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1 Introduction 

A study of thc matrix displaccmcnt method for modeling thc vibrations of stnicturcs is prcscntcd in this 

report. The model can analyze both the frce and forccd vibrations of a structure. Static loading on a structure 

is trcatcd as a spccial case of the forccd vibration analysis. 

A brief rcvicw of thc Finite Elcmcnt Method and its present use is first given. This is followcd by a 

discussion of thc mcthodology of thc matrix displaccment approach and a description of thc spccific model 

uscd. Examplcs of the use of the model to analyze the frequencies and mode shapes of the frec and forced 

response of a bcam structure and the static dcflcctions of a beam structure are shown and comparcd with the 

closcd form solutions. Finally, ways of extending thc model to a more complicated structure, a turbinc blade, 

arc discussed. Conclusions are then drawn. 

2 The Finite Element Method - -  Fundamental Concepts and Applications 

There arc many methods available today which perform thc analysis of structures. For example, in one 

method the structure is dcscribed by differential equations. Thc differential equations are then solved by 

analytical or numerical mcthods. Another method of analysis is the finite element mcthod (FEM). 

In this method, thc structure is idealized into an assembly of discrete structural dements, each having an 

assumed form of displaccment or stress distribution. The complete solution is then obtained by asscmbling 

thcsc individual, approximatc, displaccment or strcss distributions in a way satisfying the forcc cquilibrium 

equations, the constitutive relationships of the material, the displacement compatibility between and within 

thc clcments and thc boundary conditions of the structure. 

Mcthods bascd on discrete elcmcnt idealization havc bccn used extensively in structural analysis.Thc carly 

pionccring works of'I'urner, et al., in 1956 [l], and Argyris in 1960 [2] led to thc application of this mcthod to 

static and dynamic analysis of aircraft structures. Other fields of structural engincering, such as nuclear 

rcactor design and ship construction have sincc cmploycd this method. 

Nor is the idca of discretc clcmcnts limitcd in usc to structural analysis only. Thc hndamcntal conccpt of 

thc finitc clcmcnt mcthod is that any continuous quantity, such as displaccmcnts, tcmpcraturc, or pressure, 

can bc approximatcd by a finitc numbcr of clcmcnts. Thus, this approach can bc uscd to solve problcms in 

hcat flow, fluid dynamics, clcctro-magnetics, fracturc mechanics and sccpagc flow to name just a fcw other 

arcas of usage. 
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The rcprcsentation of a continuous stnicturc by structural'clcments of finite s i x  results in large systems of 

algcbraic equations. A convcnicnt way of handling thcsc scts of equations is by the use of matrix algcbra, 

which also has the advantage of being ideally suited for computations on high-speed digital computers. For 

this reason, cxprcssions such as "matrix mcthods of smctural analysis'' are sometimes uscd to describe the 

method. More common though is the term "finite element method", which emphasizes the discretisation of 

the structure. 

The finite elcment method actually encompasses three classes of matrix methods of structural analysis. The 

first is tlic displacement (or stiffness method), where the displacements of the nodcs arc considcrcd the 

unknowns. Thc correct set of displacements results from satisfying the equations of force cquilibrium. The 

second method is the force (or flexibility) method. Here the nodal forces are the unknowns and are found by 

satisfying the conditions of compatible of dcforrnations of the members. The third class of matrix method is 

thc mixcd method, which is a combined force-displacement method. 

One last comment on the finite element method in general is necessary. An error is introduced into the 

solution of the original problem as soon as the continuous structure is replaced by discrete elements. This 

error remains, even when the discrete element analysis is performed exactly. In general this error is reduced 

by increasing the number of discrete elements, thereby decreasing the element siz,e and thus giving a better 

idealization of the continuous structure. Zienkiewicz, Brotton and Morton [3] suggcst that the user may 

determinc the limits of his error by: "(a) comparison of finite element calculations with exact solutions for 

cases similar to his specific problem; (b) a 'convergence study' in which two or more solutions are obtained 

using progessively finer subdivisions and the results plotted to establish their trend or (c) using experience of 

prcvious calculations as a guide to the treatment of the specific problem." Further information on matrix 

structural analysis and the finite element method may be found in many sources. [4-111 

3 Explanation of the Model 

The following discussion is divided into three sections. Firstly the equations of motion will be stated. 

Secondly, the matrix displaccrnent method for solving such equations will be described. Finally some specific 

aspects of the particular model being uscd will be discussed. 

3.1 Equations of Motion 

The motion of a vibrating system, consisting of mass and stiffness, of n degrees of frccdom can be 

reprcscntcd by tz diffcrcntial equations of motion. Thcsc equations of motion may be obtained by Newton's 

sccond law of motion, by Lagrange's cquation or by thc Influence Cocfficicnts mcthod. Since the equations 
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of motion, in gcncral, are no! indcpcndcnt of cach other, a simultancous solution of thesc cquations is 

rcqiiircd to calculatc d i t  frequencies of the system. 

‘nic matrix equation for the frec vibration case is: 

[K-w2M][X] = [O] 

where 

[Kl 
[MI 
0 

[XI 

represents the stiffness matrix of the structure, 
represents the inertial (mass) matrix of the structure, 
rcprcsents the set of eigenvalues of the cquations 
corresponding to the set of natural frequencies, 
represents the set of eigenfunctions of the equations 
corresponding to the set of displacements 

For the free vibration case the set of forces is just zero, 

The matrix [K-u2M] is called the impedance matrix. 

The matrix equation for the forced vibration case is: 

where Fl 
Of 

represents the set of forces on the structure, and 
is the driving or forcing frequency. 

The other terms arc as previously defined. 

Inspection of equations (1) and (2) reveals that ncithcr contain damping t c n s .  This is because structures 

of iriimcdiate concern have very low damping (-1 x critical damping). 

An cxccllcnt trcatmcnt on the dynamics of structurcs is Clough and Penzien [14]. 
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3.2 The Matrix Displacement Method 

An outline of the application of the matrix displacement method in finite element analysis for the solution 

of dynamic problems follows. A similar outline is given by Zicnkiewicz, ct al. [ 3 ]  for static analysis. 

1. Input 

a. Idealization of the problem 

T h e  continuous structure is divided into a number of elements. These elements are 
connected at common nodal points or nodes. It is at thcse nodes that the value of the 
continuous quantity (displacement) is to be determined. 

b. Preparaiion of the data for the structure 

l’lie geometry of the structure is defined by assigning coordinates to the nodal points. The 
physical properties of the elements (dimensions, material parameters) are inputted. 

c. Preparation of the load datu 

The loads to be applied to each element or node are defined. 

d. Preparation of the boundary conditions or constraints 

T h e  prescribed constraints on the degrees of Freedom and boundary conditions are stated. 

2. Processing 

a. Element Formulation 

The stiffness and inertial matrices for each element are determined by the approximate 
relationships and the corresponding loads are calculated, 

b. Assembly of the structure 

The summation of the elemental matrices to form structural stiffness, inertial and load 
matrices is performed. 

c. Reduction of equations 

The boundary conditions and constraints in terms of certain specified displacements are 
introduccd, thereby rcducing the number of equations to be solved. 

d. Solution. of siiiiultaneous equations 

‘I’hc solution o f  the cigen problem of equation (1) or (2) results in the natural frequencies of 
the structure (eigenvalues) and the modal shapes or displacements of the nodes’ 
(eigcnfunctions). 



c, Calculaiion of stresses 

If rcquircd, the elcmcntal stresses could be calculated from the nodal displacemcnts and 
elcmcntal stiffness. 

3. output 

The rcsults of the solution to the eigenvalue problem and the strcss calculation are presented in an easily 

intcrprctcd form. 

3.3 Specific Aspects of Model 

This section is concerned with specific aspects of the model. The elcrnent and its formation will be 

discussed first. Information concerning the computer code and its subroutines will thcn be given. 

1.  Element Formulation 

The element chosen for the model is the beam element which is given by Przemicmiccki [7]. This clement 

was chosen so as to allow direct comparison of results with known solutions (see section 4). The beam 

clement is a two node element. ‘ h e  modcl allows the nodes to have cithcr thrcc dcgrecs of freedom (x and y, 

translational and rotation about z, i.e. motion confined to a plane) or six degrees of freedom (x,y,z 

translational, rotation about x,y,z, i.e. the general case). 

Fig. 1 shows the beam element. The following forces act on the beam: 

0 axial forces s, and 3 

0 shearing forces s2 sj, sB’ and !$ 

0 bending moments sj, sg‘ sll, and sI2 

0 and twisting moments (torques) s4 and sl0. 

The location and positive directions of these forces are also given in Fig. 1. The corresponding 

displacements U,, U2,. . . U,, will be takcn to be positive in the positive dircction of these forces. 

k c h  clement has its own set of physical parametcrs. For thc bcam clement these parameters arc: Young’s 

modules, cross-scctional a m ,  momcnt of inertia about the y and z axis, Poisson’s ratio, mass density, and 

Icngth (along x axis). A11 df these parameters are inputtcd directly except for thc lcngth which is computed 

from thc inputted coordinatcs of the nodcs. * 



Figure 1: The beam element and its forces, after Przcinicniecki 171. 

The model performs calculations for either the free or forccd vibration case. To perform such calculations 

requires h e  calculation of the structural.stiffness and inertial matrices, along with information of the loading 

and boundary conditions of the structure. The effect of constraining a degree of freedom is to strike out the 

corresponding rows and columns of the stiffness, interial and load matrices. 

The s-ffncss matrix for a bcam clement is shown in Fig. 2. The shear dcformation parameters QY and cPz 

can be bken as zero. This matrix may be obtained in various ways, two of which are thc influence coefficients 

method and the variational method, which are outlined in Appendices I and 11. 

The ir;..?rtial matrix for the bcam elcment is shown in Fig.3. This matrix is obtained by the same methods as 

Ihc  stiffr.css matrix, as dcscribed in Appcndiccs I and 11. 

Liepexs [I31 gives a third way ofcalculating the stiffness and inertial matrices. 

The snxtural  matrix for both stiffness and inertia is obtained by supcrposition of the individual clcmcntal 

matriccs. Actual supcrposition occurs only whcn dcgrecs of frccdom arc common to more than one clement. 

2. Corputcr  Coding 

The ci:mputcr code itsclf contains ten subroutines, called by the main program. cntitlcd VlnRAT. A brief 

cxp1anaC.m of the subroutincs will now be givcn. 
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INPUT - This subroutine asks the user for the necessary in.formation which is nccdcd to assemble the 
structurc. Information such as: free or forced case, number of clcments, coordinates of 
nodes, physical parameters, structural loading, and Constrained dcgrces of frccdom are 
inputted in this section. 

CONECT - This subroutine establishes the geometry of the model. It detcrmincs the distances between 
adjaccnt nodes of the structure. 

KMAT - This subroutine calculatcs the elemental stiffness matrix for each element and then asscmblcs the 
structural stiffness matrix from them. 

MMAT - This is similar to KMAT only here the mass or inertial matrices are calculated. 

EIGEN - This subroutine is callcd for the free vibration case. The purpose of it is to calculate thc eigcnvalues 
(natural frequcncics) and eigenvectors (mode. shapes) of equation (1). This subroutine calls 
two other subroutines: EIGZF, an IMSL routine which actually docs the solving, and 
CLAMPR, which determines which degrees of freedom are constrained. 

SOLVE - This subroutine is called for the forced vibration case. This routine solves equation (2) for the 
displacement. This subroutine also calls two other subroutines: LEQTlF, an IMSI, routine 
which does the solving, and CLAMPR, which detcrmincs the proper degrees of freedom to 
be constrained. 

, 

REMARK - is a subroutine whose purpose is to explain the use of the main program VIDRAT and its 
subroutines. Infohation on the nomenclature and file structure used can be found in 
REMARK. The user of the model is recommended to refer to REMARK if he has any 
questions on the computer code used in this model. 

The code for all of these routines may be found in Appendix 111. 

4 The Model: Examples and Accuracy 

This section prcscnts various cxamples of use of the model. The examples chosen rcpresent five types of 

possible problcms. Thcy are: 

1. free vibration of a fixed-free uniform beam 

2. free vibration of a fixed-fixed uniform beam 

3. forced vibration of a fixed-free uniform beam 

4. static dcflcction of a fixed'frcc uniform beam 

5. static dcflcction of a fixcd-frcc non-uniform beam. 

Thc accuracy of cach example is discussed. 
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Symmetric 

GJ 
I 
- 0 

Figure 2: Stiffness Matrix of Beam Element of Figure 1 [After Przmieniecki]. 
[The sheer deformation parameters Q, and Q, can be considered 

to be zero.] Y 

The first four examples use the geometric and material values listed in Table 1. 

Parameter Value Units 

Total Beam Length (L) 
Young's Modulus (E) 
Cross-Scctional Area (A) 
Momcnt of Inertia about Z-Axis (Iz) 
Momcnt of Inertia about Y-Axis (Iy) 
Poisson's Ratio (v) 
Mass Density ( p )  

25.0 
27.8 x lo6 
2.0 

0.2 
0.7 
0.305 
0.283 

inches 
pounds force/inches* 
inches2 
inches4 
inches4 

pounds mass/inches3 
----- 

E 
f 

Table 1: Uniform Bcam Properties. 
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13 6J, 
Z + G  

I r- 7 

SJmrnctric 

0 

0 

9 

Figure 3: Consistent Mass Matrix for a Bcam Element 
(Aftcr Przemieniccki [7]), , 

4.1 Example 1: Free Vibration of a Fixed-Free Uniform Beam 

Figure 4: Examplc 1: Fixcd-Free Uniform Beam, 

0 

0 
- 
IO 12 I 1  

Table 2 summanzcs the results for this problcm, using one, two, and five elcmcnts. It is clear that 
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increasing the number of elements increases the accuracy of the results, and this supports the statements of 

Zicnkicwicz givcn earlier. 

The natural frequencies calculated by the model are compared with the closed form solution obtained 

partial differential equation of the continuous system. For the fixed-free case the closed form from tilc 
solutions are: 

Axial n n  ‘ E  ’ 

2L P 
(J=- d- where n = 1, 3,5, . . . 

Bending( i) where 1 + cos aLcosh aL =O 

, i = Y o r Z  
PAM 

@ = n n J ! -  G 
Torsional 

2L P 

b 
where n=l, 3,5,. . .G=- 

2(1+v)  

(3) 

(4) 

Thus from Table 2, one can see th2 by using just five elements. the model gives ten transverse modes, two 

axial modes, and two rotational modes, the frequencies of which are all within 5% of the exact solutions. 

Again, clearly greater ‘accuracy of results and more (higher) modes may be accomplished by increasing the 

number of elements. 

Diagrams of the mode shapes for the first five bending modes (in Y) and the first four axial modes (along 

X) are given in Figs. 5 and 6. The model shapes agree with the closed form predictions in every case. 

4.2 Example 2: Free Vibration of a Fixed-Fixed Uniform Beam 

In this example the beam is held fixed on.both ends. See Figure 7 . Table 3 shows the calculated and exact 

values for the axial mode natural Frequencies. The accuracy is similar to that of example 1. 

4.3 Example 3: Forced Vibration of a Fixed-Free Uniform Beam 

In this example (Figure 8), the beam is subjected to a harmonically varying load P(t) of amplitude P and 

circular frequency, af Figure 9 is a plot of the magnitude in the transverse direction of the free end node. As 

expected, as wi approaches a natural frequency (those found in example I), a resonance condition occurs 

resulting in ‘very large magnitudes of deflection. The expression for the amplitude of response A is givcn by 
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1 
0 

Figure 5: First fivc bcnding mode shapcs of Example 1 
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Axi a1 
Mode 

1 

2 

3 

4 

Ca lcu la t ed  Na tu ra l  Exact Na tu ra l  
Frequency ( r ad / sec )  Frequency ( r ad / sec )  

24,874 24,470 

52,186 

83,933 

117,570 

48,940 

.73,410 

97,880 

Table 3: Calculated and Exact Natural Frequencies in Axial Mode. 
Calculated value used five element model, for Example 2. 

where Po/K represents the static deflection, 
P 
D 

equals the ratio of the forcing frequency to natural frequency, 
dynamic magnification factor equal to l/(1-p2) 

% 
E r r o r  

1 .7  

6 .6  

14 .3  . 

20.1 

Analysis of the calculated amplitude in terms of the dynamic magnification factor agrees with equation (6) 

in those frequency regions dominated by just one natural frequency. 

4.4 Example 4: Static Deflection of a Fixed-Free Uniform Beam 

By letting the driving frcqucncy. up be zero in the forced vibration option, thc model is able to solve static 

deflection problems. Figure 11 shows the deflection of the beam under the static loading of example 4. The 

modcl's calculations, using just five clcmcnts are within 2% of the exact beam theory results. 'Ihc deflection 

and slope at tlic end of the beam arc given by the expressions: 

A = PI?/3EI 
8 = PL2/2EI 
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Figurc 6: First four axial modc shapes of Example 1. 
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Figure 7: Example 2: Fixed-Fixcd Uniform Beam. 

P W f  1 

Figure 8: Example 3: Fixed-Free Uniform Beam With Dynamic Load , 

Values calculatcd using these expressions are compared with the model results in Table 4 .  

4.5 Example 5: Static Deflection of a Fixed-Free Non-Uniform Beam 

Until now, all the cxamples have dealt with uniform bcams. Example 5 is an example taken from Laursen 

[Ill. I-aursen solvcs the problcm in three differential ways: by the moment-area method, by the conjugate 

bcam method, and by Newmark’s method. The solution for displacement and slope at the free end is given 

as: 

A = -0.457 inches 

8 = -0.0041 radians 

The modcl givcs idcntical results. 

A sketch of thc dcflcction is shown in Figure 13. 
. .  

TJic purposc of thc previous fivc cxamples is .to illustrate thc use and application of thc modcl to a variety 
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t - 11,070. 

Figure 9: Magnitude versus Forcing Frequency for Example 3. 
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Figure 10: Example 4: Fixcd-Frcc Uniform ncain With Static Load 

I 

l x  

Figure 11: Static Dcflcction of a Unifonn Beam, Example 4 . 
of cases. Othcr cases of a morc complicated nature could have bccn solvcd as casily. howcvcr thcsc cxamples 

givc thc user somc insight into the accuracy of thc solution obtained. Thcy also indicate that very accurate 

rcsults arc obuincd by thc modcl with rclativcly fcw clcmcnts. Jn gcncral, for a morc cornplicatcd structure 

morc clcmcnts will bc rcquircd to obtain an accurate modcl. Tcchniqucs for handling morc complex 

structurcs arc discusscd in thc ncxt section. 
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A ( inches)  8 ( r a d i a n s )  

Exact -9 .37  -5.62 

-5 .69  
- 4  . Calcu la t ed  -9 .50  x 10 

% 1 . 4  1 . 2  

Fable 4: Calculated and Exact Values of Dcflcctions for Example 4 

5 kips 

A 

I Z = 500 in.' 
z = so0 in.' 

I- t, 6 ft 9 ft 4 

Figure 12: Example 5 :  Static Deflection of a Fixed-Free 
Non-Uniform Beam, 
[After Laursenl. 
I 

5 The Extension of the Model to Model A Turbine Blade 

An example of a more complicated structure which might be of vibrational interest to an engineer is a 

turbine blade. The cquations of motion for a bcam in bending vibration is a fourth-ordcr diffcrcntial 

equation, whose solution is easily found. The solution for a non-uniform and asymmetrical bcam is much 

more complicated. A tapered, prc-twisted turbine blade with airfoil cross-section might be modeled as such a 

beam. 

Thc diffcrcntial equations for combined flapwisc bending, chordwisc bending and torsion of a twisted 

non-uniform blade arc derived by Houbolt 'and Brooks [16]. The solutions of thcsc equations for the 

continuous systcm have not bccn found. Thus the analysis of such structures are limitcd to spccial cases 
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I P = -5 Kips 

J. 

Figure 13: Static Dcflcction of a Non-Uniform Dcam, Example 5 .  
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which solutions arc obtainable, or to approximatc solutions. ’Various tcchniqucs of an analytical and itcrative 

nature such as the Myklcstad method, Holzer method. Stodala method, Raylcigh-Kit/. method, transmission 

matrix method. and the Rungc-Kutta method have bccn studied [14]. A fcw typical examples arc givcn in the 

references [15,17-201. 

Thc application of the model presentcd in this report to the turbine blade would be a very uschl tool to the 

engincer and his study of the blade’s frce and forced vibrations. 

Thc model allows cach element to have its own sct of gcomctric and physical parameters. Thus neither the 

non-uniformity or tapering of the blade would lead to any modcling problems. However thc airfoil shape of 

the blade would not havc the same torsional stiffncss as a beam. Thus the first adaptation to the model 

needed would be to correctly compute the torsional stiffness for an airfoil shape and input this into thd model 

rather than using that which the model computes. 

There is another problem which arises from the twisting and geometry of the turbine blade. The natural 

frcquencics of such a blade are coupled frequencies with the mode shapes consisting in general of transverse 

motion coupled with torsion. The coupling is dependent upon the degree of pre-twist and the ratio of depth 

taper to width taper. For a given blade, coupling becomcs stronger with increasing pre-twist and with 

increasing width to depth taper ratio. 

The simulation of this coupling in the model could be accomplished by either introducing it through the 

element itself or through the geometry ofthe structure. The first way implies changing the element from a 

beam clement to a new element This new element could be derived From a variational method (see 

Appcndix 11) applied to the differential cquations for h e  blade equations derived by Houbolt and Brooks 

[16]. The ideal of coupling through the geometry of the structurc implies the use of additional beam 

elemcnts. Part of these elcments would be used to form the ccnter of stiffness for the blade which would now 

be a curvc rather than the straight line used thus far. Other elements could cxtend at right angles from this 

curve. ‘nicse elements would act primarily as lumped masscs and form the curve rcprcsenting the center of 

mass of the blade. 

Modcling a turbine blade with this model would rcquirc some additional work to implcment the ideas 

prcsentcd in this scction. However the matrix displaccmcnt mcthod uscd is a very powerful onc and the use 

of the model and extcnsions of it are applicable to a widc range of problcms in vibrational analysis of 

structures. I3uilding a library of elcmcnts would grcatly cxtcnd the uscfulncss of thc existing-modcl, and 

additionally, the introduction of clement rotation would lcad to further improvcment. 
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6 Conclusion 

This report primarily concerns itself with three topics: 

1. the explanation of the matrjx displacement method for use in vibrational analysis of structures, 

2. specific examples showing the variety and accuracy of the method, and 

3. possible extensions of the model to allow for application to an even wider variety of problems. 

The model presented here currently allows for only one type of clement, the beam element. It has been 

shown that by using just a few beam elements very accurate results of frequencies and modal shape are 

obtained for beam-like structures. Creating a library of element types would allow the user even greater 

flexibility. The accuracy of the model using these new elements should be comparable to that presented here. 
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I. Appendix I Influence Coefficient hk-thod 

Onc mcthod of obtaining the stiffncss matrix is the inffucncc cocfficicnt method. This incthod is widely 

uscd in structural an31ysis with’ static loadings [10,11]. Tlicre arc both stiffncss and flcxibility influcnce 

coefficicnts : only tlic stiffness influcnce cocfficicnts will be considered here. 

The stiffness cocfficicnts for an elcmcnt arc found by altcrnativcly constraining all dcgrccs of frccdom but 

one and displacing this one by a unit amount. n7c rcsulting forccs on thc othcr dcgrccs of frccdom are the 

stiffness cocfficicnts. That is Kr j  is the force o r  couple corrcsponding to dcgrcc of frccdom L due to thc uni t  

displacement of dcgrce of freedom j. In Fig. 14 a prismatic element of Icngth 1, area A, moment of inertia 

about the Z axis 1, and modulus of elasticity E, with three dcgrees of freedom per node is shown. 

t’ 

* I  q 1 - 
d.0.f. #4 EA 

I 

d.0.f. # l  b -- 
12EI 

d.0.f. $2 

Figure 14: Elcment Stiffncss Influencc Coefficients (After White, et a1 [lo]), 

By pcrforming thc stiffncss influcncc mcthod proccdurc on this clcmcnt thc stiffncss matrix is obtained: 
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-EA 0 0 -  1 

-12EI 6EI o - -  
13 1 2  

12EI 6EI 

6EI  ,-, -6EI  - 2EI 
1 2  1 

[k 'I 
1 2  1 u -  

0 0 -  EA 0 0 1 =IF - 
-12EJ -6EI 12EI -6EI 

1 2  0 - -  13 1 2  

-6EI 4EI o - -  

0 -- I =  
6EI 2EI I 1 2  1 1 2  1 0 -- 

Figiirc 15: Stiffness matrix of prismatic clcmcnts of Figure 14, 
- 

Comparison of Fig. 2 and 15 shows that the matrix of Figure 15 is contained within the matrix of Figure 2. 

In Fig. 15, each node has three degrees of freedom, in Fig. 2 there are six degrees of freedom per node. 

The inertial (or mass) matrix may be calculated similarly. The mass influence coefficients would represent 

the mass inertia force acting at a degree of freedom due to a unit acceleration of another degree of freedom. 
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i l .  Appendix I I  Variat ional  Method 

Another mcthod of computing clcincntal stiffncss matriccs is the variational or cncrgy mcthod coininonly 

used in finite clerncnt programs. The outline prcscntcd hcre largely follows that of Gallaghcr [SI. 

‘J’lic prjnciplc of minimum potcntial energy fhrnishcs a variational basis for thc formulation of the clement 

stiffncss matrix. The potential energy (77 ) of a structure is given by the strain energy (U) plus the potential of 

the cxrcrnal work V (V = -Wcxt). The thcorcrn of potcntial energy is: of all displaccmcnts, satisfying the 

boundary conditions, those that satisfy the equilibrium conditions make thc potential cncrgy assume a 

P 

stationary (cxtrcme) value. ‘ h u s  

77 = u + v  P 

6np = 6U + 6V = 0 

And for stable equilibrium, n is a minimurn. P 

6% P = 6% + 6%>0 (9) 

The change in strain cncrgy density due to the change in strain caused by a virtual displaccrnent ( S E )  is given 

by 

Where u is the equilibrium stress state prior to the application of the virtual displacement. The stress--strain 

law is 

whcrc [E] is called tlic material stiffness matrix, a matrix of elastic constants. For simplicity, let there, 5e no 

initial strain. Substitution of(] I) into (10) yields 

Integration bctwccn zcro and the strain E, corresponding to u, gives 

1 
dU = - E  [FIE 

2 



27 

and integration ovcr the \,olu.mc of rhc clement results in 

u=---- J &[E]€ d(vo1) 
vol 

The variation of U is 
#. 

GU = / &[E] G E  d(vo1) ' 

\'Ol 

The potential of thc applied loads is 

V = - g l  FIA(- J 71 Uds 
S 
U 

where Fc represents point forces, and Ta re  traction. forces on the surface. The variation of V is 

iw = -xF,a~'- J T mds 

s* 

Using thc minimum potential energy thcorem (cquation 8) rcsults in 

J EEIGE d(vo1) + -zF~sA,-/. LT GUds = o 
vol 

In thc finite elcmcnt matrix, the displacements, [A], are written as a polynomial matrix times a vector of 
paramcters in the assumed displacement field. 

[AI = PI [a1 

[PI evaluatcd at the node gives a matrix [B], consisting of constants. Thus 

Inverting to find [a] in (20) and substitution into (19) leads to 

[A] = p] [K'] [Anodes] 

whcrc N is tlic shape function. Thc shapc hnction N L  has thc quality that it is cqual to 1 when cvaluatcd at 

thc gcomctric coordinatcs of thc point a t  which dl is dcfincd and is cqual to zero at all othcr dcgrecs-of- 

frccdom At, j *L. 
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'Ilic m i t r i x  [I)] is called the dof-to-str;iin traiisforrnation. Then 

[E] = [D] [Anodcs] 

For cxarnple if, 

aU  
a x  

[Dl = [N' 1 

E = . -, then 

Substitution of thesc ideas into (18) leads to 

1 [D]' [E][D]AnodesdVol( 6 A nodes')- ZpJ'Ft( 6A nodes') 
vol 

- ~]'~]ds(GAnodes')  =O J S 
dividing (24) by GAnodes' results in 

[K] Anodes - Fext = 0 

where 

[ K l  = Lol [Dl [ E l  [Dldvol  

Fext = [Ey'l t[TldS + C I N i I t F i  

Thus the stiffness matrix can be found by equation (26). 

As an cxamplc takc the axial clement show in Figure 16, with dofAl and A2 only. The proccdurc to 

calculate the stiffness of this elcmcnt follows. Let 
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I X 2 

+ L +  

Figure 16: Axial clcmcnt. cross-sectional area A. modulus E. 

Thc result is also containcd in the stiffness matrices shown in Figurcs 2 and 15. 

The incrtial (or mass) matrix can also be calculatcd by USC of this method. Thc variational approach leads 

to 
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where [ p lis thc material mass density matrix. Since thc shape hnctions uscd hcrc are the same as those 

uscd for the stiffness calculation thc result is callcd the consistent mass matrix. A consistcrit mass matrix is 
more accurate than a lumped mass approach [12]. 
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1 1 1 .  Appendix 1 1 1  Computer Code of Model 

Available from Author. 


