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Degrees of Autonomy 

Direct Operation 

Teleoperation 

upervised Operation 

Autonomous System 

0 
0 0 0  

0 0  e 
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Applications of autonomous mobile robots 
(incomplete list, in no particular order) 

Indoor navigation (SRI, Stanford, INRIA, 
LAAS, CMU) 

Indoor cleaning (LIFIA, LAAS) 

Construction (Rex Excavator (CMU)) 

On-road navigation (ALV project (CMU, 
Martin Marietta, Maryland Univ.)) 

Chauffeur (Munich Univ.) 

Undersea exploration (UNH, Texas A&M, 
NBS (MAW)) 

Off-road exploration && transportation (Hughes 
AI, CMU, Martin Marietta (ALV), Ohio State 
walking machine) 

Planetary explorer (CMU, JPL) 
Surveillance (CMUDenning Mobile Robots) 
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Components of a mobile robot 

Navigation 
Sensed 
world 

3-D world 

Predictions 
Speed Miss ion 
Steering 

World model I Vehicle I 
control 

I Preloaded I knowledge 



PERCEPTION FOR NAVIGATION 

Find 

Track road Find Intersection 



MODELING 

Observations from 
multiple sensors and 
positions 



Challenges for perception 

0 Uncertainty: Errors may accumulate as the 
vehicle moves if perception uncertainty is 

A A 

not explicitly represented. 

- Mobility: Variability between 
vations. 

3-D: Obstacles, terrains, ..etc. 

sensor obser- 

are part of a 
3-D world. 
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Sensors 

Passive: 

-Video camera 
- Passive stereo vision 

Active: 

- Sonar 
-Laser range finder 
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Video cameras 

Context: 
a 

a 

a 

Object tracking: Blob or edge extraction, 
vehicle tracking &om image to image through 
feedback to vehicle controller. 

Indoor navigation: Edge detection, inter- 
pretation in highly constraint environment 
(e.g. Vertical and horizontal edges of walls 
and furniture). 

Road following: 

- Road edges extraction and tracking. 
-Road region extraction for color data. 

Main problem: 
Calibration + A camera provides only 2-D 

information whereas the vehicle moves in a 
3-D world. 
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Calibration problem 

2-D irnaee 

Possible solution: 
Camera model 

Flat ground plane Vertical objects 



Example: Road following 
(U. Maryland) I 

f 

/ 

Original image 
(intensity, 256x256) 

Edge extraction 
in small windows 
(up to 64x64) 

Predictions 
of window 
locations 
in image 
I 

Vehcle 

Road model . 4 4  m world 

1 

1 I 



Figure 2c. The  original image, along with the windows and located road boun- 
daries 



Passive depth estimation 

The location of a point can be computed 
from its projections from differents viewpoints. 
From different cameras (stereo), or from dif- 
ferent positions (e.g. motion). 

OHOW to 

What to 

find good matches between images 

match ? (features vs. pixels) 

Binocular vs, trinocular ? 

How to use the vehicle’s motion ? 
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PASSIVE STEREO 

Y 
t z  
I 

Object in world 

Direction from left 

Direction from right 

View from right image 

rn la- View from left image - 
x = f.X/(f - Z) Disparity 

1 y = f.Y/(f - Z) 



Finding good matches 

Similarity measures 

Epipolar constraints 

Ordering constraints 

Coarse-to-fine 

Small range of disparity values 

0 Overdetermination: trinocular techniques 
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a 

a 

a 

0 

a 

a 

Example: Mobi (Stanford) 

Goal: Navigation in hallways 

Two-cameras stereo 

Features: vertical edges 

Initial matches: similarity of grey level curves 
around edges 

Local consistency: similarity of grey level 
curves between edges 

Constraint propagation 

i 

1 

Figrrc 4. Stereo match proposals and grey level curves 



X~~nocular stereo 

A 

f 

I 

L3 1 

A1 and A2 are images of the same point only 
if there is an A3 at the intersection of L31 and L32. 

+ No search. 
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Using vehicle motion 

Use depth estimates from previous positions 
to: 

Predict matches and reduce the search 

Improve (reduce uncertainty) of current depth 
estimates 
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f 
Left image 

FIDO (CMU) 
Right image 

Interest points 
in left image 

Prediction boxes 
for corresponding 
pomts in nght 
image 

Matching 

Computation of 
3-D position 





Pixel-based (or iconic) techniques 

imagek-11 disparity 
image~l Ccxrcwon Integration 

(Example: Matthies' depth from motion) 

disparity disparity 

variance Regularization ", .ante 
c 

L an > 

0 Do not match features 

4 

predicted ' 

I I disparity 
Y 

Correlate images directly 

I I 
I Motion I 

o f t  mdft-1. intensity image 

Rediction Varial lCC 

d: disparity at pixel 

Minimum gives best d and uncertainty VU@). 
Depth map is updated over time: 

Figure 2: ImNc deph estimation block diagram 
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Uncertainty from passive 
depth estimation 

Right camera 

a 



Sonar 

Time-of-return of sound wave. 
Typical characteristics: 

Single depth measurement 

Limited to 30 ft. 

30° field of view (Polaroid) 

Low data rate 

Low cost 

Applications : 

One unit: 

-Soft bumper 
- Surface (e.g. wall) tracking 

Sonar ring: 

- Obstacle avoidance 
-Map building (More later on that) 
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Sonar nng 
(Typically 24 Polaroid units) 

Empty region 
(increased resolution 
due to overlap) 

Emntv 

Vehicle 



Figure 2: Thc Neptune mobilc robot, with a pair of c a m e m  and h e  sonar 
ring. For cxpcri1ncnt.s in scn.wr inicgntion. Ihc c a m c m  wwc mounrd lowcr, 
so Iliai ilicir horizon linc w ~ ~ l l t l  hc cltfic to ihc cruss-.~i~onal vicw providd 
hy ilic sonar ring. 



Exceptions 

FMC sonar for outdoor vehicle: 30KHz, 64 
ft. range, 16 x 24 image 
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Exceptions 

Underwater sonar imaging 

FIG. 1. Underwater robot EAVE-East (Experimental 
Autonomous Vehicle) in its launch cradle at the Uni- 
versity of New Hampshire. The large white cylinders 
contain electronics: the smaller. lower white cylinders 
hold batteries: and the darker cylinders are thrusters. 
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Acoustic Scan 

. 

1 

i 

Random errors 
LMS line fit 
Specular reflections 
Double reflections 
Large angle of incedance 
Reflections in a Dihedral 



Laser range finders 

Distance measurement by projection of a sin- 
gle laser beam. Two types 

Triangulation (Simple design but calibration 
- 

problems on a mobile platform) 

Time-of-flight (Self-contained unit + no cal- 
ibration problems, better accuracy but state 
of the art technology) 

Characteristics: 

Indoor or outdoor 

High resolution images (either 1-D or 2-D) 

Fast 

High resolution depth measurement 

High cost, fragile, powerresolution/speed 
tradeoff 

Sensitive to material properties (e*g* spec- 
ular materials) 
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Laser range finders: 
I Triangulation I 

.on 

Laser I 

Resolution/power/time 
tradeoff 



Example: HILARE (LAAS) 

s ize  : 1.10 x 1.10 x 0.70m 
w I q h t  I LO0 kq 

speed  : 1 m / s e c  max 

wheel 

caster 

i 
! *. .. .,...._,.I 

! ... * 

. .  .. 

. ..... ..:. 

Figure 3 a : Actual data 

0, 
. . . . . . , . . . . . . 

i 

Figure 3 b : on-line polygonal representation 

Figure 1 
Figure 3 : Environment circular scanning 

with the Laser range-finder 



Example: Environment a1 Research 
Institute of Michigan (ERIM) 

Time-of- flight 

64 x 256 range images, 30° x 80' 
Reflectance image 

8-bit range fiom 0 to 64 feet (3 inches res- 
olution) 

Similar devices: Odetics, ASV sensor for 
Ohio State Univ. walking machine. 

Range image 

Reflectance image 
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Representation of perceptual features for 
mobile robots 

1. Representations of uncertainty and sensor 
8- hmon 

2. 

Special 

Terrain 

representations : 

maps 

3. probability maps 

1 .  



SENSOR FUSION: 
How to combine observations from different 
sensors (e.g. passive stereo and active sonar) 

Feature observed by three 
different sensors 

Veh 

Uncertainty ellipses 



MOTION FUSION: 
How to merge the 
two observations? 

Feature observed from 

Feature observed from 
position 2. 

\ Position 2 

Uncertainty ellipses 



TRADITIONAL APPROACH 

Batch of observations (sensor measurements) 

\ Resulting uncertainty ellipse 

Best estimate of observed feature 



K A L W  FILTERING 

New observation: 

Sensor 

Current estimate: 
X c t 

New estimate: 

c ! 



Linear Filtering 

Where: 

z is a I x 1 measurement vector, 

X _  is the n x 1 vector to be estimated, 

and 2 is a random additive measurement er- 
ror with I x I covariance matrix R. 

The estimate of x is given by: 

The best estimate is: 
T -1 -1 T -1 x- ^ - ( H I ?  H )  H R  y 

Justification: Maximum likelihood approach: 
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Bayesian approach 

Best estimation according to minimum vari- 
ance criterion: 

minl(2 - z) T (2 - z)p(zlz)dx 

Solution is: 

In case of a linear model, the best estimate 
is: 

-1 T -1 -1 T -1 ^ - ( P o  + H R  H )  H R  y - x-  
Where p0 is the a priori covariance matrix of 
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Recursive filtering 

New problem: 

We want to find the best estimate zk+l based 
-on a new measurement zk and the previous es- 

Recursive solution: 

Where K k  is a gain matrix given by: 
-1 Kk = pkHkT+l(Rk+l +*k+l P k HT k + l )  

And the covariance matrix of &+I is updated 
by: 
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Extended Kalman filter 
New problem: we have an observation z that 

depends on the a parameter vector a by the 
relation: 

f (z, a) = 0 
and z = z/ + C, where g is additive noise. Given 
an estimate a* and a new measurement z what 
is the new estimate of a? 

Linearization of f 

Linear measurement equation (as before): 

where: 
df * y = +(&,a*) + -a 
da- - 

and 
df  
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4 Building maps from matching 
line segments: 
( Faugeras, Ayache, INRIA) 

Vehicle position i 

I Observations I 

Kalman filter 
Observed set of 3-D 
line segments , Si, 
observed at position i. 

Updated map of 3-D 
line segments 



-!ication to line matching 

xented by the intersection of 

x = a z + p  

7 0  segments Si ( i  = 1,2) supported 
-3s Li Of parameters (ai, bi,Pii qi ) with 
2 matrix (from trinocular stereo) Ai 
sformation T from frame 2 to frame 
-ariance matrix A ,  decide whether: 

S? are two instances of the same 
segment, and 

3mpute the uncertainty (Le. the co- 
3 J matrix) of the fused segment. 
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The EKF is used to compute: 

1 . The estimate of the transformed by T of s2, 
LQ = (9, b/2,P'2,4 I 2 ), and 

2. The covariance matrix computed from 

The two lines are matched if 

is greater than a threshold s corresponding to 
a probability of 95% ( x 2 )  distribution. 
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Figure 1 4  Edge segm~mr mpohcd in ~ P I C ~  pair of Figure 12 

& 
t 

1 

[ )&? j j  & J 
Figure 18: Covpivlce manices a0;rChai to che endpoinu of the rsonzcnrctcd 

segments of the offiic mom observed in position 1 

Figure 13: Polygonal rppraxkdoa  of the edge points of a slcrro pair of h e  
same offke rarrnobrcmd ia position 2 

I 

Figure IS: Edge segments maahed in s t ~ r r ~  pair of Figure 13 

F i k  17: Haito&rl and nniul p j d c m  of the reconstructed segments 
oftbe dAa mom obrsvsd in position 2 

Figure 23: Fusion m position 2 of rhc segments ~consaucted in posifions 1 md 2 



ELEVATION M A P S  

Sensor 

Elevation 
Uncertainty 
Slope 
Curvature 

Discrete grid cell 
(value = traversability cost 
for path planner) 

/ 
Reference ground 
plane 



Sensor 

Sensor 

6 
Visible regions 



Application: cros s-countrv 
navigation. 

(K. O h ,  D. Payton, Hughes AI Center) 

Goal: Real-time perception for cross-country 
autonomous navigation. Local navigation uses 
an initial map-based plan. 

Vehicle: Martin Marietta 8-wheels vehicle. 

Sensor: ERIM laser range finder (delivers 
64x256 range images, range is from 0 to 64 
feet). 

Environment: Outdoor rugged cross-country 
terrain, including bushes, gullies, rocks, and 
steep slopes. 

. 



Perception cycle for 
cross-country navigation 

Obstacle map 

Range image from I 
laser range finder 

4 

I 1 Sparse elevation map I 
f I Smoothed dense map 1 

I 
Fused maps 

Vehicle model f 
Trajectories I 

Position sensors 
f 

Strategies -4 
Navigation 1 



Vehicle model: 

Normal Bad suspension Slope Clearance 

Navigation: 

Elevation map 

Vehicle model 

Predefined trajectories 



---.I__..--- I .. . . . . . . . . . . 

Figure 4. 3D view of CEM. 

Figure 8. CEM from Figure 3 with curved trajec- 
tories. 



Occupancy maps: 

( Moravec, Elfes (CMU), 
Stewart ( M I /  Woos Hole)) 

General description: 

The world is represented by a set of regularily 
spaced cells (grid). 

Each cell contains a probability P. 

P is the probability that the cell is part of an 
object. 

Each sensor rneaurernent is modelled as a 
distribution of probabilities over the grid. 

The probability at a grid cell is computed by 
combining the contributions from many 
sensor measurements. 



Is this grid cell occupied? 
visible? 
empty? 

With what probabhk? 

Field of View 

Discrete Grid 

- Vehicle 
Locations 



3-D OCCUPANCY GRIDS 
6 degrees of freedom: 
R, Tx, Ty, Tz 

Sensor 

\ 

Measurement cone 



Applications: 

Moravec/El.fes/Matthies : 

Indoor robot with sonar and stereo cameras. 
Occupancy map building from both sensors. 
Used in navigation. 

Stewart: 

Underwater vehicle with sonar. Full 3-D 
occupancy map built from many images 
registered by using the vehicle's position 
sensors. 
Extraction of surfaces from the 3-D mid. 

U 

Application: detailed bottom surface mapping. 

Advantages: 

Sensor model taken into account. 

Feature 

Natural 

extraction is not necessary. 

way of fusing multiple sensors. 



. 

Computing the probabilities 

Problem: Define the probability that a given 
cell is in state si, given evidence (Le. measure- 
ment) e. Bayesian model: 

P(0CC 

P(R~OCC) and P(R(EMP) are given by the sen- 
sor model, P(OCC) and P(EMP) are the cur- 
rent probability values in the map. Initially: 
P(0CC)  = P(EMP) = 0.5 (no information). 
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Computing the probabilities 

The simplifying assumption: P(R~EMP) = 1 - 
P ( R I  OCC) provides intuitive properties: 

Updating independent of the ordering of mea- 
surements. 

~ ( O C C )  = 0.5 (unknown) is a no-op. 
Conflicting measurements cancel. 

2 



I 

Probabilistic sonar map 
(from Elfes && Matthies) 

Probability 

Y' 

Measured range 
b 

1 Occupied 

I 
\ 

/ 

D 

X 
Sensor 

. .  



I 

Figure3 Probabilistic S o w  Sensor Intcrprcution Modcl. Thc 
probability prcifiie shown cormponds to a d i n g  urkcn by a scnsor 
positioned at the upper left. pointing to thc low- righr The plane shows thc 
uM(" kvel. Values above the plane rrprescnt 0CtL'pfE.D probabiliucs, and 
values below npretent E.W probabililiu 



Uncertamtv from stereo 
J 

Stereo cameras 

P(0CCIR) = P1 + P2 - P1 . a 

PI = 0.5 = unknown probability level 
P2 = maximum allowed P(.OCC) 
a = 1 .O at edge points, < '1.0 elsewhere 





* 

Sonar 

+ 

Stereo 

iC) 

Integra tion 

p:i& ......... .. , 22-j 
. . . . . . . .  .... .......... Q 1: : c : : : :  

..*.. 
:::: :*. 

. . . .  . .  

y 
.. .. .. 

Figure 6: Occupancy Maps Csncratcd by Sonar, Stcrco and Scnsor 
InlCgnlion. OCCUPIED rcgions arc rnarkcd by shadcd squues. EMPTY by do& 
fading 10 whitc space, and Uh'KNOWh' by + signs. 

732 

1. 



262 

Fig. 13. 
shown 

IEEE JOURNAL OF ROBOTICS AND AUTOMATION. VOL. RA-3, NC. 3. JUNE 1987 ’ 

. 

.......... .......... .......... ........,. 

Example run. This run was performed indoors, in Mobile Robot Lab. Distances arc in ft. Grid size is 0.5 ft. Planned path is 
as dotted line. and route actually followed by robot as solid line segments. Starting point is solid + and goal, solid x . 



Detailed description of an autonomous 
vehicle: the NAVLAB 

Self-contained vehicle for: 

Road following with or without map. 

- Object detection. 

Map building. 

using: 

One color camera. 

One laser range finder. 

On-board computing (Suns). 

Controller. 
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I z w  



I 

Camera 

polyhedron 
r v l  



Object 
Recognition 

. 

Motion 
Planning 

- 

landmark 

tree 



Tokens Tokens 

I 
Blackboard Manager 

I I 

0 

0 

0 

Moving Coordinates 

Time 

Distributed Processing 



Environment 

Paved curved roads. 

Non-uniform road appearance. 

Changing conditions (illumination, weather. . .etc). 

Discrete obstacles. 

Strong shadows from obstacles. 

2 





Components of the road following 
algorithm 

Color classification: The color of the road is 
significantly different than the background. 

Texture computation: The sides of the road 
are usually more textured. 

.Road location in image: The geometry of 
the road must be determined. 

Calibration: The road detected in image 
space must be converted to the vehicle’s co- 
ordinate system in order to steer the vehicle. 
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Image 

Non-road Model 
Appearances 

(RGBT) 

f 
L 

Roamon-road 4 
Classification 1 

v 
Road b osition 
Hou hfor 

& Orientation 

Road Model 
Width 

Position 
Orientation 

Surface Appearance 
(RGBT) 

I 

Self Clustering 
& 

Update 
I 

- '  I I Vehicle 
Motion 



. 

Color classification 

The color is divided into n classes. Each 
pixel is classified into one of the classes using 
the distance: 

Where: 

x is the (red,green,blue) vector at the current 
pixel. 

mi is the mean (red,green,blue) value of class 
1. 

ci is the covariance matrix of class i. 

The set of classes is divided into road classes 
and non-road classes. 
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Intensity image 
(480x5 12) 

high-frequenc y 
gradient 
(240x256) 

Low-frequenc y 
gradient 
(60x64) 

1 
Average I 

I 
- 

value 
(120x128) 1 

Normalized gradient 
hf gradient 

I a If gradient +p .average value 
(480x5 12) 

Binary image of micro edges (480x5 12) - 

I 

1 Image of edge density 
(3 0x3 2) 

I 

I I Texture classification Road/Non-Road 







Combining texture and color 

For each class and each pixel: 

Pi = (1 - a)Pi  T +aPi  C 

Where 
- 

Pi = confidence that the pixel belongs to 
class i 

m 

~ f '  = confidence that the pixel belongs to 
class i based on texture 

class i based on color 

-. 

.Pc  I = confidence that the pixel belongs to 

Final confidence for each pixel: 

C = ma~(Pi,  i f Road) - m=(Pi, i E NonRoad) 

c > 0 e the pixel is classified as road. 
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Road representation 

Vanishing line 

shing point 



Hough transform 

I 

Horizon point 



Voting algorithm 

Quantized 2-D parameter space (P ,  e )  (32 lev- 

An image point (row, C O ~ )  can be votes for the 
els for P, 20 levels for @) 

set of road location: 

(P ,  e )  = (COZ + (row - rhorizon ) x tan8,o) 

Each pixel casts votes proportional to the 
road/nQn-road classification confidence. 

The maximum in ( p , e )  space is the reported 
road location. 
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.. 
Red operator Reduce - - - 

Green b Edge 
- 

- - Red - 

n 4 Yrocessing cvcle 
U d 

Color 
classification 

Texture 
image H Color I 

Texture 
classifka tion 

statistics u 1 Grass 
Classification Fl 
combination Sample 

colors 1 Grass 1 1-0 
Grass 0 

Road 1 I,, edges 
I I  

i-' Road 0 
1 

r 
Highest Hough 

space vote - 



Simple calibration procedure 
Measure the distance between rows ri 
and the vehicle. 

Detected 
road 

Distance between Qi and the center of the 
vehcle = 

(Ci - ci)/ppmi 

ppmi = pixels per meter at row ri. 



Dynamic road following 

Statistics from 

Updated statistics 
and road location 

Vehicle steering 

Predicted vehicle position (t seconds later) 

0 





Some lessons from road following 

More accurate calibration is needed. 

More dynamic range in the color cameras 
is required to handled a wide range of con- 

* *  . ditions. 
More detailed road model (intersections, curved 
roads..). 

More flexible color classification. 
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Range data 

Sensor: 

Time-of-flight laser range finder (ERIM) 
64 x 256 range images, 30° x 80° 

Reflectance image 

%bit range from 0 to 64 feet (3 inches res- 
olution) 

Purpose: 
- 

Obstacle detection f- path planning around 
discrete objects 

Terrain modeling +- path planning across 
open terrain 

3-D map building c- exploration, incremen- 
tal description improvement 

1 





Sensor Obstacle detection 

I/ X Ranrreimaee 

Discrete elevation map 

Polygonal map of obstacles 



3-D map building 

Shadow 

I 

Image 1 

Motion T 

Image 2 

I I +&- Prediction window 
from T and image 1 



Range processing cycle 

image 

Elevation 
map 

Current 
map 

Obstacle 
map 

Vehicle 

Terrain 
regions 



Terrain modeling 

The part of the field of view that is not part 
of any object can be segmented into regions: 
1. Find edges in the elevation map 

2. Find seed points in the elevation map 

3. Apply region growing based on smoothness 
constraint 

4. Report the region (e.g. as polygons 
. -  . .  
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Putting everything together 

IT< Perception modules L K  

Driving u&s/” Steering commands 

Re-loaded map 



Additions to the current system 

Uncertainty representation for road location, 
vehicle position, and objects’ locations. Up- 
dating through filtering 

Better path planner, including off-road ca- 
pabilities 

0 Improved vision: two cameras, intersections.. 

Map revision 
. .  . . .  . . .  _. . . . .  . . .  
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Years left Device Difficulty 

0 Toys cost 
1 12 Watchdog re liabi I ity 
(Brooks, Durrant-White) 
?? Factory transport planned motion 
1 (Crowley) Industrial cleaning coverage 
1 O(Chatil1a) 

73 a .  Wheelchair plan ning, I iabi lity 
1993 (Harmon) Tank simulator rough terrain 
77 e .  Mine sweeper coverage 
5 (Somalvico) 
30 (Binford) 
10 (Chang) Street sweeper traffic 

Household servant tough manipulation 

Mail delivery manipulation 
Garbage collection manipulation 

77 . .  Tank weapons 
10 (Harmon) Construction force 
(Somalvico) 
7 (Graefe) Chauffeur psychology 

2 
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A partial list of research efforts in mobile 
robotics (from J.L. Crowley, "The State of 

the Art in Mobile Robotics") 
LAAS-C~W,  T. Ave. Colonel Roche, 31077 Toulouse, France. Project Hilare, Principle 
investigators: George Giralt, Raja Chatila, J-P. Laumond. Perhaps one of the longest 
running projeczs. Reccnt applications include a cleaning robot for the Paris Metro as well 
as a ware-house robot  

SRI-Internationat, AI Group, 333 Ravenswood Ave., Menlo Park, California, 94025 
USA. Principle Investigators: Stan Rosenschein and Leslie Kaibling. Robot hardware: 
Flakey the robot, designed and built by Stan Reifle. 

C-MU Robotics Institute, Schenley Park, Pittsburgh Pa, I52 13 USA. Principle 
investigators: Takeo Kana&, Chuck Thorpe, Hans Moravec, Red Whittaker. At least 5 
distinct projects have been performed at C-MU in the last 5 years. Major projects include 
The ALV NavLab, the Terragator, the Denning surveillance robot, the W, and Moravec's 
Pluto, Neptune and Uranus. 

MIT AI Lab: 545 Technology Square, Cambridge MA, 02139, Principle Investigator. Rod 
Brooks. Robots: Allen, Torn, Jerry, Sydney, Seymour. 

. .  

INRIA: Domaine de Voluceau, Rocquenco- BP 105, 78i53 Le Chesnay, France. 
Principal Investigators: Olivier Faugeras, Nicholas Ayache, Francis Lustman. A 
commercial copy of the INRIA robot is sold by RobotSoft SARL,  of Asniers France. 

LIFIA: W G ,  46 ave Felix Viallet, 38031 Grcnoble, France. Principal Investigator J i m  
Crowley. Developing a Surveillance Robot for project EUREKA - Mithra. Currently using 
a Denning robot named Lurch. 

GM Research, Warren Michigan, USA: Principle Investigators: Steve Holland, Bob Tilove 

Univ. of Amsterdam, Kmslaan 4090, The Netherlands. Principle Investigator Dr. Willem 
Duinker. 

Stanford University: AI Laboratory, Computer Science Dept, Stanford University, 
Stanford, Ca, 94305 USA. Principal Investigator: Thomas Binford. 

. .  

ORNL: P.O. Box X, Oak Ridge Tenn, 37831 USA. Principle Investigator: Charles 
Weis bin. 

FMC Corp. 1205 Coleman Ave., Santa Clara, Ca 95052. Principle Investigator Andrew 
Chang Military applications of mobile robots. 

NBS: Inausmal Systems Division, National Bureau of Standards, Building 220/B 124, 
Gaithersberg, MD. 20899. prinicipal Investigator: Marty Herman. 

Insitiit der Bundeswehr MQnchen, Inst fur Nfesstechnik, 8014 Neubiberg, W. Germany. 
Principle Investigator: Volker Graefe. Real time road-following system inte,mting simple 
real time vision with control theory. 

Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Ca. 9 1 109 USA. Principle 
Investigator Brian Wilcox. 
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