiisliirt of overlap and is not 
(Iot(~rmiiiec1 by the Iirigllt o f  I I I C  t r w .  0 1 1  the other hand. 
tlir 1l-tl-w aiid t l i c  i t*-tr(v,  ( ' i t i i  riisure tlie niiiiinium storage 
~itilization. I~rcai~sc~ t l i (>\-  rt~(1iiii.v no forcttl split. 

Figure 2: T h e  SS-tree structure 

2.3 The SS-Tree 

The  SS-tree [3] is an index structure designed for similarity 
indexing of multidimensional point data .  I t  is a n  improve- 
ment of the R*-tree a n d  enhances the  performance of nearest 
neighbor queries by modifying the following respects. 

Firstly, it employs bounding spheres rather than bound- 
ing rectangles for the region shape (Figure 2). The center 
of a sphere is the centroid of underlying points and the SS- 
tree permits t o  divide points into isotropic neighborhoods 
by utilizing centroids in the tree construction algorithms, 
i.e., the insertion algorithm and the split algorithm. On 
the insertion of a point, the  insertion algorithm determines 
the most suitable subtree to accommodate the new entry 
by choosing a subtree whose centroid is tlie nearest to the 
new entry. When a node or a leaf is full, the split algo- 
rithm calculates its coordinate variance on each dimension 
from the centroids of its children and chooses the dimension 
with the highest variance for splitting it. These algorithms 
divide points into isotropic neighborhoods and enhance tlie 
performance on nearest neighbor queries. Another advan- 
tage of using bounding spheres for the region shape is that 
it only requires nearly half storage compared t o  bounding 
rectangles. Since a sphere is determined by tlie center and 
the radius, i t  can be represented tvith as many parameters 
as tlie dimensionality plus one. On the other hand, the 
number of parameters required for a rectangle is tlie double 
of the dimensionality, because a rectangle is determined by 
the lower and the upper bound of every dimension. This 
advantage permits almost doubling the fanout of nodes and 
reduces the height of trees. 

anism of the R*-tree. M'lien a node or a leaf is full. the R*- 
tree reinserts a portion of its entries rather than splits it. 
unless reinsertion has been made on tlie same tree level. 0 1 1  

t.he other hand, the SS-tree reinserts entries unless reinser- 
tion has been made at the  same node or leaf. This promotes 
tlie dynamic reorganization of the tree structure. 

Secondly, the SS-tree modifies the forced reinsertion mech- 

2.4 The VAMSplit R-Tree 

The \'AhlSplit R-tree [9] is an optiiiiized R-tree, i.e., it is 
constructed in the top-do\vn niaiiner with a given da ta  set. 
The  tree construction algorithiii of the VAMSplit R-tree is 
based on tha t  of the k-d tree [ lo) ,  a main memory index 
structure for multidimensional points. The  VAMSplit R-tree 
coiistructs a tree structure by partitioning points recursively 
with a coordinate plane which is orthogonal to  tlie dimension 
with the highest variance. This split algorithm has beeri 
used by tlie optimized k-d trees [ l l ] .  The VAhlSplit R-tree 
applies this algorit,lini to tlir K-tree and refines tlic 1r.a.t. of 
selecting a split point to griararitce t l i e  i i i i n i i i i u r i l  i i u i i i l w r  o f  
disk I)locks to  be used. ;\ccorc(iiig t o  tlir r t w i l t  r c p o r t c d  i i i  

[!I]. t Iir \..\AISplit R-tree o i i t  o t ~ r f o i - u ~ . ;  I ~ o t  Ii t l i c  l < * - t r ( ~ l  i \ i i ( i  
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2.5 The  TV-Tree 

T h e  TV-tree [12] improves the performance of the  R*-tree 
for high-dimensional feature vectors by employing t h e  reduc- 
tion of dimensionality and the shift (telescoping) of active 
dimensions. Dimensionality is reduced by ordering dimen- 
sions based on their importance and by activating only a 
few of more important dimensions for indexing. The  shift 
of active dimensions occurs when feature vectors in a sub- 
tree have the same coordinate on the  most important ac- 
tive dimension. Then,  tha t  dimension is made inactive and 
the  less important dimension is newly activated for index- 
ing. This approach is effective for such feature vectors that  
satisfies the following conditions: ( 1 )  dimensions can be  or- 
dered by their significance and (2) there exist such feature 
vectors tha t  allow the shift of active dimensions. As men- 
tioned in [3], the second condition does not always hold for 
real-valued feature vectors because their coordinates usually 
have wide diversity. If the second condition does not hold, 
the  effectiveness of the TV-tree results in only the  reduc- 
tion of dimensions which can be commonly applied t o  other 
index structures. Thus, the effectiveness of the  TV-tree is 
dependent t o  applications. 

SS-tree 
SR-tree 

2.6 The  X-Tree 

T h e  X-tree 1131 is a variant of the R*-tree and improves 
the performance of tlie R*-tree by employing the overlap- 
free split and the supernode mechanism. The  overlap-free 
split enables the search space t o  be divided into disjoint. re- 
gions like the I<-D-D-tree and improves the performance of 
point queries. A supernode is a n  oversized node which is 
arranged t o  circumvent the overlap among nodes and en- 
hances the 1 / 0  throughput for reading and writing nodes. 
These approaches are not incompatible with the SR-tree. 
The  effectiveness of these methods for the  SR-tree is an open 
question. 

3 3 4 4 4 4 4 4 4 4  
4 4 4 4 5 5 5 5 5 5  

3 

3.1 Performance Test 

We evaluated t lie performance of the multidimensional in- 
dex structures. t h e  Ii-D-B-tree: the R*-tree, the SS-tree. 
and the  \-.4hlSplit [<-tree. to clarify their advantages and 
disadvantages. 

T h e  following t \vo data  sets were used for the perfor- 
mance test: 

Bounding Rectangles vs. Bounding Spheres 

(1)  uniform data  sct 

( 2 )  real data  set 

Each data  set consists of 16 dimensional points. The 
uniform data  set is a synthetic d a t a  set which consists of 
the  points distributed uniformly in the  range [O, 1 )  on each 
dimension. The  real data  set consists of the real feature vec- 
tors of images n-hich are 16-element histograms computed 
over a quantized version of the color space. 

U'e constructed indices for these d a t a  sets and measured 
the CPU tinic and tlie number of disk reads on nearest ncigh- 
Iior queries. \\'c c~iiiploycd t lie nearest neighbor search algo- 
r i t l i in  presviited i i i  [I-!].  A query is to  find the iicai-est 2 1  
j m i r i t s  relati \( ,  t o  it pirticti lar point in the data  w t .  Tlic 
r(,sltl t  \vas ( ~ \ ~ ~ l i l i i t < ~ ( l  as tlic avcrage of 1.000 raitdoiir t r i a l h .  

Index I Node Leaf 
K- D-B-tree I 3 0  10 
R*-tree 
VAMSplit R-tree 1 ii 
SS-tree 
SR- t ree 20 12 

Table 2: Tree heights (uniform data  set) 

Index I Da ta  set size ( X  1000) 

All tests are computed on a Sun Microsysterns Ivork- 
station, SPARCst.ation-20 (CPIJ: IlyperSPARC 125 hlHz,  
main memory: 224 Mbytes, OS: Solaris 2.4).  All programs 
are implemented in C++*. The  size of nodes and leaves is 
set t o  8192 bytes t o  meet with the disk block size of the op- 
erating system. The  size of the d a t a  area associated to  each 
leaf entry is 512 bytes. The maximum number of entries in 
a node and in a leaf are shown in Table 1. Following the 
suggestion of the R*-tree [4) and the SS-tree [3 ] ,  the mini- 
mum utilization parameter of each block is set to 40% for all 
of the  index structures and the reinsert fraction parameter 
of the R*-tree and the SS-tree is set to  30%. The heights of 
the constructed trees are shoivn in Table 2 and 3 .  For I<-D- 
B-trees, we employed the split, algorithm of the R+-tree [15]; 
which is a n  extension of the I<-D-B-tree to spatial objects. 
instead of the algoritlim presented in [lo], because the cyclic 
choice of splitting dimensions presented in [lo] is likely to 
cause forced splits as reported in [ lG] .  

The  results for the iiniforin and the real data sct are 
shown in Figure 3 and 4 rcspectively. I n  t.llese fig~rres. the 
graph (a)  sholvs the CPU time and  the graph (b) slio\vs the 
number of disk reads. The horizontal axis indicates the size 
of the  da ta  set.  The size varies from 10,000 to 100,000 for 
the  uniform da ta  set and froni 2,000 to 20,000 for tlie real 
da ta  set. 

These results slio\v that the VAklSplit R-tree outper- 
forms the other index structures. However, tllc coinparison 
between the \ri\hlSplit It-tree and the other index struc- 
tures is not necessarily fair. Iiecause tlie VAhlSplit R-tree is 
an optimized index structure taking advantage of full kno\vl- 
edge of the da ta  set while the others are designed to be fully 
dynamic [9]. Among tlie dynamic index structures, the SS- 
tree exhibits the best performance and performs mucli better 
than the R*-tree and tlie I<-D-B-tree. This supports the re- 
sults reported i n  [3] and tlie superiority of tlie SS-tree to tlie 
R*-tree is confiriiied. 
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Figure 3 Performance of I<-D-B-trees, R*-trees, SS-trees, and VAhlSplit R-trees (uniform da ta  set) 

l igure 4: Performance of I<-D-B-trees. R*-trees, 

3.2 Properties of Bounding Rectangles 

T h e  significant feature of the test results in Section 3.1 is 
the sriprriority o f  the SS-tree t o  the R*-tree and tlie I<-D- 
13-tree. T l i c ~  SS-ti-ee performs much better than both the 
R*-trw aiitl t l i t ,  I<-D-B-tree especially for the real data  set. 
The  SS-tree is about  four times faster than the R*-tree. 

This superiority can be explained by the following prop- 
erties of the SS-tree and the R*-tree: 

?'lie SS-t ree divides points into isotropic neighborhoods 
I,?. iitiliziiig Ilounding spheres. 

'I'hc It*-tiwe divides p0int.s into sniall regions by uti- 
lizing I x l i i i i t l i n g  rectangles. 

To \.erif\- t Iicsc properties, we measured the volumes and 
tlie diaiiieters of the leaf-level regions of the SS-trees and 
the R*-trees coiistructed for the uniform da ta  set in Section 
3.1. Here. t he  diameter of a region means the diameter 
of a bounding sphFre for the SS-tree and the diagonal of a 
bounding rtc.taiiglc for the R*-tree. The results are slioirn in 
Figtins 5. f:igiiri, %(a) and 5-(b) graph the al'erage volume 
and t 1 1 1 .  a\-i%r;igc ilianieter respectivel>-. 

l ' l i c ~ - t ,  i . c ~ s i i I t h  hl io \v  that the average voluiiie of hounding 
i-vt.titiigli>h i, i i i i i i . 1 1  siiialler than that of I ) o r i i l d i i i g  splieres. 
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SS-trees, and \..-\hlSplit R-trees (real data  set)  

The  former is about  2% of the latter. By contrast. the av- 
erage diameter of bounding rectangles is inricli longer than 
tha t  of bounding spheres. T h e  former is about 2 . 5 .  \vhile 
the latter is about  1.5. Thus. the SS-tree divides Imints into 
short-diameter regions. while the R*-tree divic1i.s 1)oiiits into 
small-volume regions. This is why the SS-tree out performs 
the R*-tree. Since t.he diameter of regions has more influence 
on the performance of nearest neighbor queries tlian their 
volumes, the SS-tree, whose average diameter is smaller than 
that  of the R*-tree, exhibits better performance on nearest 
neighbor queries. 

It may seen1 strange that a region tvitli a si i ia l ler  \-olurne 
has a mucli longer diameter. However, it is 1mssilAe for a 
rectangle in high-dimensional space, because t lie dilference 
between its edge length and its diagonal lengtli gi-o\vs as tlic 
number of diiiiensions increases. For exainplc. t lie diago- 
nal lengtli of a D-dimensional unit cube is tlioiigli its 
edge lengtli is just  one, e.g., for a 2-diiiieiisioiial unit 
square and 4 for a 16-dimensional unit hypercube. Tliere- 
fore, a bounding rectangle does not necessarily have a short 
diameter even if its volume is sinall. 

\Yitli the above iiimsurement and the mii5idvrnt ion .  Ive 
can coiicludr tliat the reason of tlic si i l ) i~r io i . i t \ .  0 1  I I i c  SS- 
tree is tlie shortiiess of regioii diameters aiitl t 11at i i  1)oiiiidiiig 

rectangle of t lie ll*-tree suffers from I I i c  ( l i l r t ~ r l ~ l l ( . ( ~  I)(.1\\-ccii 
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(a )  Volume (b)  Diameter 

Figure 5: The  average volume and the  average diameter of the leaf-level regions of the SS-trees and the R*-trees constructed 
for the uniform d a t a  set 

1.02 \ 
t I 

of the  R*-trees are  also plotted for comparison. These re- 
sults show tha t  the average volume of the bounding rectan- 
gles of the SS-tree leaves is much smaller than that  of the 
bounding spheres. When tlie d a t a  set size is 100,000, the 
average volume of the bouridirig rectangles of the SS-tree 
leaves is about 1/900 of that of the bounding spheres and 
about 1/18 of the bounding rectangles of the R*-tree Iraves. 
This means that  the average volume of the leaf-level regions 
of the SS-trees will be about 1/900 if the regions are deter- 
mined by bounding rectangles instead of bounding spheres 

3.4 Discussions 

According t o  the performance test and the measurement 
above, the properties of bounding recLangles and bounding 

j -.#--.*.- .... , , 

*-----~.+ ..~... --..... *~...~.. --...... t -.... 

0 *Mo3 6 M w  gyao lmaa spheres are summarized as fo1lon.s: 
Dam Sat 5 z s  
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1:igrire 6 :  The  average volume and the average diameter of 
the leaf-levrl regions of tlie SS-trees constructed 
for the uniform d a t a  set 

its edge length arid its diagonal length in high-dimensional 
space. 

3.3 Properties of Bounding Spheres 

The SS-tree outperforms the R*-tree by employing a bound- 
ing sphere whose center is the centroid of underlying points. 
flowever, as shown in Figure 5-(a): the bounding spheres of 
tlic SS-tree occupy much larger volume than the bounding 
rectangles of the R*-tree. Regions with larger volume tend 
to produce more overlap aniong themselves. This reduces 
the search efficiency of range queries and nearest neighbor 
queries. Thus, bounding spheres are not necessarily superior 
to bounding rectangles i n  every respect. They are disadvan- 
tageous in terms of volume. 

To clarify this property, we measured the average volume 
of the leaf-level regions of SS-trees when they are determined 
bv hounding rectangles instead of bounding spheres. The  re- 
sult of the SS-trees constructed for the uniform da ta  set i i i  

Scctioii 3.1 is slio\vn i i i  Figiire 6. ‘t’lic 1iorizont.al axis iiidi- 
(‘;\trs tlic sizc of tlir data  sct ant1 t lie vertical axis indicates 
1 IIC avc’ragc. v o l u i n ~ ~  o f  t l i v  1)oiindiii.g spheres and the bouii~l- 
iiig wct  anglcs. ‘ l I i t *  a\ .(wg,c \ ~ o I ~ i i i i e i  oC tlic lcaf-level regioiis 

Bounding rectangles permit to  divide points into small- 
volume regions. However. they have much longer di- 
ameters than bounding spheres, because of the dilfer- 
ent behavior of their edge length and their diagonal 
length especially in liigli-dinlensional space. 

0 Bounding spheres permit to  divide points into short- 
rlo\wvrr.  they tend to Iiaw larger diameter regions. 

volumes than bounding rectangles. 

Thus, bounding rectangles and bounding spheres have 
both merits and demerits. Bounding rectangles are advan- 
tageous in terms of volume. On the other hand, bounding 
spheres are advantageous i n  terms of diameter. For nearest 
neighbor queries: bounding spheres are more advantageous 
than bounding rectangles, because the lengths of region di- 
ameters have more influence to t lie performance on nearest 
neighbor queries than the volumes of regions. IIowevrr: the  
most desirable property is to divide points into regions both 
with small volumes and iv i t l i  short diameters. 

Based on these considrration, \ve come to think of t.lie 
combined use of a bounding rectangle aiid a bounding sphere. 
Because their properties are conIpletrientary to  each other, 
their intersection seems to Iwriiiit tli\iding points i n t o  I(’- 
gions with small voluiires aiid s1ioi.t diaiiictcrs. ‘lo rcalizc. 
I liis idea. we deidopet l  t l i c  SI{-( r ( v ~  (Sj)lic~rc/l~cct;iiiglc-t Im,) 
1)resented in the  nest sectioii. T l i , ~  c l l ( ~ t  ivc,iic*ss of this coiti- 

Ijination will bc disclos<>cl i i i  I I i ( 2  i.(,st o f  I 1ii.s 1);ij)t’r. 



4.2 Insertion 

Figure 7: The  SR-tree structure 

3 

(a) Leaf level (b)  Node level 

Figure 8: Regions specified by the intersection of a bounding 
sphere and a bounding rectangle 

4 The SR-Tree 

4.1 Index Structure 

The structure of the SR-tree is based on tha t  of the R-tree 
[ 8 ] ,  in common with the R*-tree [4] and the SS-tree (31, and 
corresponds to  the nested hierarchy of regions as shown i n  
Figure 7. However, the distinctive feature of the SR-tree is 
that  it specifies a region by the intersection of the bounding 
sphere and the bounding rectangle of underlying points as 
shown in Figure 8. 

A leaf of the  SR-tree has the following structure: 

L : (El, . . . .  E " )  ( rnL 5 12 5 A I L )  
E, : ( p ,  data).  

A leaf L consists or entries E ~ ,  . . . , E,, ( m L  5 12 5 A I L )  

where T n L  and .A[, are the minimum and the niaxiniuni 
number of entries in a leaf. Each entry contains a point 
p and its attribute dota .  This structure is the same Ivith 
that  of the SS-tree. 

A node of the SR-tree has the following structure: 

N : (CI , .  . . , C,,) ( r n N  5 72 L M N )  
C, : ( S .  R, [ I ' ,  child-poznter) .  

A node Ar coiisists of entries C1;. . . , C,, (m,v 5 r i  5 . \ l . y )  
where n t N  aiid .'1J.y are the minimum and the maxiniuni 
number of entries in  a node. Each entry corresponds to  a 
child of the node and consists of the following four conipo- 
nents: a bounding sphere S, a bounding rectangle R ,  the 
number of points t i ' .  and a pointer to  the child chzld-poznter. 
The way to compute S and R is explained in the next sec- 
tion. The  variable ill is the total number of points contained 
in the subtree \vliose top is the child pointed by child-pointer. 
The  diffcrcncc of this striicture to  that  of the SS-tree is the 
introdiictioii of t l i c ,  I)oiiiiding rectangle R. On tlir otlirr 
Iiancl, t11c i l i f f ~ ~ i x ~ i i ~ . ( -  o f  this structure to that of tlic R*-trcc 
is t I I P  introriii(.f i o i i  i ) f  I I i c  Iwunding sphere S and the iiuriilwi- 
of p i l i (  s 1 1 ' .  

T h e  insertion algorithm of the SR-tree is based on Lhat of 
the  SS-tree. We applied the centroid-based algorithm of the 
SS-tree to  the SR-tree, because its effectiveness for nearest 
neighbor queries is confirmed through our performance test 
as shown in Section 3.1. Since the algorithm of the SS- 
tree can be understood by referring to the papers of the 
SS-tree (31 and its predecessors, Le., the R-tree [8] and the 
R*-tree [4], we only mention its outline and the difference 
between the algorithm of the SS-tree and that  of the SR- 
tree. The  insertion algorithm of the SS-tree determines the 
most suitable subtree to accommodate the new entry by 
choosing a subtree whose centroid is the nearest to  the new 
entry. When a node or a leaf is full, tlie SS-tree reinserts a 
portion of its entries rather than splits i t  unless reinsertion 
has been made a t  the same node or leaf. Otherwise, the 
split algorithm calculates its coordinate variance on each 
dimension from the  centroids of its children and chooses the 
dimension with the highest variance for splitting it. 

T h e  insertion algorithm of the SR-tree differs from that  
of the SS-tree in the  way of updating regions on the insertion 
of a new entry. T h e  SR-tree needs to update both bound- 
ing spheres and bounding rectangles, while the SS-tree only 
needs t o  update bounding spheres. The  way of updating 
bounding rectangles is the  same with that  of the R-tree 
and the  R*-tree. However, the way of updating bound- 
ing spheres is different from that  of the SS-trrc. h c a u s e  
a region of the SR-tree is the intersection of a 1)oundiug 
rectangle and a bounding sphere, the SR-tree determines 
the bounding sphere of a parent node by utilizing both tlie 
bounding spheres and the bounding rectangles of its cliilclreii 
as follows: 

(1) The  center of a bounding sphere, 2 ( X I, .  . . . s,, . . . . s n ) ,  
is computed as follonx 

" ( I  5 t 5 I ) ) .  
!Y=l s, = 

& = I  

where I;  (1 5 b 5 7 1 )  is an indcx to thc cliildrc~ii ( '1 .  

. . . C,, i (1  5 i 5 D )  is an index to the dini<~iisioIls. 
C~.I, denotes tlic i-th coordinate of the cciiter o f  t he  
child C k ,  and C k . i o  denotes tlie number of points coil- 
tained in the subtree whose top is the child C ' k .  This 
definition is the same with tha t  of the SS-tree. 

(2) The radius of a bounding sphere, T ,  is conii)utcd as 
follows: 

min ( d s ,  d ? ) ,  

d,  = max (nl .-1.~IulS'~'(a:,C'k.R)).  
l < k < "  

where k (1 5 b 5 n )  is an index to thc cliiliircu ( ' 1 .  

. . . , C,,, i (1 5 i 5 D )  is an index to dinicii.;ions. 
Ck.x and Ck.r denote the center and the radiiis of tlic 
bounding sphere of t l i c  child C'n. aiid Cl .R  (ii.iiotcs 

the bounding rectanglr of t l i c  cliil(l C ' k .  l ' l i ( t  l i i i i ( . I  i o i i  

A J A .Y D I ST ( p .  R ) coni 1) ut es t 11 cl i n  ii si I I  I i I i i I  i I ib  I i i  I  i c t x  

from a point p to a wc.taiigl(~ R ancl is ( l , ~ l i i i ~ , i l  ;I> fo l -  
lows: 
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Figure 9: Insertion cost of R*-trees, SS-trees, and SR-trees (uniform d a t a  set) 

This can be computed easily by pursuing such a vertex 
of the rectangle R that  is the farthest from the point 
P.  

I n  the above definition, d, denotes the maximum distance 
from tlie center of a parent node to the  bounding spheres 
of its children. aiid d,  denotes the maximum distance from 
tlre center of a parent node to the bounding rectangles of 
its children. Although the SS-tree determines the radius r 
by d,, the SR-tree determines the radius T by choosing the  
smaller one Ixtneen d, and d,. This permits the radius 
of the SIt-tree to be smaller than that  of the SS-tree and 
reduces t lie overlap of bounding spheres. 

4.3 Deletion 

In coniiiioii \ v i t l i  the R*-tree and the SS-tree, tlie deletion 
algorithiu of the SR-tree is the same with that  of the R- 
tree [8]. \\.lrcn the deletion of an entry causes no under- 
utilizatioii of any leaf or node, the entry is siniply removed 
from the t rcc. Or lienvise, the under-utilized leaf or node is 
removed froiii t I r c  tree and orphaned entries are reinserted 
t o  tlie tree.  

4.4 Nearest Neighbor Search 

In common \vitl i  the R*-tree and the SS-tree, the nearest 
neighbor search of tlre SR-tree is performed by applping the 
algoritlini prrscritrd i n  [14). This algorithm finds a number 
of points nearest to  some given point. It is a depth-first 
search ant1 consists of two stages. Firstly, it collects the 
given nriiiilwr o f  points t o  make a candidate set. Secondly, 
it revises tlic caiididate set with visiting every leaf whose 
region overlaps (tic, range of the candidate set.  I t  terminates 
when there aro no more leaves to  visit and tlie final candidate 
set is the search rtLsult.. The  tree is traversed in order of 
the distaiic-e froiii the  search point to  each region. . i t  every 
visited n o t l ( . .  t I r r  clistancc from the search point to the region 
of cac-li c - l i i l i l  i \  coinl)iitcd arid tlre closer cliild is t-isited prior 
to  1 I I ( ’  f;11.1 l l I , l  0 I l ~ ’ h .  

.-\It Iioiigli I l i f ,  traversal algorithm is coiiriiroii to  tlie R*- 
t r i v . .  1 ) I ( ’  SS-I I . I . I . .  a i t ( I  1111, SIl-trcc,. tlic SI<-t~-cc, differs f r o m  

both the R*-tree and the SS-tree in the way of computing the 
distance from a search point t o  each region. Because a region 
of the  SR-tree is the intersection of a bounding sphere and 
a bounding rectangle, the minimum distance from a search 
point t o  a region is defined as the longer one between the 
minimum distance to  its bounding sphere and the minimum 
distance t o  its bounding rectangle. Therefore, the ininiinum 
distance from a search point p to  the region of a child Ck, 
which is denoted by d ,  is computed as follo\vs: 

d = max(d,,d,), 
d, = inax(0, I(p - c k . z / l  - C k . r ) .  

d, = AdIA’DIST(p,Ck.R). 

where c k . Z  and c k . r  denote the center and the radius of 
the bounding sphere of the child Ck, and C ‘ k . R  denotes the 
bounding rectangle of C k .  The  function A I I . V U I S T ( p ,  R )  
computes the n~in imum distance from a j’oiiit p t o  a rect- 
angle R and is defined as follows: 

The  algorithm of computing this furictioii is presented in 

In  the above definition. d, denotes tlic n i i i i i n i i r i i i  distance 
from the  search point p to the bounding sphere of the child 
Ck, and d, denotes the minimum distance to the bounding 
rectangle of the child c k .  While the R*-tree determines the 
minimum distance d by d,  and  the SS-tree by d,, the SR-tree 
determines the minimum distance d by choosing the longer 
one betn.een d, and d,. This provides the better estimation 
of the distance from the search point p to the  iir,arcst point in 
a region and enhances the performance o f  nciirest neighbor 
searching. 

1141. 

5 Evaluation of the SR-tree 

5.1 Performance Test 

\lie measured the performance of the S R - t r w  i inder the same 
conditions Lvith tlie test i n  Section 3.1. ‘Ilw i i i a s i i i i i i i i i  num- 
ber of entries in  a iiode and i n  a leaf ai-(’ s l i o \ v n  i i i  Table 1 
and the heights of trees are sliowri in ‘1;il)li~ ’L ; t i i d  .<. I.‘igrirc ‘J 
slrorrs t l i r .  ar-cragc’ cost of inserting a I I P K  ( ’ 1 1 1  11. i i i t o  SI{-trees, 
SS-trtscs. a i 1 1 1  I ~ * - I  r t ~ s  for tlrr i i i i i f o r i i i  (la1 ,I X * I .  i:igiirc, %(a) 
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Figure 10: Performance of SR-trees (uniform d a t a  set) 

(a) CPU time ( h )  Number of disk reads 

Figure 11:  Performance of SR-trees (real d a t a  set) 

and 9-(L) sliow, respectively, the C P U  time and the num- 
IJW of disk accesses, i.e., the total number of disk reads and 
disk \vrites. The SR-tree and the SS-t.ree require less CPU 
tinie tlian the R*-tree, because the centroid-based insertion 
algoritliiii of the SS-tree requires significantly less C P U  time 
tlLan the algorithm of the R*-tree [3]. The SR-tree requires 
inore CPU time and more disk accesses than the SS-tree, 
because the SR-tree contains not only bounding spheres but 
also bounding rectangles. 

Although the  SR-tree requires more creation cost than 
the SS-tree, i t  enhances the query performance remarkably. 
Figure 10 and 1 1  show the results of the SR-tree for the 
uiiiforin and the real da ta  set respectively. The  results of 

-tree and the VAMSplit R-tree, which are already 
s l i o ~ . ~ i  in Section 3.1, are also plotted for comparison. They 
clcarl\. depict tha t  the SR-tree outperforms the SS-tree for 
bot11 data  sets. For the uniform and the real d a t a  set, the 
SKtrce  reduces t.lie C P U  time to 91% and 67% of the SS- 
tree and the number of disk reads to  93% and 68% of the 
SS-trre respectively. In comparison with the VAMSplit R- 
tree. the VAhlSplit R-tree outperforms the SR-tree for the 
i i n i f o r i i i  data set. Hobvever, the SR-tree slightly outperforms 
tlic \..-\hlSi)lit It-tree for t l ip  rcal data sct. I t  is remarkable 
I Irat I II(~ SI{-I r c ~  esliibits the c ~ ~ n i ~ i a r a l ~ l e  performance to the 
\'.-\\lSiilit I<-twe. coiisideriug I l ia1  tlie SI{-tree is a dynamic 

irides structure while the VAhlSplit It-tree is a static, i.e.. 
op  ti rnized, index s truc t ure. 

5.2 

The  SR-tree outperforms the SS-tree Iiy dividing points into 
regions i v i th  both small volumes and short diameters. To 
clarify this advantage of the SR-tree, we measured the vol- 
umes and the diameters of the leaf-level regions of the SR- 
trees constructed for the performance test in Section 5.1.  
T h e  results for the uniform and the real da ta  set are shown 
in Figure 12 and 13. Figure 12-(a) and 13-(a) graph the 
average volume of the leaf-level regions, uhile Figure 12-(b) 
and 13-(b) graph the average diameter of the leaf-level re- 
gions. The results of the R*-tree and the SS-tree are also 
plotted for comparison. 

For tlie SR-trees, the precise volume and tlie precise di- 
ameter are not measured, because it is quite dificult to  coni- 
pute them for the intersection of a sphere and a rectangle. 
Instead, we measured the volumes and the diameters of their 
bounding spheres and bounding rectangles. These rneasure- 
ments indicate the upper limit of tlic rcal volrirne arid the 
real tliaiiwtcr. because a region. \vliic.li is tlic intersection 
of i t s  I~ouiiding sphere and its I ~ o ~ i ~ i ~ I i i i ~  rty.tallgle. has a 
sniallcr vo lume aiid a sliortc,r diairlctc.r 1 1ii111 its Iloiiiidiug 
si)licrc and its lmiindiiig rrctaiigl~.. ' I ' l l < ~ ~ - c . f o ~ . ~ ~ .  t I I V  r(>al a\-- 

The Advantage of the SR-tree 
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(a) Volume (b) Diameter 

Figure 12: The  average volume and the average diameter of the leaf-level regions of R*-trees, SS-trees, and SR-trees 
(uniform da ta  se t )  

E 
0' 

Figure 13: 'The average volume and the average diameter of the leaf-level regions of R*-trees. SS-trees, and SR-trees 
(real da ta  set) 

erage volume of the leaf-level regions of the SR-tree is not 
larger than the average volume of their bounding rectangles 
\vliich is marked by x i n  Figure 12-(a) and 13-(a). and the 
real average diameter of the leaf-level regions of the SR-tree 
is not longer than the average diameter of their bounding 
spheres which is marked by 0 in Figure 12-(b) and 13-(b). 

These results exhibit the following characteristics: 

(1) Figure 12-(a) and 13-(a) show tha t  the leaf-level re- 
gions of the SR-tree have smaller volumes than those 
of the R*-tree and the SS-tree on average. The). are 
about  1/1000 of those of tlie SS-tree for the uniforni 
da ta  set and ahorit 1/10' of those of the SS-tree for 
the real data  set. 

(2)  Figure 12-(b) and I3-(b) show that  the leaf-le\.el re- 
gions of the  SIt-tree have as short diameters as those 
of the SS-tree. 

'These characteristics verify that  the SR-tree divides points 
into regions \vitli  bot Ii sriialler \rolumes arid shorter diaiiic- 
tchrs. hiorcover. t l i v i r  \-olriiiit,s are even smaller than those oC 
t I I P  It*-trcc. This iiii1)ro\.cs t Ire disjointness aiiioiig rt.gion~ 
nn(1 cnlianc-ts ( l i t ,  j w r f o r i i i a i i c - e  on nearest neiglilmr qlit-ric's 
ns slion-II i n  .Cjtx.t i o i i  5. 1 

5.3 The Fanout Problem 

It had been pointed out that  the fanout, i.e., tlic iirasiiiiniii 
number of branches in ali iutcrmediate node, decreascs in  
the higher dimensionality, hecause tlie size of a node entry 
grows as dimensionality increases [3]. Since a node entry of 
the SR-tree contains both a bounding sphere and a bounding 
rectangle, i ts size is three times larger than tha t  of the SS- 
tree and one-and-a-half of that  of tlie R*-tree. Therefore, 
the fanout of the SR-tree is one third of the SS-tree and 
t n o  thirds of the R*-tree. The reduction of the fallout ilia? 

require more nodes to be read oii queries and possibly cause 
the reduction of the query pcrforinance. 

To analyze this problem. we measured tlie riurnlxr of 
node-level reads and leaf-level reads separately. Figure 14 
shows the results for tlie real da ta  set. T h e  SR-tree incurs 
more node-level reads than the SS-tree. However, the total 
number of disk reads of t he  SR-tree is smaller t han  that, of 
the SS-tree, because tlie SR-tree saves leaf-level reads iiiore 
than t,he increase of iiodc-lt.vcl reads. Thus, tlir SI{-trec 
reduces tlie nuni lm of d i s k  wads, c~vvn tliorigli i t  sriff<~rs 
from tlic fanout prol)l*~iii. 
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(a) Node level (b) Leaf level 

Figure 14: The  number of node-level reads and leaf-level reads (real data  set) 

5.4 Evaluation on Dimensionality and Distribution 

To investigate the characteristics of the SR-tree, we mea- 
sured the  performance of the SR-tree with varying the di- 
mensionality and the distribution of data. 

First, we measured the performance of the SR-tree for 
the uniform da ta  set with  varying its dimensionality from 
1 to 64. The data  set size is fixed t o  100,000 for every di- 
mensionality. Figure 15-(a) and 15-(b) show the CPU time 
and the number of disk reads respectively. Figure 16 shows 
the proportion of accessed leaves, and Figure 17 shows the 
minimum, the average. and the maximum of the  distances 
between the points within the uniform da ta  set. For all 
figures, the  horizontal axis indicates dimensionality. These 
results show that  the uniform da ta  set is unsuitable for eval- 
uating index structures on nearest neighbor queries in high 
dimensionality, because the uniform da ta  set is too hard for 
the touchstone. As slion.ii in Figure 16, the proportion of ac- 
cessed leaves reaches 100% i i i  32 and 64 dimensions for both 
the SR-tree and the SS-tree. This means that  these indices 
completely failed to  divide points into neighborhoods and 
are forced t o  access all leaves. This failure derives from the 
distribution of the distances between the points within the 
uniform da ta  set. .As shoivn i t i  Figure 17, the minimum of 
the distances gro1t.s drastically as dimensionality increases 
and the ratio of tlrc t i i i t i i n i u i n  t o  the maximum increases 
up to 24% i n  16 dinietisiotis. 40%) in 32 dimensions, and 
53% in 64 dimensions. This means that  the variation in 
the distances reduces as dirnerisionality increases and tha t  
each point contained in  the uniform data set has similar dis- 
tances to  the  others in high dimensionality. This property of 
the uniform da ta  set niakes it essentially difficult t o  divide 
points into neighborlioods. Thirs, the uniform data  set is un- 
suitable for evaluating tlle performance of index structures 
on nearest neighbor queries in high dimensionality. 

Therefore, we devised atrother dat,a set,  Le., the cluster 
da ta  set. We designed tliis data  set to  be more practical in  
high dimensionality tllan tlie uniform da ta  set. This d a t a  
set consists of multiple cliisters and each cluster contains a 
fixed number of points \v i t l l in  a sphere. Therefore, the total 
number of points is the n r ~ ~ ~ ~ l i r r  of clusters multiplied by the  
number of cliistkr elerntiits. ?'lie location and the radius of 
each cluster is c11ov~i1 I - ~ ~ ~ I I I O I I I I ~  ivitliin the unit cube and the 
location of each I J o i i i t  is clioscil 1)y generating a point oii the 
s1)lici-c siirfaccx i i i i i l o i . i i i l \  ; t i111  I I i ( ~ t i  shifting it along radiiis 
tadoi l l l \ . .  III~+I.III l > c l  I /I( ' ll(~uf'or1iiance of the S 1 7 - t ~ ~  for 

the cluster data set in which the number of clusters is 100 
and t h e  number of cluster elements is 1000. The results 
are shown in Figure 18. Figure 18-(a) and 18-(b) show the 
CPU time and the number of disk reads respectively. These 
results show that  the SR-tree is effective from the lower di- 
mensionality to the higher dimensionality and improves t,he 
performance about 100% compared to the SS-tree. 

Secondly, we measured the performance of the SR-tree 
with varying the distribution of data .  To produce various 
distributions, we varied the number of clusters from 1 to 
100,000 for the cluster da ta  set with fixing the dirnension- 
ality to  16. The  total numlxr of points is fised to 100,000. 
Therefore, the  number of points in a cluster is 100,000 di- 
vided by the  number of clusters. For the cluster d a t a  set,  
varying the number of clusters corresponds to varying its 
uniformity. When the number of clusters is 1 points are dis- 
tributed in a single sphere. \\'hen the number of clusters is 
greater than 1 and less than 100.000, points are distril)uted 
in multiple spheres located tvitllin t.lie unit cube. \\lieti 
the number of clusters is 100.000, points are uniformly dis- 
tributed within the unit cube. The results arc shown i n  
Figure 19. Figure 19-(a) s1ron.s the CPU time and Figure 
19-(b) shows the number of disk reads. The  horizorital axis 
indicates the number of cliisters. These results s l i o \ v  that 
the SR-tree impro\ses the perforniaiice iiiore ~vlieii t lie data  
set is less uniform. For esaiiiplc. tlie SI<-tree iiiiprovcs t l i c  
SS-tree by 42% when the nuinher of clusters is 1. 88% \\.lien 
the number of clusters is 100. and 36% when the nritnber 
of clusters is 100,000. This property is consistent with tlie 
result of Section 5.1 where the SR-tree exhibits more per- 
formance improvement. for tlie real da ta  set than for the  
uniform d a t a  set. These results itnply that  thr SI<-tree is  
more effective for less unifortn data  sets. 

6 Conclusions 

In this paper, a new tnuilidiiiierisional index structirre callccl 
the SR-tree is proposed for high-dimensional nearest ticigli- 
bor queries. The distinctive feature of the SI<-tree is tlic 
combined utilization of bounding spheres and bounding rrct-  
angles. T h e  performance test of the R*-tree and tlic SS-t,rec 
revealed that  bounding sphert~s permit t o  tlividc points i t i t o  

regions with short diaiiietcrs a i i t l  t I ia t  IxJuiiditig rot-taiigli,b 
pertiiit. to divide points iiito rcgions i v i t l i  siiiall \ . o l i i i i i ( ' \ .  . \ I -  
tliougli the SS-tree out1wrforiiis tlic I l * - t r c c ~  1)). t;il<itig :\<I- 
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(a )  CPU time ( t i )  Number of disk reads 

Figure 15: Performance of SR-trees and SS-trees with varying dimensionality (uniform da ta  set) 

L I 
2 4 8 16 32 6. 

h M S a M l l F l  

0 0, 

Figui-e 1G: The ratio of the accessed leaves t o  the 
\\hole leaves 

vantage of I)ounding spheres, we demonstrated tha t  bound- 
ing spheres occupy larger volumes than bounding rectangles 
011 averagr atid that  this may reduce the disjointness among 
regions. 'l'lir SICt rer permits t o  divide points into regions 
\vith Imt h siiiall \.oIriiries and short diameters by specifying 
a region Ivitl i  t l i c  intersection of its bounding sphere and its 
bounding wctaiiglc. This improves the disjointness among 
regions and enhances the performance on nearest neighbor 
queries. The performance test verifies tha t  the SR-tree di- 
vides points into regions with both small volumes and small 
diameters and slio\vs that  the SR-tree outperforms the SS- 
tree aii(l t l i r  I<*-trce. The performance evaluation tests show 
that  t l i c  SI<-t ree is wpccially effective for high-dimensional 
arid noti-uitiforin data sets which can be practical in actual 
iniagc,/\-itleo sitiiilarity indexing. Although the creation cost 
of tl it  S1t-ti-c~. is higher than that  of the SS-tree, the per- 
forriiance ciiliance~nent by the SR-tree ivould be advanta- 
geous to t lie al)plications which require such an index struc- 
ture that  arc rfficirnt for high-dimensional nearest neighbor 
qucrrc5  

...' _.' 
..-. ... ... 

Figure 17: The maximum, the average, and the  niiiiimum 
of the distances between the points contained in 
the uniform da ta  set 
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