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1 Introduction

A study of the matrix displacement method for modeling the vibrations of structures is presented in this
report. The model can analyze both the free and forced vibrations of a structure. Static loading on a structure

is treated as a special case of the forced vibration analysis.

A brief review of the Finite Element Method and its present use is first given. This is followed by a
discussion of the methodology of the matrix displacement approach and a description of the specific model
used. Examples of the use of the model to analyze the frequencies and mode shapes of the frec and forced
response of a beam structure and the static deflections of a beam structure are shown and compared with the
closcd form solutions. Finally, ways of extehding the model to a more complicated structure, a turbine blade,

arc discussed. Conclusions are then drawn.

2 The Finite Element Method -- Fuhdamental Concepts and Applications

There are many methods available today which perform the analysis of structures. For example, in one
method the structure is described by differential equations. The differential equations are then solved by

analytical or numerical methods. Another method of analysis is the finite element method (FEM).

In this method, the structure is idealized into an assembly of discrete structural clements, each havingA an
assumed form of dispiaccment or stress distribution. The complete solution is then obtained by asécmbling
these individual, approximate, displacement or stress distributions in a way satisfying the force equilibrium
equations, the constitutive relationships of the material, the displacement compatibility between and within

the elements and the boundary conditions of the structure.

Methods based on discrete element idealization have been used extensively in structural analysis. The early
pioncering works of Turner, et al., in 1956 [1], and Argyris in 1960 [2] led to the application of this method to
static and dynamic analysis of aircraft structures. Other fields of structural engincering, such as nuclear

reactor design and ship construction have since employed this method.

Nor is the idea of discrete clements limited in use to structural analysis only. The fundamental concept of
the finite clement method is that any continuous quantity, such as displacements, temperature, or pressure,
can be approximated by a finitc number of clements. Thus, this approach can be used to solve problems in
heat flow, fluid dynamics, electro-magnetics, fracture mechanics and scepage flow to name just a few other

arcas of usage.



The representation of a continuous structure by structural elements of finite size results in large systems of
algebraic cquations; A convenicnt way of .handling these sets of equations is by the use of matrix algebra,
which also has the advantage of being ideally suited for computations on high-speed digital computefs. For
this reason, expressions such as "matrix methods of structural analysis™ are sometimes used to describe the
method. More common though is the term "finite element method"”, which emphasizes the discretisation of

the structure.

The finite element method actually encompasses three classes of matrix methods of structural analysis. The
first is the displacement (or stiffnéss method), where the displacements of the nodes are considered the
unknowns. The correct set of displacements results from satisfying the equations of force equilibrium. The
second method is the force (or flexibility) method. Here the nodal forces are the unknowns and are found by
satisfying the conditions of compatible of dcformations of the members. The third class of matrix méthod is

the mixed method, which is a combined force-displacement method.

One last comment on the finite element method in general is necessary. An error is introduced into the
solution of the original problem as soon as the continuous structure is replaced by discrete clements. This
error remains, even when the discrete elemeni analysis is performed exactly. In general this crror is reduced
by increasing the number of discrete elements, thereby decreasing the element size and thus giving a better
idealization of the continuous structure. Zienkiewicz, Brotton and Morton [3] suggest that the user may
determine the limits of his error by: "(a) comparison of finite clement calculations with cxact solutions for
cases similar to his specific problem; (b) a ’convergence study’ in which two or more solutions are obtained
using progessively finer subdivisions and the results plotted to establish their trend or (¢) using experience of
previous calculations as a guide to the treatment of the specific problem.” Further information on matrix

structural analysis and the finite element method may be found in many sources. [4-11}

3 Explanation of the Model

The following discussion is divided into three sections. Firstly the equations of motion will be stated.
Secondly, the matrix displacement method for solving such equations will be described. Finally some specific

aspects of the particular model being used will be discussed.

3.1 Equations of Motion

The motion of a vibrating system, consisting of mass and stiffness, of n degrees of freedom can be
represented by # differential equations of motion. These equations of motion may be obtaincd by Newton’s

sccond law of motion, by I.agrange’s cquation or by the Influence Cocfficiénts method. Since the cquations



of motion, in general, are not independent of each other, a simultancous solution of these cquations is

required to calculate the frequencices of the s;)stem.

The matrix equation for the free vibration case is:

, .
[K-wM][X] = {0] oY)

where

K] represents the stiffness matrix of the structure,

M] represents the inertial (mass) matrix of the structure,

W represents the set of cigenvalues of the equations

corresponding to the set of natural frequencies,
X1 represents the set of eigenfunctions of the equations

corresponding to the set of displacements

For the free vibration case the set of forces is just zero.
The matrix [K-sz] is called the impedance matrix.

The matrix equation for the forced vibration case is:

K-o? M][X] = [P] o )
where Pl represents the set of forces on the structure, and
wg is the driving or forcing frequency.

The other terms arc as previously defined.

Inspection of equations (1) and (2) reveals that neither contain damping terms. This is because structures

of immediate concern have very low damping (~1 x 10 critical damping).

An excellent treatment on the dynamics of structures is Clough and Penzien [14].



3.2 The Matrix Displacement Method

An outline of the application of the matrix displacement method in finite element analysis for the solution

of dynamic problems follows. A similar outline is given by Zienkiewicz, ct al. [3] for static analysis.
1. Input
a. ldealization of the problem
The continuous structure is divided into a number of elements. These clements are
connected at common nodal points or nodes. It is at these nodes that the value of the
continuous quantity (displacement) is to be determined. :

b. Preparation of the data for the structure

The geomectry of the structure is defined by assigninig coordinates to the nodal points. The
physical properties of the elements (dimensions, material parameters) are inputted.

. Preparation of the load data
The loads to be applied to each element or node are defined.
d. Preparation of the boundary conditions or constraints
The prescribed constraints. on the degrees of freedom and boundary conditions are stated.
2. Processing
a. FElement Formulation

The stiffness and inertial matrices for each element are determined by the approximate
relationships and the corresponding loads are calculated.

b. Assembly of the structure

The summation of the elemental matrices to form structural stiffness, inertial and load
matrices is performed.

c. Reduction of equations

The boundary conditions and constraints in terms of certain spccified displacements are
introduced, thereby reducing the number of equations to be solved.

d. Solution.of simultaneous equations
'The solution of the cigen problem of cquation (1) or (2) results in the natural frequencies of

the structure (cigenvalues) and the modal shapes or displacements of the nodes
(cigenfunctions).



¢. Calculation of stresses

If required, the elemental stresses could be calculated from the nodal displacements and
clemental stiffness. :

3. Output

The results of the solution to the eigenvalue problem and the stress calculation are presented in an casily

interpreted form.

3.3 Specific Aspects of Model

This section is concerned with specific aspects of the model. The element and its formation will be

discussed first. Information concerning the computer code and its subroutines will then be given.

1. Element Formulation

The element chosen for the model is the beam element which is given by Przemicmiecki [7]. This element
was chosen so as to allow direct comparispn’ of results with known solutions (sce section 4). The beam
clement is a two node clement. The model allows the nodes to have cither three degrecs of freedom (x and y,
translational and rotation about z, i.c. motion confined to a plane) or six degrees of freedom (x,y,z

translational, rotation about x,y,z, i.e. the general case).
Fig. 1 shows the beam elexﬁent. The following forces act on the beam:
o axial forces 5 ands,
o shearing forces 5;2, Sy, Sgr and Sg
e bending moments s, S, §;;, and S12
e and twisting moments (torques) s, and s, .

The location and positive dircctions of these forces are also given in Fig. 1. The corresponding

displacements U,, U,,. .. Uj, will be taken to be positive in the positive direction of these forces.

Each clement has its own sct of physical parameters. For the beam element these parameters are: Young's
modules, cross-scctional arca, moment of inertia about the y and z axis, Poisson’s ratio, mass density, and
length (along x axis). All of these parameters are inputted directly except for the length which s computed

from the inputted coordinates of the nodces.
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Figure 1: The beam element and its forces, after Przemiceniecki [7].

The model performs calculations for cither the free or forced vibration case. To perform such calculations
requires the calculation of the structural stiffness and inertial matrices, along with information of the loading
and boundary conditions of the structure. The effect of constraining a degrce of freedom is to strike out the

corresponding rows and columns of the stiffness, interial and load matrices,

The s:iffness matrix for a beam element is shown in Fig. 2. The shear deformation parameters d>y and @,
can be taken as zero. This matrix may be obtained in various ways, two of which are the influence coefficients

method and the variational method, which arc outlined in Appendices I and II.

The irertial matrix for the beam clement is shown in Fig.3. This matrix is obtained by the same methods as

the stiffr. 2ss matrix, as described in Appendices I and I1.
Liepens [13] gives a third way of calculating the stiffness and inertial matrices.

The st-uctural matrix for both stiffness and inertia is obtained by superposition of the individual elemental

matrices. Actual superposition occurs only when degrees of freedom are common to more than one clement,

2. Corzputer Coding

The cmputer code itsclf contains ten subroutines, called by the main program, entitled VIBRAT. A bricf

cxplanation of the subroutines will now be given.



INPUT - This subroutine asks the user for the necessary information which is nceded to assemble the
structure. Information such as: free or forced case, number of elements, coordinates of
nodes, physical parameters, structural loading, and constrained degrees of freedom are
inputted in this section.

CONECT - This subroutine establishes the geometry of the model. It determines the distances between
adjacent nodes of the structure. :

KMAT - This subroutine calculates the elemental stiffness matrix for each element and then assembles the
structural stiffness matrix from them.

MMAT - This is similar to KMAT only here the mass or inertial matrices are calculated.

EIGEN - This subroutine is called for the free vibration case. The purpose of it is to calculate the eigenvalues
(natural frequencics) and eigenvectors (mode shapes) of equation (1). This subroutine calls
two other subroutines: EIGZF, an IMSL routine which actually does the solving, and
CLAMPR, which dctermines which degrees of frecdom are constrained.

SOLVE - This subroutine is called for the forced vibration case. This routine solves equation (2) for the
displacement. This subroutine also calls two other subroutines: LEQTI1F, an IMSL routine
which does the solving, and CLAMPR, which determines the proper degrees of freedom to
be constrained. ‘ '

REMARK - is a subroutinc whose purpose is to explain the use of the main program VIBRAT and its
subroutines. Information on the nomenclature and file structure used can be found in

REMARK. The user of the model is recommended to refer to REMARK if he has any
questions on the computer code used in this model.

The code for all of these routines may be found in Appendix 111

4 The Model: Examples and Accuracy

This section presents various examples of use of the model. The examples chosen represent five types of

possible problems. They are:
1. free vibration of a fixed-free uniform be@
2. free vibration of a ﬁxcd-ﬁxcd uniform beam
3. forced vibration of a fixed-free uniform beam
4. static dcﬂccti(;n of a fixed-free uniform beam

5. static deflection of a fixed-free non-uniform beam.

The accuracy of cach example is discussed.
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The first four examples use the geometrfc and material values listed in Table 1.

Parameter

Total Beam Length (L)

Young’s Modulus

(E)

Cross-Scctional Area  (A)
Moment of Inertia about Z-Axis (1)
Moment of Incrtia about Y-Axis (1)
., ) y
Poisson’s Ratio  (»)
Mass Density  (p)

Table 1:  Uniform Beam Propertics .

_ Value

25.0

27.8 x 10°

2.0
0.2
0.7
0.305
0.283

Units

inches

(4 + ®)EI,
(n+9,)

© T

_ pounds force/inches?

inches
inches*
inches?

pounds mass/inches’
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Figure 3: Consistent Mass Matrix for a Bcam Element

(After Przemienicecki [7]),

4.1 Example 1: Free Vibration of a Fixed-Free Uniform Beam

AN

Figure 4: Example 1: Fixed-Free Uniform Beam,

12

Table 2 summarizes the results for this problem, using one, two, and five clements. It is clear that



10
increasing the number of elements increases the accuracy of the results, and this supports the statements of

Zienkicwicz given earlier.

The natural frequencics calculated by the model are compared with the closed form solution obtained
from the partial differential equation of the continuous system. For the fixed-free case the closed form

solutions are:

T

Axial w=-"2T_/ wheren =1,3,5,... 3)

2L ] '
o 2.2,/ EL

Bending(i) w =a’L"V—1— where 1 + cos al.cosh aLL =0

pALA
i=YorZ : @)

/G’ E

Torsional W= il where n=1, 3,5,...G= (5)

2L p 2(1+»)

Thus from Table 2, one can see that by using just five elements, the model gives ten transverse modes, two
axial modes, and two rotational modes, the frequencies of which are all within 5% of the exact solutions.
Again, clearly greater accuracy of results and more (higher) modes may be accomplished by increasing the

number of eclements.

Diagrams of the mode sﬁapes for the first five bending modes (in Y) and the first four axial modes (along

X) are given in Figs. 5 and 6. The model shapes agree with the closed form predictions in every case.

4.2 Example 2: Free Vibration of a Fixed-Fixed Uniform Beam

In this example the beam is held fixed on both ends. Sce Figure 7 . Table 3 shows the calculated and exact

values for the axial mode natural frequencics. The accuracy is similar to that of example 1.

4.3 Example 3: Forced Vibration of a Fixed-Free Uniform Beam

In this example (Figurce 8), thc beam is subjected to a harmonically varying load P(t) of amplitude P and
circular frequency, w,. Figure 9 is a plot of the magnitude in the transverse direction of the frec end node. As
expected, as w, approaches a natural frequency (those found in example 1), a resonance condition occurs

resulting in very large mégnitudcs of dcﬂcét_ion. The expression for the amplitude of response A is given by
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Axial Calculated Natural Exact Natural %

Mode Frequency (rad/sec) Frequency (rad/sec) " Error
1 24,874 24,470 _ 1.7
2 52,186 48,940 6.6
3 83,933 73,410 14.3
4 117,570 97,880 20.1

Table 3: Calculated and Exact Natural Frequencies in Axial Mode.
Calculated value used five element model, for Example 2.

__ P = P b ©6)
K(@-89 K
where Po/K represents the static deflection,
B equals the ratio of the forcing frequency to natural frequency,
D dynamic magnification factor equal to 1/(1-32)

Analysis of the calculated émplitude in terms of the dynamic magnification factor agrees with equation (6)

in those frequency regions dominated by just one natural frequency.

4.4 Example 4: Static Deflection of a Fixed-Free Uniform Beam

By letting the driving frequency, w, be zero in the forced vibration option, the model is able to solve static
deflection problems. Figure 11 shows the deflection of the beam under the static loading of cxample 4. The
model’s calculations, using just five clements are within 2% of the cxact beam theory results. ‘The deflection
and slope at the end of Lﬁe becam are given by the expressions:

A = PL3/3EI
© = PL*2EI
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_Figure 6: First four axial modc shapes of Example 1.
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Figure 7: Examﬁle 2: Fixed-Fixed Uniform Beam ,

P (W)

AN RR NN

Figure 8: Example 3: Fixed-Free Uniform Beam With Dynamic Load ,

Values calculated using these expressions are cqmpared with the model results in Table 4.

4.5 Example 5: Static Deflection of a Fixed-Free Non-Uniform Beam

Until now, all the examples have dealt with uniform beams. Example S is an example taken from Laursen
[11]. Laursen solves the problem in three differential ways: by the moment-area method, by the conjugate
beam method, and by Newmark’s method. The solution for displacement and slope at the free end is given
as:

A = -0.457 inches

© = -0.0041 radians
The model gives identical results.

A sketch of the deflection is shown in Figure 13.

The purpose of the previous five examples is to illustrate the use and application of the modcl to a variety
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Figure 10: Example 4: Fixed-Free Uniform Beam With Static Load .

P= -1 lb, 1« 5
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Figure 11:  Static Deflection of a Uniform Beam, Example 4 .

of cases. Other cases of a more complicated nature could have been solved as casily, however these examples
give the user somce insight into the accuracy of the solution obtained. They also indicate that very accurate
results are obtained by the model with relatively few clements. In general, for a more complicated structure
more clements will be required to obtain an accurate model. Techniques for hand]ing more complex

structurcs arc discussed in the next section.
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A (inches) 8 (radians)
Exact © _9.37 x 107° 25.62 x 107
Calculated -9.50 x 10‘4 -5.69 x 10'5
% 1.4 1.2

Table 4: Calculated and Exact Values of Deflections for Example 4 4

5 kips
NI B
N
N—T-swm I'=5001nt
L 6 ft 1 9 ft 4
]

Figure 12: Examp]é 5: Static Deflection of a Fixed-Free
Non-Uniform Beam ,
[After Laursen],

5 The Extension of the Model to Model A Turbine Blade

An example of a more complicated structure which might be of vibrational interest to an engincer is a
turbine blade. The equations of motion for a beam in bending vibration is a fourth-order differential
cquation, whose solution is casily found. The solution for a non-uniform and asymmetrical beam is much
more complicated. A tapered, pre-twisted turbine blade with airfoil cross-section might be modeled as such a

beam.

The differential cquations for combined flapwisc bending, chordwise bending and torsion of a twisted
non-uniform blade arc derived by Houbolt "and Brooks [16]. The solutions of these cquations for the

continuous system have not been found. Thus the analysis of such structures are limited to special cases
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which solutions arc obtainable, or to approximate solutions. "Various techniques of an analytical and iterative
nature such as the Myklestad method, Holzer method, Stodala method, Rayleigh-Ritz method, transmission
matrix method, and the Runge-Kutta method have becn studied [14]. A few typical examples are given in the

references {15,17-20].

The application of the model presented in this report to the turbine blade would be a very useful tool to the

engincer and his study of the blade’s free and forced vibrations.

The model allows each element to have its own sct of geometric and physical parameters. Thus neither the
non-uniformity or tapering of the blade would lead to any modeling problems. However the airfoil shape of
the blade would not have the same torsional stiffness as a beam. Thus the first adaptation to the model
needed would be to correctly compute the torsional stiffness for an airfoil shape and input this into the model

rather than using that which the model computes.

There is another problem which arises from the twisting and geometry of the turbine blade. The natural
frequencics of such a blade are coupled frequencies with the mode shapes consisting in general of transverse
motion coupled with torsion. The coupling is dependent upon the degree of pre-twist and the ratio of depth
taper to width taper. For a given blade, coupling becomes stronger with increasing pre-twist and with

increasing width to depth taper ratio.

The simulation of this coupling in the model could be accomplished by either introducing it through the
element itself or through the geometry of the structure. The first way implies changing the element from a
beam clement to a new eclement. This ‘new element could be derived from a variational method (sce
Appendix 1) applied to the differential equations for the blade equations derived by Houbolt and Brooks
[16]. The ideal of coupling through the geometry of the structurc implies the use of additional beam
elements. Part of these elements would be used to form the center of stiffness for the blade which would now
be a curve rather than the straight line used thus far. Other clements could extend at right angles from this
curve. These clements would act primarily as lumped masses and form the curve representing the center of

mass of the blade.

Modcling a turbine blade with this model would require some additional work to implement the ideas
presented in this section. However the matrix displacement method used is a very powerful one and the use
of the model and extensions of it are applicable to a wide range of problems in vibrational analysis of
structurcs. Building a library of clements would greatly extend the uscfulness of the cxisting -model, and

additionally, the introduction of element rotation would lcad to further improvement.
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6 Conclusion
This report primarily concerns itself with three topics:
1. the explanation of the matrix displacement method for use in vibrational analysis of structures,
2. specific examples showing the variety and accuracy of the method, and
3. possible extensions of the model to allow for application to an even wider variety of problems.
The modecl presented here currently allows for only one type of clement, the bearﬁ element. It has been
shown that by using just a fcw beam elements very accurate results of frequencies and modal shape are

obtained for beam-like structures. Creating a library of element types would allow the user -cven greater

flexibility. The accuracy of the model using these new elements should be comparable to that presented here.
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I. Appendix | Influence Coefficient Method

One method of obtaining the stiffness matrix is the influcnce cocfficient method. This mcthod is widely
used in structural analysis with’ static loadings [10,11]. There arc both stiffness and flexibility influence

cocfficients ; only the stiffness influence cocfficients will be considered here.

The stiffness coefficients for an clement arc found by alternatively constraining all degrees of freedom but
one and displacing this onc by a unit amount. The resulting forces on the other degrees of frecdom are the
stiffness cocfficients. That is K¢j is the force or couple corresponding to degree of freedom ¢ due to the unit
displacement of degree of freedom j. In Fig. 14 a prismatic element of length 1, area A, moment of incrtia

about the Z axis 1, and modulus of clasticity E, with three degrees of freedom per node is shown.
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Figure 14: Element Stiffness Influence Coefficients (After White, et al [10]),

By performing the stiffness influence method procedure on this element, the stiffness matrix is obtained:
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Figure 15: Stiffness matrix of prismatic clements of Figure 14,

Comparison of Fig. 2 and 15 shows that the matrix of Figure 15 is contained within the matrix of Figure 2.

In Fig. 15, each node has three degrees of freedom, in Fig. 2 there are six degrees of freedom per node. "

The incrtial (or mass) matrix may be calculated similarly. The mass influence coefficients would reprcsént

the mass inertia force acting at a degree of frcedom due to a unit acceleration of another degree of freedom.
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[l. Appendix Il Variational Method

Another method of computing clemental stiffness matrices is the variational or encrgy method commonly

used in finite clement programs. The outline presented here largely follows that of Gallagher [8].

The principle of minimum potential energy furnishes a variational basis for the formulation of the element
stiffness matrix. The potential energy (wp) of a structure is given by the strain energy (U) plus the potential of

the external work V(V = -W_ ). The thcorem of potential energy is: of all displacements, satisfying the

ext
boundary conditions, those that satisfy the equilibrium conditions make the potential encrgy assume a
stationary {cxtreme) value. Thus .
7, =U+V . o
8wp:6U+8V=O ®)

And for stable equilibrium, L is a minimum.

8%, = 8°U + 8°V>0 . ©
The change in strain encrgy density due to the change in strain caused by a virtual displacement (8¢) is given
by

§ (dU) = o 8¢ . . _ (10)

Where o is the equilibrium stress state prior to the application of the virtual displacement. The stress--strain

law is
o = [Ele - [Ele ™ . (11)

- where [E] is called the material stiffness matrix, a matrix of elastic constants. For simplicity, let ther ¢, be no

initial strain. Substitution of (11) into (10) yields
s{dU = ¢ [E]de ' (12)

Intcgration between zero and the strain e, corresponding to o, gives

dU = e [Ele ’ ' : - (13)
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and integration over the volume of the clement results in

U= —l———/ ¢[E]e d(vol) . (14
2 vol
The variation of U is
§U = / efE] 8¢ d(vol) : _ _ (15)
vol

The potential of the applied loads is

v:-z_lFA-/ T+ Uds (16)
= [

S
o

where Fi represents point forces, and T are traction forces on the surface. The variation of V is

§V = IF8A,. / T+ slds an

s
o

Using the minimum potential energy theorem (equation 8) results in

/ e[E]8e d(vol) + “ZF 8A - / “Te 8lids = 0 | (18)

vol s
o

In the finite element matrix, the displacements, {A], are written as a polynomial matrix times a vector of

parameters in the assumed displacement field.
[A] = P1[a] | | | W
[P] evaluated at the node gives a matrix [B], consisting of constants. Thus
[A, .. = [B][a] (20)
Inverting to find [a] in (20) and substitution into (19) leads to
[A] = [P} [B”] [Anodes]
= [N] Anodes | 2D

where N is the shape function. The shape function N, has the quality that it is equal to 1 when cvaluated at

the geometric coordinates of the point at which A‘ is defined and is equal to zcro at all other degrecs-of-

freedom A | J =¢.
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The matrix [ID] is called the dof-to-strain transformation. ‘Then

[e] = [D] [Anodes]

For example if,

€ :'-a—u-,lhen
ox
[D] = [N ]

Substitution of these ideas into (18) leads to

| / [D]' [EJDJA, . dVol(8Anodes') =[N J'Fu(§Anodes')

vol
- / [N][T]ds(8Anodest) =0
s
dividing (24) by § Anodes! results in
[K] Anodes - Fext = 0

where

[K] = ]C;1 [DI1t{E] [D)dvol

Fext = ,é [N]t([T]as +E[Ni]tFi

Thus the stiffness matrix can be found by equation (26).

(22)

(23

(24)

(25)

(26)

(27)

As an cxample take the axial clement show in Figure 16, with dofAl and A2 only. The proccdure to

calculate the stiffness of this element follows, Let
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le
I

Figure 16: Axial ¢lement, cross-sectional area A, modulus E.
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0 il .
K= f S E] [ £ ]avl
vol T -
L 1 -1
:E/—Tg ):r = - £A [/ -
- L - /
e L= 2% __f’ Y /

The result is also contained in the stiffness matrices shown in Figurcs 2 and 15.

The incrtial (or mass) matrix can also be calculated by use of this method. The variational approach leads
w .

[M]

[N]{p][N]AVol

(28)
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where [p Jis the material mass density matrix. Since the shape functions used here are the same as those -
used for the stiffness calculation the result is called the consistent mass matrix. A consistcnt mass matrix is

more accurate than a lumped mass approach [12].
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I1l. Appendix Ill Computer Code of Model

Available from Author.



