Recovering shape and reflectance properties from a sequence of range and color images

Yoichi Sato
The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Katsushi Ikeuchi
Computer Science Department
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

For synthesizing realistic images of a real three dimensional object, reflectance properties of the object surface, as well as the object shape, need to be measured. This paper describes one approach to create a three dimensional object model with physically correct reflectance properties by observing a real object. The approach consists of three steps. First, a sequence of range images and color images is measured by rotating a real object on a rotary table with fixed viewing and illumination directions. Then, the object shape is obtained as a collection of triangular patches by merging multiple range images. Secondly, by using the recovered object shape, color pixel intensities of the color image sequence are separated into the diffuse reflection component and the specular reflection component. Finally, the separated reflection components are used to estimate parameters of the Lambertian reflection model and a simplified Torrance-Sparrow reflection model. We have successfully tested our approach by using images of a real object. Synthesized images of the object under arbitrary illumination conditions are shown in this paper.

1 Introduction

Recently, a demand for highly realistic synthesized images has been expanding rapidly in many applications such as virtual reality and electrical museums. For generating realistic images of a three dimensional object, two aspects of information are fundamental: the object's shape and reflectance properties such as color and specularly. We call those two aspects of information the geometric information and the photometric information. Significant improvements have been achieved in the field of computer graphics hardware and image rendering algorithms. However, it is often the case that three dimensional models are created manually by users. That input process is normally time-consuming and can be a bottle neck for realistic image synthesis. Therefore, techniques to obtain object model data automatically by observing a real object could have great significance in practical applications.

Techniques to obtain the geometric information and the photometric information only from intensity images have been developed in the past. Sato and Ikeuchi [8] introduced a method to analyze a sequence of color images taken under a moving light source. They successfully estimated parameters of a reflectance function as well as object shapes, by explicitly separate the diffuse and specular reflection components. Subsequently, the technique has been applied to analyze a color image sequence taken in an outdoor environment under solar illumination [9]. Lu and Little developed a method to estimate a reflectance function from a sequence of black and white images of a rotating smooth object, and the object shape was successfully recovered by using the estimated reflectance function [4]. Since the reflectance function is measured directly from the input image sequence, the method does not assume a particular reflection model such as the Lambertian model which is commonly used in computer vision. However, the method works only for objects with uniform reflectance properties. Another interesting attempt for measuring a reflectance function from intensity images has been reported by Ward [14]. Ward designed a special device with a half-silvered hemisphere and a CCD video camera, which can measure a bidirectional reflectance distribution function (BRDF) of anisotropic reflection. The main advantage of the device is that it takes significantly less time to measure a BRDF than a conventional gonioreflectometer. A BRDF of a real object surface has been measured by the device and highly realistic images are synthesized. However, this approach cannot be easily extended for modeling real object with various reflectance properties. A small piece of test material has to be given to measure the material's BRDF. In addition, an object shape was not measured and simply given by a user manually.

Recently, techniques to measure the geometric and photometric information together by using both range images and black and white intensity images have been studied. Ikeuchi and Sato originally developed a method to
measure object shapes and reflection function parameters from one set of range image and intensity image [2]. In their attempt, the surface shape is recovered from the range image at first, and then surface normals of the recovered object surface are used for reflectance parameter estimation. The main drawback of the method is that it assumes uniform reflectance properties over the object surface. Additionally, only partial object shape was recovered because only one range image was used. Kay and Caelli introduced another method to use a set of a range image and 4 or 8 intensity images taken under different illumination conditions [3]. By increasing the number of intensity images, they estimated reflection function parameters locally for each image pixels. Unlike the algorithm proposed by Sato and Ikeuchi, the method can handle object surfaces with varying reflectance properties. However, it is reported that parameter estimation can be unstable especially when the specular reflection component is not observed strongly.

In this paper, we propose one approach to recover both the geometric and photometric information from a sequence of range images and color images of a rotating object. Unlike previously introduced methods, our approach is capable of estimating parameters of a reflection function locally in a robust manner. Firstly, a sequence of range images is used for recovering an entire shape of the object as a collection of triangular patches. The zipper system developed by Turk and Levoy [13] is used for the shape recovery stage. Then, a sequence of color images are mapped onto the recovered shape. As a result, we can determine observed color changes through the image sequence for all triangular patches of the object surface. The observed color sequence is separated into the diffuse reflection component and the specular reflection component by the algorithm used originally by Sato and Ikeuchi in [8]. Subsequently, parameters of a reflection function used in our analysis are estimated reliably for the diffuse and specular reflection components. The reflection model used here is described as a linear combination of the Lambertian model and the Torrance-Sparrow model. The Torrance-Sparrow model is modified according to our experimental setup where the viewing and illumination directions are always the same. Finally, color images of the object are synthesized from the recovered shape and reflectance properties to demonstrate the feasibility of the proposed approach.

The paper is organized as follows. The section 2.1 describes the recovery of an object shape from a sequence of range images. In the section 2.2, a projection of color images onto the recovered object shape will be explained. The section 3.1 introduces the reflection model used in our experiment. The algorithm for separating the diffuse and specular reflection components is explained in the section 3.2, and reflectance parameter estimation is discussed in the section 3.3. The algorithm is applied to range images and color images of a real object, and experimental results will be shown in the section 4. Concluding remarks are presented in the section 5.

2 Modeling of geometric information

2.1 Shape recovery

In this section, a method for generating a three-dimensional object shape from multiple range images is described.

In the past, there have been a large number of techniques investigated for constructing three-dimensional object shapes from unorganized or organized points. For instance, Turk and Levoy [13] developed a technique to combine multiple range images one by one, using a two-step strategy: registration and integration. Their technique uses a modified version of the iterated closest-point algorithm (ICP algorithm) which was originally developed by Besl and McKay [1]. After the registration procedure, two surface meshes composed of small triangular patches are integrated to produce one combined surface mesh. One of the advantages of the zipper system is that it does not require an accurate relative transformation between the range images. That is because the all range images can be aligned by using the ICP algorithm. We found that it is still advantageous even when the relative transformation can be measured directly (e.g., using a rotary table). The zipper system takes surface meshes created from range images as its input. That reduces the complexity of the integration algorithm significantly, while other algorithms use a collection of data points without connectivity information among the points. Because of the zipper system's advantages mentioned here, we decided to use the system for modeling geometric information of real objects.

Range images are obtained by using a light stripe range finder with a liquid crystal shutter and a color CCD video camera [7]. It can compute three dimensional point locations corresponding to image pixels based on optical triangulation. For each range image, a set of six images is obtained. Those images contain x, y and z locations and red, green, and blue color band values of all pixels. Pixels of the range images and the color images correspond because all images are captured by using the same camera. An experimental setup used in our experiments is illustrated in Fig. 1. A single point light source is used for illuminating a target object. The light source is located nearby the camera lens, so that both the viewing direction and the illumination direction are approximately the same.

First, the range finder is calibrated by using a calibration box of known size and shape. The calibration produces a 4×3 matrix which represents the projection transformation between the world coordinate system and the image coordinate system. The projection transformation matrix will be used for mapping a sequence of input color images onto the recovered object shape (section 2.2). An object whose shape and reflectance information are to be recovered is located on
a computer-controlled rotary table. Then, range and color images are captured by the range finder at a fixed angle step of object orientation. Each range image is used for creating a surface mesh which consists of small triangular patches. Following the measurement of range and color images, the zipper system is used for combining all surface meshes to create a merged object shape. The recovered object shape and a sequence of input color images will be used for analyzing the object’s reflectance properties later, which will be explained in the section 3.

![Diagram of experimental setup](image)

Fig. 1 Experimental setup

2.2 Mapping color images onto recovered object shape

The recovered object shape and the sequence of input color images are used for estimating reflection model parameters at each triangular patch. The algorithm to estimate reflectance parameters of the object surface from the sequence of color images will be explained in the section 3.

For the reflectance parameter estimation, we need to know how the observed color changes at each triangular patch, as the object rotates. That can be done by mapping the sequence of color images onto the recovered object shape. The recovered object shape as a collection of triangular patches is defined in a three dimensional world coordinate system. The rotary table's location and orientation in the world coordinate system are given by calibration. Thus, locations of all triangular patches in the world coordinate system can be easily computed for each orientation of the object. Subsequently, the triangular patches are projected back onto the image plane by using the 4×3 projection transformation matrix based on a perspective projection model. The center of the projection is simply computed from the projection matrix [11]. The Z-buffer algorithm is used for determining visible triangular patches and their locations on the image plane. Ideally, all triangular patches are small enough to have uniform color on the image plane. However, a projection of a triangular patch on the image plane often corresponds to multiple image pixels of different color. Therefore, the average color intensity of all corresponding pixels is assigned to the triangular patch. It would be a straightforward extension to assign a two dimensional array to each triangular patch to store all pixel colors when the resolution of triangular patches is high enough.

By applying the procedure explained above for all object orientations, we finally get a collection of triangular patches each of which has a sequence of observed color with respect to the object orientation.

3 Modeling of photometric information

3.1 Reflection model

In this section, a reflectance model used in this report is described. The reflectance model will be used later for separating the diffuse and surface reflection components from a sequence of color images. The reflection component separation will be described in the section 3.2. The model will also be used for reflectance parameter estimation which will be explained in the section 3.3.

A mechanism of reflection is described in terms of three reflection components, namely the diffuse lobe, the specular lobe, and the specular spike [5]. The diffuse lobe component is explained as internal scattering. When an incident light ray penetrates object surface, it is reflected and refracted repeatedly at a boundary between small particles and medium of the object. The scattered light ray eventually reaches the object surface, and is refracted into the air in various directions. This phenomenon results in the diffuse lobe component. The Lambertian model is based on the assumption that those directions are evenly distributed in all directions. In this paper, the Lambertian model is used for modelling the diffuse lobe component.

Unlike the diffuse lobe and the specular lobe components, the specular spike component is not commonly observed in many actual applications. The component can be observed only from mirror-like smooth surfaces where reflected light rays of the specular spike component are concentrated in a specular direction. That makes it hard to observe the specular spike component from viewing directions at coarse sampling angles. Therefore, in many computer vision and computer graphics applications, a reflection mechanism is modelled as a linear combination of two reflection components: the diffuse lobe component and the specular lobe component. Those two reflection components are normally called the diffuse reflection component and the specular reflection component, respectively. The reflection model was formally introduced by Shafer as the dichromatic reflection model [10]. Based on the dichromatic reflection model, the reflection model used in our analysis is represented as a linear combination of the diffuse reflection component and the specular reflection component. The Lambertian model and the Torrance-Sparrow model are used for modelling those two reflection components, respectively. As Fig. 1 illustrates, illumination and viewing directions are fixed and the same. The reflection model used for our experimental setup is given as
\[I_m = K_{diff,m} \cos \theta + K_{spec,m} \frac{\theta^2}{2 \sigma^2} \quad m = \text{red}, \text{green}, \text{blue} \] (1)

where \(\theta \) is the angle between the surface normal and the viewing direction (or the light source direction), \(K_{diff,m} \) and \(K_{surf,m} \) are a constant for each reflection component, \(\sigma \) is the standard deviation of a facet slope \(\alpha \) of the Torrance and Sparrow model. The direction of the light source and the camera with respect to the surface normal is referred as the sensor direction \(\theta \) in this paper. In our analysis, reflection bounced only once from the light source is considered. Therefore, the reflection model is valid only for convex objects, and it cannot represent reflections which bounce more than once (i.e. interreflection) on concave object surfaces. We empirically found that interreflection did not affect our analysis significantly.

3.2 Reflection component separation

The algorithm to separate the two reflection components is described here. The separation of the two fundamental reflection components is important for robust estimation of reflectance parameters. It has been reported that estimating all reflectance parameters at once tends to make computation unstable and sometimes makes it hard to converge [3]. Therefore, the separation algorithm is applied prior to reflectance parameter estimation. The separation algorithm was originally introduced for the case of a moving light source by Sato and Ikeuchi in [8]. In this paper, a similar algorithm is applied for the case of a moving object.

Using three color bands: red, green, and blue, the coefficients \(K_{diff,m} \) and \(K_{spec,m} \), in (1), become two linearly independent vectors, \(\mathbf{K}_{\text{diff}} \) and \(\mathbf{K}_{\text{spec}} \), unless the colors of the two reflection components are accidentally the same:

\[\mathbf{K}_{\text{diff}} = \begin{bmatrix} K_{\text{diff,red}} \ K_{\text{diff,green}} \ K_{\text{diff,blue}} \end{bmatrix}^T \] (2)

\[\mathbf{K}_{\text{spec}} = \begin{bmatrix} K_{\text{spec,red}} \ K_{\text{spec,green}} \ K_{\text{spec,blue}} \end{bmatrix} \] (3)

These two vectors represent the colors of the diffuse and specular reflection components in the dichromatic reflectance model [10].

First, the observed color intensities in the R, G, and B channels with \(n \) different object orientations, are measured at each triangular patch of the recovered object shape. It is important to note that all intensities are measured at the same triangular patch. The three sequences of intensity values are stored in the columns of an \(n \times 3 \) matrix \(\mathbf{M} \). Considering the reflectance model and two color vectors in (1), (2), and (3), the intensity values in the R, G, and B channels can be represented as:

\[M = \begin{bmatrix} M_R & M_G & M_B \\ \cos \theta_1 \ P(\theta_1) \\ \cos \theta_2 \ P(\theta_2) \\ \vdots \\ \cos \theta_n \ P(\theta_n) \end{bmatrix} = \begin{bmatrix} \mathbf{G}_{\text{diff}} \mathbf{G}_{\text{spec}} \end{bmatrix}^T \]

\[\mathbf{K} = \mathbf{G} \mathbf{K} \] (4)

where \(P(\theta) = \exp(-\theta^2/2 \sigma^2)/\cos \theta \), and the two vectors \(\mathbf{G}_{\text{diff}} \) and \(\mathbf{G}_{\text{spec}} \) represent the intensity values of the diffuse and specular reflection components with respect to the sensor direction \(\theta \). The vector \(\mathbf{K}_{\text{diff}} \) represents the diffuse reflection color vector. The vector \(\mathbf{K}_{\text{spec}} \) represents the specular reflection color vector. We call the two matrices \(\mathbf{G} \) and \(\mathbf{K} \), the geometry matrix and the color matrix, respectively.

Suppose we have an estimation of the color matrix \(\mathbf{K} \). Then, the two reflection components represented by the geometry matrix \(\mathbf{G} \) are obtained by projecting the observed reflection stored in \(\mathbf{M} \) onto the two color vectors \(\mathbf{K}_{\text{diff}} \) and \(\mathbf{K}_{\text{spec}} \):

\[\mathbf{G} = \mathbf{M} \mathbf{K}^\top \] (5)

where \(\mathbf{K}^\top \) is a \(3 \times 2 \) pseudoinverse matrix of the color matrix \(\mathbf{K} \).

The derivation shown above is based on the assumption that the color matrix \(\mathbf{K} \) is known. In our experiments, the specular reflection color vector \(\mathbf{K}_{\text{spec}} \) is directly measured by calibration. Therefore, only the diffuse color vector \(\mathbf{K}_{\text{diff}} \) is unknown. The method to estimate the diffuse color vector is explained next.

From (1), it can be seen that the distribution of the specular reflection component is limited to a fixed angle, depending on \(\sigma \). Therefore, if two vectors, \(\mathbf{w}_i = [w_{i,R}, w_{i,G}, w_{i,B}] \) (\(i = 1, 2 \)) are sampled on the \(\theta \) axis at large enough interval, at least one of these vectors will be equal to the color vector of the diffuse reflection component \(\mathbf{K}_{\text{diff}} \). This vector has no specular reflection component. The desired color vector of the diffuse reflection component \(\mathbf{K}_{\text{diff}}^\top \) is the vector \(\mathbf{w}_i \) which subtends the largest angle with respect to the vector \(\mathbf{K}_{\text{spec}} \). The angle between the two color vectors can be calculated as \(\beta = \arccos \left(\mathbf{K}_{\text{spec}} \cdot \mathbf{w}_i / (\mathbf{K}_{\text{spec}} \cdot \mathbf{K}_{\text{spec}})^{1/2} \right) \).

Once we get the color matrix \(\mathbf{K} \), the geometry matrix \(\mathbf{G} \) can be calculated from (5). Then, each of the diffuse and specular reflection components are given as:

\[\mathbf{M}_{\text{diff}} = \mathbf{G}_{\text{diff}} \mathbf{K}_{\text{diff}} \] (6)

\[\mathbf{M}_{\text{spec}} = \mathbf{G}_{\text{spec}} \mathbf{K}_{\text{spec}} \] (7)
3.3 Reflectance parameter estimation for segmented regions

In the previous section, the method to separate the two reflection components from a sequence of observed colors of each triangular patch was described. In this section, we will discuss how to estimate parameters of the reflectance model for the triangular patch by using the separated reflection components.

By applying the separation algorithm that was explained in the previous section, we obtain a sequence of the diffuse reflection component and a sequence of the specular reflection component for each triangular patch. That makes it possible to estimate reflectance parameters of the reflection model (1) separately for the two reflection components. The parameter estimation is performed for each triangular patch one by one. As (1) shows, the reflectance model is a function of the angle between the surface normal and the viewing direction θ. Therefore, for estimating reflectance parameters: $K_{\text{diff}, m}$, $K_{\text{spec}, m}$, and σ_{α}, the angle θ has to be computed as the rotary table rotates. Since the projection transformation matrix is already given and the object orientation is known in the world coordinate system, it is straightforward to compute a surface normal vector and a viewing direction vector (or a illumination vector) at a center of each triangular patch. Thus, the angle θ between the surface normal and the viewing direction vector can be computed. After the angle θ is computed, the reflectance parameters for the diffuse reflection component ($K_{\text{diff}, m}$) and the specular reflection component ($K_{\text{spec}, m}$ and σ_{α}) are estimated separately by the Levenberg-Marquardt method [6]. In our experiment, the camera output is calibrated so that the specular reflection color has the same value from the three color channels. Therefore, only one color band is used to estimate K_{spec} in our experiment.

By repeating the estimation procedure for all triangular patches, we can estimate the diffuse reflection component parameters for all triangular patches if those patches are illuminated in one or more frames of the image sequence. On the other hand, the specular reflection component can be observed only in a limited viewing direction. Due to this fact, the specular reflection component can be observed only in a small subset of all triangular patches. We cannot estimate the specular reflection component parameters for those patches in which the specular reflection component is not observed. Even if the specular reflection component is observed, the parameter estimation can become unreliable if the specular reflection is not sufficiently strong.

For the above reasons, we decided to assign the specular reflection component parameters based on region segmentation. In our experiments, it is assumed that the object surface can be segmented into a finite number of regions which have uniform diffuse color, and all triangular patches within each region have the same specular reflection component parameters. By using the segmentation algorithm, the specular reflection parameters of each region can be estimated from triangular patches with strong specularity. The estimated parameters are assigned to the rest of patches in the region. The triangular patches with strong specularity can be easily selected after the reflectance component separation explained in the section 3.2. The limitation of this approach is that the specular reflection parameters for a region cannot be estimated if no specular is observed in the region. In that case, the specular reflection parameters of neighboring regions can be assigned to the region as an approximation. It is important to note that the segmentation and parameter estimation are used only for the specular reflection component. The diffuse reflection component parameter are estimated locally regardless of specularity.

After reflectance parameters are estimated for all triangular patches, we have the object shape as a collection of triangular patches and reflectance parameters for those patches. This information can be used for synthesizing computer graphics images with physically correct reflection. Some examples of synthesized images will be shown in the section 4.7.

4 Experimental results

4.1 Experimental setup

In the previous sections, we described the method to obtain shape and reflectance information from multiple range images and color images. The method includes three steps: 1. merging multiple triangular surface patches into one patch to generate an object shape model, 2. separating the two fundamental reflection components from a sequence of color images, and 3. estimating the reflectance model parameters from the separated reflection components. We applied the method to actual range and color images taken in a laboratory setup, in order to demonstrate the feasibility of the proposed method. A SONY CCD color video camera module model XC-711 is used to take color images in our experiments. A light stripe range finder with a liquid crystal shutter is used for taking range images. The same color camera is used to take images in the range finder. This guarantees correspondence between the range images and the color images at each pixel. The target object used in our experiment is a plastic dinosaur with an approximate height of 170mm. The object is painted in several colors, and each painted surface region appears to have a uniform color. The object is located on a rotary table whose orientation can be controlled by a computer. Multiple range and color images of the object are taken for different object orientations. A single xenon lamp whose diameter is approximately 10mm is used as a point light source. The light source is located close by the camera, and the light source direction is considered to be the same as the viewing direction. The camera and light source locations
are fixed in our experiment. The approximate distance between the object and the camera is 2m. Our experimental setup is illustrated in Fig. 1.

The range finder is calibrated to obtain the 4×3 projection transformation matrix between the world coordinate system and the image coordinate system. The matrix is used for mapping the color images onto the recovered object shape. The location and orientation of the rotary table in the world coordinate system is also measured by using a calibration box and the range finder. As a result, the direction and location of the rotation axis in the world coordinate system are known. They are used for projecting the color images onto the recovered object shape as described in the section 2.2. The color video camera is calibrated to ensure linear response from all three color bands. In addition, the illumination color is assumed to be known in our experiment.

4.2 Measurement

Range images and color images of the target object are taken by using the experimental setup described in the previous section. The object is placed on the rotary table, and range images and color images are captured as the object rotates on the table. In our experiment, range images are captured for every 45°, and color images are obtained for every 3°. In total, 8 range images and 120 color images are digitized. The reason why we need more color images than range images is because fine sampling is necessary to capture the specular reflection distribution correctly. On the other hand, the range images are used only for recovering the object shape, and it does not require fine sampling. The small number of images are sufficient to observe the object shape entirely. Fig. 2 shows the sequence of input color images. Six frames out of 120 are shown as examples.

![Fig. 2 Input color images](image)

4.3 Shape recovery

The zipper system [13] was used for merging eight triangular surface meshes created from the input range images. The recovered object shape is shown in Fig. 3. The object shape consists of 9943 triangular patches. In the process of merging surface meshes, the object shape was manually edited to remove noticeable defects such as holes and spikes. The manual edit will be unnecessary if more range images are used.

![Fig. 3 Recovered object shape](image)

4.4 View mapping

After the object shape is generated from the range images, the sequence of input color images are mapped onto the recovered object shape as described in the section 2.2. Based on the image mapping onto the recovered object shape, a sequence of observed colors is determined at each triangular patch of the object shape. The observed color is not defined if the triangular patch is not visible from the camera. In this case, the observed color is set to zero. Fig. 4 (a) illustrates a typical observed color sequence at a triangular patch with relatively weak specularity. The intensities are set to zero before the image frame 38 and after the image frame 93 because the triangular patch is not visible from the camera due to occlusion. The specular reflection component can be observed near image frame 65. When the specular reflection component exists, the output color intensity is a linear combination of the diffuse reflection component and the specular reflection component. As a result, estimating reflectance parameters for both the diffuse and specular reflection components together could be sensitive to various disturbances such as image noise. That is why the reflection component separation is introduced in prior to parameter estimation in our analysis. By separating the two reflection components based on color as explained in the section 3.2, reflectance parameters can be estimated separately in a robust manner.

![Fig. 4 observed color sequence (a) and separation result (b)](image)
4.5 Reflection component separation

The algorithm to separate the diffuse and specular reflection components, described in the section 3.2, was applied to the observed color sequence at each triangular patch. The red, green, and blue intensities of the observed color sequence are stored in the matrix M as its columns (4). Then, the matrix G is computed from the matrix M and the matrix K which is estimated as described in the section 3.2. Finally, the diffuse and specular reflection components are given as shown in (6) and (7). This reflection component separation is repeated for all triangular patches of the object. The separation results for the observed color change in Fig. 4 (a) is shown in Fig. 4 (b). In this result, the specular reflection component is relatively small compared to the diffuse reflection component. That indicates that the separation algorithm can be applied robustly even if the specularity is not observed strongly. After the reflection component separation, reflectance parameters can be estimated separately. The result of parameter estimation will be shown in the section 4.6.

4.6 Reflectance parameter estimation for segmented regions

By using the separated diffuse reflection components of all triangular patches, the object surface was segmented based on the hue of the diffuse reflection components, as explained in the section 3.3. The result of the region segmentation is shown in Fig. 5 where segmented regions are represented as grey level. For estimating specular reflection component parameters, ten triangular patches with the largest specular reflection component are selected for each of the segmented regions. Then, the specular reflection component parameters of the reflection model (1) are estimated by the Levenberg-Marquardt method for each of the ten selected triangular patches. Finally, the average of the estimated parameters of the selected triangular patches is used as the specular reflection component parameters of the segmented region. The estimated specular reflection parameters are assigned to all triangular patches within the segmented region. In our experiments, the four largest segmented regions were used for specular reflection parameter estimation, and the rest of small regions were not used. The small regions were found to be located near or at the boundaries of the large regions. Hence, a surface normal of a triangular patch does not necessarily represent a surface normal of the object surface at the location. That causes the parameter estimation to be inaccurate. Therefore, those small regions are assumed to have the same specular reflection properties as the large regions in our analysis. The result of the estimated specular reflection component parameters is shown in Table 1.

<table>
<thead>
<tr>
<th>region #</th>
<th>K_{spec}</th>
<th>σ_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>134.58</td>
<td>0.091</td>
</tr>
<tr>
<td>1</td>
<td>111.32</td>
<td>0.119</td>
</tr>
<tr>
<td>2</td>
<td>38.86</td>
<td>0.147</td>
</tr>
<tr>
<td>3</td>
<td>39.87</td>
<td>0.177</td>
</tr>
</tbody>
</table>

4.7 Synthesized images with correct reflection

By using the recovered object shape and reflection model parameters, images of the object under arbitrary illumination conditions can be generated. In this section, some of the images are shown to demonstrate the feasibility of the proposed method to produce highly realistic images. Point light sources located far from the object are used for generating images. For comparing synthesized images with the real images of the object, the object model was rendered with illumination and viewing directions similar to our experimental setup. The illumination and viewing directions for input color image frame 0 was used to create Fig. 6. The input color image is shown in Fig. 2. It is important to see that region 2 shows less specularity than region 0 and region 1. (See Fig. 5 for region numbers.) In addition, the specular reflection is widely distributed in region 2 because region 2 has a large reflectance parameter σ_a. Another example in Fig. 7 shows the object illuminated by two light sources. The arrow in the image represents the illumination direction.

*Fig. 2, Fig. 6, and Fig. 7 are available in color at the web site http://www.cs.cmu.edu/afs/cs/usr/ysato/www/research3.html.
5 Conclusion

We have studied an approach for creating a three-dimensional object model with physically correct reflectance properties by observing a real object. The Lambertian model and the Torrance-Sparrow reflection model are used as the basic reflectance model in our analysis. The object is located on a rotary table, and a sequence of range and color images are taken as the object rotates. First, the object shape is recovered from a range image sequence as a collection of triangular patches. Then, a sequence of input color images are mapped onto the recovered object shape to determine an observed color sequence at each triangular patch individually. The observed color sequence is separated into the diffuse and specular reflection components. Finally, parameters of the Lambertian model and the Torrance-Sparrow model are estimated separately at each of triangular patches. By using the recovered object shape and estimated reflectance parameters associated with each triangular patch, highly realistic images of the real object can be synthesized under arbitrary illumination conditions. The proposed approach has been applied to real range and color images of a plastic object, and the effectiveness of the proposed approach has been successfully demonstrated by showing synthesized images of the object under different illumination conditions.

References

