
A Language for Recon�gurable Robot Control.

Bart Nabbe

September 1998
CMU-RI-TR-98-32

Submitted to the Department of Computer Science
in partial ful�llment of the requirements for the degree of

Master of Science

at the

University of Amsterdam

Author .
Department of Computer Science

November 24, 1998

Certi�ed by. .
prof. Dr. ir. Frans C.A. Groen

Professor (UvA)
Thesis Supervisor

Certi�ed by. .
Dr. Martial Hebert

Senior Research Scientists (CMU)
Thesis Supervisor

Accepted by .
prof. Dr. Peter van EmdeBoas

Chairman, Department of Computer Science

A Language for Recon�gurable Robot Control.

by

Bart Nabbe

Submitted to the Department of Computer Science
on November 24, 1998, in partial ful�llment of the

requirements for the degree of
Master of Science

Abstract

When robots are to be deployed in urban environments, these robots need to be able to
cope with all kinds of terrain. Includes curbs, steps and even stairs. A recon�gurable robot
is best used in these cases.

This thesis presents a framework that deals with con�guration (posture) selection for this
type of robotic systems. The system consists of a compiler and an execution engine, which
provides the coupling between the low level control software and the high level planning
software. The Con�guration Selection Module (CSM) is generated from a speci�cation that
consists of a priority list of observation, action tuples for all possible goals. The planner
stacks its desired goals on the CSM execution stack. This stack is reduced according the
methods given in the speci�cation.

The system has been tested on a regular mobile robot and on a recon�gurable robot
simulator. The result from these experiments suggest that the system will be able to function
as desired.

Thesis Supervisor: prof. Dr. ir. Frans C.A. Groen
Title: Professor (UvA)

Thesis Supervisor: Dr. Martial Hebert
Title: Senior Research Scientists (CMU)

Acknowledgments

I would like to thank Frans Groen for making the initial contact with CMU, his support and

the freedom to shape my research. At the CMU side I would like to thank Chuck Thorpe

for taking on yet another student. Most of all I would like to thank Martial Hebert for his

ideas, support (both intellectual and �nancially) and his work on the Pandora simulator.

Contents

1 Introduction 11

1.1 Background . 11

1.2 Mission and Operational Requirements . 12

1.3 The Pandora System . 14

1.4 Problem description . 15

1.5 Thesis overview . 16

2 The Pandora Software Architecture 17

2.1 Communication Front-End . 17

2.2 Driving Modes . 18

2.3 Sensor Front-End . 19

2.4 Safeguarding . 19

2.5 Vehicle Front-End . 20

2.6 Command Arbitration . 20

2.7 Con�guration Selection . 20

2.8 Summary . 21

3 Related Work 23

3.1 SubSumption and SSS architecture . 23

3.2 DAMN . 24

3.3 REX, GAPP and RULER . 24

3.4 RAP . 24

3.4.1 ALFA and ATLANTIS . 25

3.4.2 3T . 25

3.5 Conclusion . 25

7

4 A Con�guration Selection System 27

4.1 Situation Driven Execution . 27

4.2 Language description . 29

4.2.1 Template description . 30

4.2.2 Fault recovery . 32

4.3 Execution engine . 33

4.4 Interface . 33

4.5 Implementation . 34

4.6 Summary . 34

5 Results 37

5.1 Pandora Simulator . 37

5.1.1 Simulation model . 37

5.1.2 Simulation results . 40

5.2 Nomadic Scout . 47

5.3 Summary . 48

6 Conclusion 49

A Syntax diagrams 51

A.1 Declaration section . 51

A.2 Template de�nition section . 52

8

List of Figures

1-1 A typical simulated urban environment. 12

1-2 Pandora system - CAD rendering . 14

1-3 Some possible con�gurations of the Pandora system 15

2-1 The software architecture of the Pandora system 18

4-1 The Con�guration Selection Module's main loop. 33

5-1 Laser data on outdoor sequence of images of stairs; (upper) raw video images;

(lower) �ltered images for stripe detection. 38

5-2 Three-dimensional view of the data from Figure 5-1 scans were obtained by

moving the sensor at intervals of 0.1m from 0.9m to 2.0m from the steps; the

�gure shows the 3-D location of the points measured on a 0.2m step. 39

5-3 Laser range �nder resolution and accuracy. 39

5-4 Pandora negotiating a small step in \very careful" mode. 42

5-5 Pandora negotiating a small step in \aggressive" mode. 43

5-6 Pandora negotiating a tall step in \careful" mode. 44

5-7 Pandora negotiating a tall step in \aggressive" mode. 45

5-8 Pandora negotiating a staircase in \normal" mode. 46

5-9 The Nomadic Scout. 47

9

10

Chapter 1

Introduction

Recon�gurable mobile robotic systems, such as walkers or other articulated locomotion

systems, are more diÆcult to control than the regular wheeled or tracked systems. Because

of this complexity, numerous of these robots have been used for testing adaptive and learning

algorithms. Although the results of this ongoing work is interesting, for simple articulated

locomotion systems a careful analysis of the task and the locomotion system can be used

to generate a control algorithm.

When we would like to control such a locomotion system, it would be of interest to �nd

out how the perception of the environment could be used to choose between con�gurations.

An other key issue is to determine if such a relation could be described in a formal way so

that a speci�cation of these relations could be used to automate the generation of a control

algorithm.

1.1 Background

The application of robots in urban environments for inspection, search and rescue or other

missions present an challenging problem in robot design. Such a robotic system must be

able to traverse all kinds of terrain, curbs, stairs and other obstacles. The CMU Robotics

Institute started research in this area when they began investigating the usage of robotic

systems as scouts or pointmen. This type of robot could then assist in such missions. A

typical setting for such an application is depicted in �gure 1-1.

11

Figure 1-1: A typical simulated urban environment.

1.2 Mission and Operational Requirements

Several mission scenarios were taken into account while the design requirements were laid

out. The following list outlines these scenarios.

� Transport/Staging

The collapsed vehicle system is transported to the outskirts of a town in the transport

vehicle assigned to the team, typically, a three-man team. The robot will already have

been preloaded with batteries and local area and city maps. The system is carried

from the transport vehicle to a safe staging area by the team. There it is put down

and activated. The Di�erential Global Positioning System (DGPS)-coded position of

the team(s) and the vehicle are displayed on the operator's wearable graphical user

interface. The operator then decides on how to best plan a short recon mission for the

area, whether by selecting a goal point from an image or a map and allowing the robot

to plan its route, or by entering a more detailed sequence of waypoints manually.

� Area Recon

The robot is commanded, either by entering end-/waypoints or through teleoperation,

to traverse a few streets to determine what potential hazards and hiding places might

exist. The robot drives at fairly high speeds through the open-access areas with its

spherical camera system fully deployed to view the surrounding areas. During these

maneuvers, safeguarding sensors provide suÆcient information for on-board computers

to drive the robot in cluttered terrain.

Should the vehicle be able to drive around the obstacle, the on-board vision system

will generate a set of steering, speed and distance commands to the vehicle-controller

12

CPU for it to execute and monitor. Should the vehicle need to straddle the obstacle,

the system commands itself to get into the necessary straddling con�guration, before

proceeding with the driving maneuvers. In the case that the vehicle needs to climb

over an obstacle, such as a cinder block, wall or curb, it will automatically perform any

approach and coordination maneuvers to autonomously accomplish the maneuver.

� Spot-Recon

The vehicle can be sent to perform individual recon operations in suspect areas such

as alleys, sewers, or buildings. In a designated suspect area, the operator can com-

mand the vehicle to proceed into and through the area to gather intelligence data

(audio/video and motion).

� Surveillance

The system can also be used for surveillance, by commanding it to drive to a speci�c

vantage point from which it can monitor certain areas for suspect operations. The

system can either use live video transmission to the operator or on-board motion-

detection software, and can scan video feeds from either the forward-looking or om-

nispherical camera systems.

� Rear-Guard

The robot can also be used as a leave-behind post-guard, continuously monitoring

activities in a rearward area.

� Redeployment

The robot is intended to be reused; thus the system will be picked up by the designated

operating-soldier and driven back to the staging area or to the transport vehicle for

storage and transport to the next deployment zone.

� Special Missions

Typical special missions that the robot system could be used for are listed below:

The robot can be used as a mothership system, by carrying several smaller static or

semi-mobile sensing systems with it, which it drops at key locations. These individual

sensing systems can be used to monitor key areas with audio or video sensors. If these

sensors are able to achieve some small level of locomotion, they can relay intelligence

back.

13

Such a mission scenario shows clearly that robotic system might be exposed to a very

hostile environment. It is also clear that it must be fairly autonomous so that the operator

is not tied up by operating the system. The key design requirements based on the presented

scenario is given below:

� Fast locomotion on
at ground

� Negotiate obstacles

� Negotiate stairs

� Robust to falls

� Man-portable

� Power autonomy suÆcient to carry out mission

� Obstacle-strewn, man-made cluttered environment

� Ground-level and elevated danger zones

� Observation and inspection

� Multi-unit coordinated human/machine operations

1.3 The Pandora System

Figure 1-2: Pandora system - CAD rendering

A robotic system called \Pandora" (Figure 1-2) was designed to meet these criteria.

The Pandora system is equipped with articulated treads, which can be con�gured in various

14

postures depending on the requested terrainability. This allows the system to negotiate a

broad range of obstacles. On
at terrain, the number of contact points can be reduced

by rotating the threads thereby increasing the systems mobility. Its extensive sensor suite

consists of a stereo pair of forward looking cameras, narrow infrared bandpass �ltered

camera, an omnidirectional camera and a multiplexed sonar obstacle detection ring. The

narrow infrared bandpass �ltered camera is used in conjunction with a set of two high power

laser light stripers on top of the OmniCamera to image the environment and to detect

and measure size and location of obstacles. The OmniCamera is a vertically-deployable

upside-down CCD camera imaging into a parabolically shaped mirror to view a 360 degree

�eld-of-view. The on-board navigation sensors consist of a di�erential GPS receiver, an

integral solid state compass and pitch and roll inclinometer, a solid state gyro and safety

limit switches on vehicle pitch/roll and locomotor posture.

1.4 Problem description

The recon�gurability of Pandora's locomotion system as described in the previous section

allows the system to adapt to current terrain conditions. It can independently position its

front and rear pairs of threads in any position. Given this information, con�gurations were

classi�ed for di�erent kinds of terrain, obstacles and exposure (risk level).

Figure 1-3 displays some of these possible con�gurations. The Pandora design document

[RI98] gives an in depth description of this classi�cation.

Four-wheel high-
maneuverable driving

Collapsed high speed
stable driving

Small curb
gentle climbing

Low obstacle-
straddling driving

Ditch crossing
driving

Gentle obstacle-
charging

Figure 1-3: Some possible con�gurations of the Pandora system

The selection of a con�guration depends thus on the type of terrain and on the driving

15

parameters, such as the allowed risk level. For example if a high risk level is allowed,

Pandora would charge an obstacle as fast as possible. On the other hand, a low risk level

will make Pandora observe the environment more closely so that it will not be taken by

surprise if any unexpected terrain feature appears. A simple forward command could thus

involve a whole sequence of recon�gurations in order to traverse the requested distance.

Typically the robot would start to move in the requested direction until the sensor system

suspects an obstacle. The system could then recon�gure itself into an observation posture

so that the laser light striper is swept across the obstacle in order to acquire enough data to

con�rm the obstacle class. Based on this information the robot selects the best con�guration

to attack and negotiate the obstacle.

The work described in this document will describe the con�guration selection decision

process and a mechanism to generate a system to do this.

1.5 Thesis overview

A road-map of the Pandora software architecture is given in Chapter 2. This chapter

describes the functions of the several modules within the system. It also explains in more

detail where the con�guration selection decision is made and on what data this decision

is based. Chapter 3 gives an overview of related software architectures. It points out the

key features and explains the relation to the problem at hand. In Chapter 4 the actual

language and its execution engine will be presented. Chapter 5 gives the results of the

experiments performed with the Nomadic Scout mobile robot and the Pandora simulator.

Finally, Chapter 6 suggests areas of future work, and Chapter 7 draws conclusions about

the work discussed herein.

16

Chapter 2

The Pandora Software

Architecture

The Pandora Software Architecture interfaces to the user by means of the communications

front-end on one side, on the other side it interfaces to the vehicle front-end which is tied

to the robot hardware. All operator interaction goes through the communications front-

end. A single driving mode is in control of the robot, this module uses data from the

sensor front-end to plan motion commands for the system. These commands are merged

together with the allowed directions provided by the safeguarding module. This combined

command is fed into the con�guration selection module which might generate a sequence of

recon�gurations in order to pursue the desired direction of travel. The commands generated

by the con�guration selection module are executed by the robot hardware. The driving

modes component determines the mission capabilities and is modular, therefore new modes

with di�erent capabilities can be added easily. The safeguarding module has also a modular

structure, this allows an easy sensor upgrade.

Figure 2-1 shows how these separate modules form the complete software architecture.

The remaining sections give a brief description of all these modules.

2.1 Communication Front-End

The data provided by or presented to the operator is routed from the user interface to

the communications front end. Therefore, the communication front-end is responsible for

receiving commands and parameters from the user and sending images and status infor-

17

Driving Modes Safeguarding

Communication Front-End

Arbiter

CONTROL

NAVIGATION

USER

Command
Recommendations

Motion Command

Mode
Driving Parameters
Goals
Maps

Driving Parameters

Driving Parameters

 status

status

Command
Recommendations

Sensor Front-End

Requests Images

PoseMotion Command
Configuration Change

Commands
Parameters

Images
Status

Configuration Selection

Motion Command
Configuration Change

Map queries

Vehicle Front-End

Map
evaluator

Figure 2-1: The software architecture of the Pandora system

mation. The main commands sent by the user include change of driving mode, desired

maximum speed, and requests for images. In addition, the user can send a risk level which

guides the on-board navigation system in selecting the appropriate con�gurations for the

robot. Data sent back to the user by the front-end include images, when requested, status

information and vehicle poses.

2.2 Driving Modes

The driving modes component provides the planning level in the system. It incorporates

currently three semi-autonomous driving modes. The operator can only activate a single

driving mode at a time. These driving modes generate a recommendation for both heading

and speed. Currently the following driving modes are provided:

18

Visual Servoing The operator designates a goal region anywhere in the image and the

robot drives toward that region using on-board visual servoing. This mode requires minimal

operator input and does not require accurate position estimation or map information.

Waypoint Teleoperation The operator designates intermediate points in the image.

Those points are used by the on-board navigation system to drive the vehicle. This mode

requires more work on the part of the operator but provides better control of the route

actually followed by the robot.

Map-based Planning The operator designates a goal in a map of the environment. The

robot drives toward the goal by continuously re-planning its route based on sensor input.

This mode is the closest to a fully autonomous navigation mode but it requires map and

position information which is not always available.

2.3 Sensor Front-End

The sensor front-end controls which of the sensors are active at a given time, and makes

the sensor data available to the other components. Sensor data is stored in a global data

repository shared by all the software components. In particular, the sensor front-end does

not need to know which of the other modules is using the data. Again, this approach allows

for
exibility since new modules can be added without modi�cation of the sensor front-end.

2.4 Safeguarding

A safeguarding component collects the data generated by the safeguarding sensors, inte-

grates it in an internal local map, and analyzes it to evaluate the traversability of the

terrain surrounding the robot. The local map is periodically evaluated in several candidate

directions of travel, to generate measures of height and slopes of potential obstacles in those

directions. For a given heading, the distribution of height and slope is compared with the

limits of the current robot con�guration, in order to determine the traversability of the ter-

rain. This evaluation is the basis for the input to the command arbitration component and

the con�guration selection module. The local map scrolls along with the robots movement

so that the robot remains the center.

19

2.5 Vehicle Front-End

The commands are sent to a vehicle front-end which is the interface to the robot hardware.

The vehicle front-end veri�es the commands for validity before sending them to the robot.

The vehicle front-end is also responsible for receiving and integrating the pose estimates -

position and orientation - from the robot hardware. The robot hardware aborts a command

if it exceeds the limits of the system.

2.6 Command Arbitration

Pandora uses a command arbitration scheme for merging the command recommendations of

the driving modes and the safeguarding system. In this approach, the scores for the di�erent

headings are combined into a single motion command. Individual components, such as a

driving mode and a safeguarding component, generate preferences for the next planned

heading of the robot. Those preferences are represented by a set of scores for a discrete set

of angles. A zero score indicates that a heading is either blocked, or that insuÆcient sensor

data is available to evaluate traversability in this direction, or that the current con�guration

prevents the robot from driving in this direction. The recommendations are combined into

a single set of recommendations. The combination is performed using essentially a linear

combination, with the added provision that headings with zero score - "vetoed" headings

- always remain vetoed after combination. The weights used in the combination re
ect

the relative importance of the components being combined. The last step of the command

generation is the selection of the optimal command from the combined recommendations.

The command with the highest score is selected and send to the con�guration selection

module.

2.7 Con�guration Selection

Based on the motion command received from the arbiter, the con�guration selection module

has to select the best con�guration for Pandora. This decision is based on several parameters

such as:

� Map-evaluation

Most important in the con�guration selection decision is the observed obstacle or

20

terrain. If for example
at terrain is observed, the system could change to the four

point high speed driving con�guration to exploit this feature. The evaluation of the

map could also lead to an observation posture, this would occur if there is not enough

data available for the evaluator to determine the obstacle type. The robot would then

con�gure to an observation pose which would yield more data, so that the evaluator

could determine the obstacle type.

� Risk Level

In general, di�erent con�gurations could be used to negotiate the same type of ob-

stacle. Therefore, a division is made into low-risk con�gurations, which are safe but

require more component motion and have slower execution, and higher-risk con�gu-

rations, which are faster but may induce more disturbances - shocks and vibrations.

The allowed "risk level", which is supplied by the user, is used to choose between

these sets. In missions in which speed of execution is critical, the user would select a

high risk mode.

� Current con�guration

In order to reduce the recon�guration time, the current con�guration is taken into

consideration when selecting a new con�guration. Nevertheless it is not necessary to

generate the most optimal con�guration sequence. The system is allowed to use an

opportunistic approach towards selecting a con�guration. This is allowed because the

higher level software will provide the con�guration selection module with the most

promising direction of travel.

2.8 Summary

The software integrates the functions of supervised autonomy, safeguarding, and command

generation to the robot hardware. The architecture allows easy replacement or upgrade

of its components. The software architecture is divided into: A communication front-end,

which receives goals and mission parameters from the user. A vehicle front-end which

receives positions from the con�guration selection module and sends motion commands to

the robot hardware. A set of navigation modules. The navigation modules include modules

that implement the three driving modes. A safeguarding module, which uses the output of

21

the safeguarding sensors to maintain a local map around the vehicle. And a map evaluation

module which evaluates the map for navigability, based on Pandora's current situation.

22

Chapter 3

Related Work

The Con�guration Selection Module (CSM) receives a motion command (goal)from the

arbiter, depending on the map evaluation and possible driving parameters, the CSM de-

composes this goal or selects a con�guration (action). This problem has a strong reactive

character. Likewise a study of existing reactive robot control languages and architectures

was carried out. The following section describes these systems.

3.1 SubSumption and SSS architecture

Brooks's SubSumption architecture [Bro86], [Bro91] consists of simple networks of small

�nite state machines joined by "wires" which connects output ports to input ports. By

overriding the value of one wire with a value from another wire, these basic building blocks

can be put together to produce complex control mechanisms. The SubSumption architec-

ture advocates that a controller is build by stacking more complex behaviors on top of more

trivial behaviours and inhibiting (subsume) there behavior. However, there is no architec-

tural mechanism to support this. During compilation of these behaviours, the perceived

parallelism is reduced to a single execution thread.

The Servo, Subsumption, Symbolic (SSS) architecture [Con92], [Con89] is a hybrid

architecture for mobile robots that integrates the three independent layers of servo control,

SubSumption behavior and a symbolic layer. These separate layers have an increasing

latency time on which they react on real-time external input.

23

3.2 DAMN

A Distributed Architecture for Mobile Navigation (DAMN) is presented in [RP89], [Pay86],

This architecture has four levels: mission planning, map-based planning, local planning,

and re
exive planning. All levels operate in parallel. Higher levels are charged with tasks

requiring much computation and allow high latency times. The lower levels operate on

tasks which require a small latency time and are computational inexpensive. The re
exive

planning is designed to consist of pairs of <virtualsensor>, <re
exivebehavior>. Each re-

exive behavior has an associated priority, and a central blackboard style manager arbitrates

among the re
ex behaviors.

3.3 REX, GAPP and RULER

[Kae87], [Kae88] and [RK95] describes a framework consisting REX, GAPP and RULER

which, given a task and a descriptions of the world construct a reactive control mechanism

known as situated automata. Their architecture consists of perception and action compo-

nents. The robot's sensory input and its feedback are inputs to the perception component.

The action component computes actions that suit the perceptual situation. This mapping is

always correct, but is not guaranteed to be complete, that is, no output might be generated.

This framework is mainly intended to produce circuits that operate in real-time, and some

properties of their operation are provable.

3.4 RAP

The Reactive Action Packages (RAP) system as presented in [Fir89] proposes a plan and

task representation based on program-like reactive action packages, or RAPs. A plan con-

sists of RAP-de�ned goals, or tasks, at a variety of di�erent levels of abstraction. The RAP

system executes the tasks in its task-list depending on the satisfaction of the associated

constraints. In this manner, di�erent methods will be used in di�erent situations. These

constraints can also be used to monitor execution, thereby eliminating the need for separate

replanning in case of failure. RAPs can also change the current task-list, so that tasks can

be decomposed into sub-tasks.

24

3.4.1 ALFA and ATLANTIS

[Gat92] describes ATLANTIS, an architecture for mobile robot control. This architecture

has three components: control, sequencing, and deliberation. The control layer is designed

as a set of circuit-like functions using Gat's language for circuits, ALPHA [Gat91]. The

sequencing component is based on Jim Firby's RAP system. The deliberation layer advises

the sequencing layer for more complicated problems. The deliberator is out of the control

loop, so its time consuming pondering has no in
uence on the latency time of the whole

architecture.

3.4.2 3T

3T, [BK] and [BK96], is very similar to Gat's architecture, its 3 layers are called the skill

layer, the sequencing layer, and the planning layer respectively. Whereas in ATLANTIS

these layers were known as the controller, the sequencer, and the deliberator. The di�erence

between 3T and ATLANTIS is the sequencing layer. 3T uses the plain RAP system whereas

ATLANTIS incorporates a more
exible and expanded version of this.

3.5 Conclusion

All systems presented in this section have evolved into 3 layered architectures. This 3 layer

model incorporates a controller, handling tight control loops between sensors and actuators,

a sequencer, which selects primitive behaviours, and a planner which provides the sequencer

with goals. Nevertheless they have quite some disparities which made some of them diÆcult

or even not applicable.

Like the previous architectures, the software architecture of the Pandora system is also a

3 layered architecture. The driving modes module function as the planning layer, the vehicle

front end provides the control layer and the sequencing layer matches the functionality of

the Con�guration Selection Module (CSM). Likewise the sequencing components of these

systems are candidate for the role of CSM.

The SubSumption architecture could be used for implementing the CSM, although this

would be very cumbersome. The SubSumption network would need virtual sensors for all

possible observations and a lot of \wiring" to implement the negative feedback in order to

mutual exclude the occurrence of multiple selected con�gurations. Therefore the SubSump-

25

tion approached was not further considered for usage. For the DAMN architecture, the

same arguments can be given as for the SubSumption architecture. The main di�erence be-

tween the DAMN and the SubSumption architecture is the way commands are merged. The

SubSumption architecture suppresses the lower priority command whereas DAMN uses a

weighted arbitration mechanism. Therefore DAMN could be applied although cumbersome.

Although the sound fundamentals of the REX, GAPP and RULER triplet are very

attractive, the framework does not exploit opportunism. All state transitions need to be

speci�ed, the system is therefore not able to handle an unstructured environment. The

RAP system on the other hand is based on opportunism, it does not necessarily �nd the

most optimal solution, but it will make its decisions in an ad hoc manner. If for a particular

goal no matching action is found immediately, the system is allowed to try di�erent action

templates. These actions could create new opportunities, which might lead in turn towards

the goal. Therefore, the Con�guration Selection Module was modeled after the RAP system.

26

Chapter 4

A Con�guration Selection System

The Situation Driven Execution paradigmmakes its decisions based on the current situation.

A con�guration selection mechanism will be presented that uses this principle to select

con�gurations. This mechanism makes no assumptions about its application domain. This

Situation Driven Selection paradigm is described in section 4.1. From this paradigm, a

speci�cation language has been derived. This language is described in section 4.2. The

execution engine that the CSM uses is described in section 4.3. This engine was inspired

by the STRIPS system ([Nil80]), one of the earliest planning systems that could deal with

compound goals. Section 4.4 explains how the CSM interfaces with the rest of the system.

Chapter 5 will show how this system was used to control a robot and gives also the results

of the completed experiments.

4.1 Situation Driven Execution

The Situation Driven Execution paradigm cannot be expected to solve complex problems

or generate optimal action sequences. These activities require looking into the future to

see how every action a�ects the rest of the \plan". The assumption is that a traditional

type of planner has sorted out many of these issues and provides the system with the most

promising \sketchy plan". This plan lacks all details which can not be known until the

robot actually starts to muddle towards the goal. In our case this \plan" is as simple as a

desire to move in a speci�c direction. Execution of such a sketchy plan assumes that there is

a prescribed method for carrying out tasks based on perception of the current situation. A

method can be any sequence of actions that will accomplish the task in the given situation.

27

So, execution consists of choosing a task to work on, assessing the current sensed situation,

choosing an appropriate method and carrying it out.

This task is a goal that is to be achieved, as before in our case such a task is just a desired

heading which was received from a higher planning level. A stack is used to administrate

these goals. At execution the goal on top is used as an index to identify possible methods

that could lead to accomplishment of the goal. A method is only selected when it is relevant

to the current situation, this could be any kind of expression including results of previous

methods. If the constraints from more than one method are satis�ed, the method with the

highest priority (the one that is encountered �rst) is selected. A method (action sequence)

is a prescription for changing the world situation so that a given goal becomes satis�ed.

There may be many di�erent methods for reaching the same goal, each of them applicable

in di�erent situation or preferred in di�erent priority. This diversity allows the system to

respond and adapt to changing situations. All methods are known to the system in advance,

so the system must muddle trough with what it knows or give up.

Robust behaviour can be achieved as long as every goal has one or more general methods

for satisfying it in any situation. It is important to bear in mind that successful execution

of a certain method does not necessarily mean that this resulted in the expected change of

the current situation. A goal may therefore only be considered satis�ed when this change of

situation is observed, a separate method can be used to remove this goal from the execution

stack. This strategy allows the premature termination of a method which makes it possible

to introduce a fault recover mechanism. For all methods a time window can be speci�ed

in which this sequence is relevant. If this window expires, the sequence is aborted, thereby

leaving the current situation as is. The situation is reassessed by the system and execution

is resumed.

When for example such a system would use the following methods.

28

Goal Constraint expression Action Sequence Method no.

move mapEval = MapIsClear move(),
goalReached() 1

default newGoal(recon�gure),
newGoal(observe) 2

observe mapEval = SmallObstacleSuspected setCon�guration(ObserveSmallObstacle2),
goalReached() 3

default requestOperatorAssistance(),
goalReached() 4

recon�gure mapEval = SmallFlatObstacle setCon�guration(SmallFlatObstacle4),
goalReached() 5

default newGoal(observe) 6

default default fail() 7

idle default newGoal(move) 8

The system could receive an external move goal from a higher level or if no goal is received

bootstrap itself with the idle statement (method 8). On reception of a move goal, the system

has two options. It will therefore would assess its situation and if the map is clear (method 1)

it will move straight ahead, or otherwise decompose the problem by pushing subgoals on the

stack (method 2). Execution continues, but the top of the stack contains now the observe

goal. The relevant methods in this case are method 3 and 4. If the map evaluator suspects

a small obstacle, is suspected, an observation posture is requested in order to yield more

data about the obstacle (method 3). If on the other hand the evaluator was not able to

determine how to handle the encountered obstacle, the system would rely on the operator

to handle the unknown situation (method 4). Method 5 is applied afterwards to reduce the

remaining recon�gure goal, where after the original move is reduced by method 1.

4.2 Language description

Based on the Situation Driven Execution paradigm a speci�cation language was developed.

This language is used to specify the action templates for the Con�guration Selection Module.

When we consider the example from the previous section we can easily identify the key

entities; goals, constraints and actions. In the following section we will show how the

speci�cation language is build around these entities and how some fault tolerance is added.

The syntax diagrams for this language can be found in the appendix.

Goals

A goal is represented by an identi�er and may have optional arguments. The arguments

are provided to allow parametrized goals. The parameters provided when a goal is pushed

29

on the stack are available within the scope of the associated templates. These arguments

are especially useful for providing subgoals with data. In our example there is one goal

that might be provided by an external planner: move, the observation and recon�gure goals

are internal subgoals. Goals can be stacked by an external high level planner or can be

stacked as a result of an internal task decomposition. Section 4.3 describes in more detail

how external goals are retrieved.

Constraints

The perception of the situation is expressed in constraints, these are used to select a method

for execution. These constraints are not restricted to observations only, they may also

contain parameters or any other expression. Call-back functions are provided for retrieving

(sensor) data representing the current situation. Section 5.1.1 shows how such a call-back

function can be used to extract high level data from a perception system such as a laser

range �nder. Additional internal state or global parameters can be monitored if variables

are used within these constraints. The risk level is such a global parameter in the Pandora

system.

Actions

Once a method is selected, its sequence of actions are executed. These actions may manip-

ulate variables, stack new goals, remove the current goal or call action call-back functions.

These call-back functions interact normally with the environment. In our case these func-

tions interface to the robot hardware. The example shows two call-back functions controlling

the robot: move() and setCon�guration(), also shown is the operator to remove the current

goal: goalReached() and the operator to stack a new (sub)goal: newGoal().

4.2.1 Template description

The templates are composed of the previous mentioned components are listed per goal. A

single goal can have one or more methods and may have an optional default method. There

is also an idle template which will be selected if the goal stack is empty and no new goals

are provided. The mandatory default template is selected when no method was found for

the current goal.

30

Methods

A priority list of methods for a goal contains at least a single method. If the goal corre-

sponding to these methods is considered to be volatile, the goal is stacked with a timeout

value. The execution engine must purge the stack up to and including the expired goal

when this value is exceeded. This feature is added to unstuck the system when it becomes

stuck in a loop.

As said before, every single method has an expression which is evaluated during ex-

ecution in order to determine if this method is to be selected for execution. When this

expression holds, the corresponding actions are executed. An asynchronous timeout inter-

val could be speci�ed for these actions.

A default method can be speci�ed for a particular goal. This default method will be

tried if no other method for this goal matches, but before the mandatory global default

method.

The following fragment shows the templates for our example in the proposed syntax.

TEMPLATES

move {

mapEval == MapIsClear :{

move();

GOAL_REACHED;

};

DEFAULT : {

NEW_GOAL(reconfigure);

NEW_GOAL(observe);

};

};

observe {

mapEval == SmallObstacleSuspected :{

setConfiguration(ObserveSmallObstacle2);

GOAL_REACHED;

};

DEFAULT : {

requestOperatorAssistance();

GOAL_REACHED;

};

};

reconfigure {

mapEval == SmallFlatObstacle :{

setConfiguration(SmallFlatObstacle4);

GOAL_REACHED;

};

DEFAULT : {

NEW_GOAL(observe);

};

};

IDLE: {

DEFAULT: {

31

NEW_GOAL(move());

};

};

DEFAULT: {

DEFAULT: {

fail();

};

};

END

4.2.2 Fault recovery

We mentioned before that action sequences could be guarded with a timeout. This feature

allows us to recover if this sequence can not be completed because of an error. The following

fragment shows how the original setCon�guration() command is guarded with a timeout for

20 seconds. In combination with a variable which is set within the guarded section, fault

detection can be done.

reconfigure {

lock == 1 : {

setConfiguration(SmallFlatObstacle1);

lock = 0;

GOAL_REACHED;

};

mapEval == SmallFlatObstacle : TIMEOUT(2.0E4) {

lock = 1;

setConfiguration(SmallFlatObstacle4);

lock = 0;

GOAL_REACHED;

};

DEFAULT : {

NEW_GOAL(observe);

};

};

The variable lock is initially zero, so the guarded sequence is executed and lock is set to

1. Because of an error, setCon�guration(SmallFlatObstacle4) does not return. After 20

seconds, this sequence is aborted and because lock is set to 1, an alternative con�guration

is tried.

In addition, the NEW GOAL operator can be given an extra timeout argument. This

timeout allows the execution engine to purge the stack up to and including the corresponding

goal. More opportunistic goals can now be abandoned after a certain period of time so that

the robot will not pursue a goal that can not be achieved. If for example the goal stack would

contain the goal returnToBase and on top of that the goal �ndPerson which was stacked

with an expire-time of 20 minutes. The robot could work on this goal for 20 minutes. If after

32

twenty minutes, this goal is still not reached, the stack is purged up to the returnToBase

base goal. The robot will now abandon its previous mission and return to base.

4.3 Execution engine

The Con�guration Selection System pursues the goal on top of the goal stack. The methods

as given in the speci�cation are used by the system to reduce the top goal. New goals from

the planner can only be received by the system if the goal stack is empty. As a safety

measure, goals on the stack can have an expire time. If this time expires the stack will be

purged up to and including the expired goal. This assures that the CSM will respond to

the planner regardless of the feasibility of the pursued goal. The main loop as described is

depicted in �gure 4-1.

Purge Stack

Retrieve
new Goal

Success

Fail

Push
new Goal

Execute active
Idle statement

Reduce
top of Stack

Stack
Empty

Y

N

Figure 4-1: The Con�guration Selection Module's main loop.

4.4 Interface

For the Con�guration Selection Module, support routines from the QNX real-time operating

system were used to keep track of the expire time and to communicate with the other

modules in the system. The timeout as used to safeguard an action sequence is constructed

33

around an asynchronous signal handler, so the guarded action sequence must be speci�ed in

such a way that no harm is done when this sequence is aborted regardless of its execution

boundary. New goals are received by the CSM on demand. When the goal stack is empty,

a signal is sent to the planning layer in order to retrieve a new goal. The CSM will not wait

inde�nitely until a new goal is received, but will timeout and execute the idle statements.

The actions as executed by the CSM can be terminated asynchronously by a timeout or by

the control layer, eg. the control layer detects that the motor current threshold is exceeded

and aborts the action. There is no direct feedback for such a failure. This imposes that

the input data as used in the expressions to select an action sequence for execution must

be coherent with the actual state of the world. So in the case that an action sequence is

aborted, the state change of the world (and robot) is used in the next cycle to select an

action sequence which recovers from the aborted sequence.

4.5 Implementation

Based on the described grammar, a compiler was build with the LEX and YACC tools.

This compiler generates the CSM implementation in C code from the speci�cation �le. It

also generates a header �le from the declarations as found in the speci�cation �le. These

declarations include the enumeration types, goal, observations, actions and variables. This

header �le also contains the public interface to the call-back and interface functions. These

two �les can then be compiled with a regular ANSI-C compiler into an executable.

4.6 Summary

The Con�guration Selection Module as described in the previous sections is generated from

a speci�cation. In this speci�cation, the action sequences are ordered per goal. The action

sequence with the highest priority is scheduled for execution if and only if the corresponding

selection expression is valid. Default action sequences and timeouts have been incorporated

to add fault tolerance. The goals are administrated by a stack. The goal on top of the stack

will be reduced according to the methods given in the speci�cation. If the stack is empty,

the CSM requests a new goal from the planner. If no new goal is available the CSM will

schedule the highest priority action statements with a valid expression as speci�ed in the

idle declaration. In order to recover from failure, the input as fed into the CSM must be

34

coherent with the actual world state so that a failure can be detected and an appropriate

method can be selected. This mechanism allows the control layer to abort a command

without any need for direct acknowledgement.

35

36

Chapter 5

Results

Experiments were conducted with the Pandora simulator and with the Nomadic Scout mo-

bile robot in order to validate the proposed architecture. The Scout was used to evaluate

the dynamic behaviour of the system, whereas the simulator was used to evaluate its appli-

cability.

5.1 Pandora Simulator

Before getting into the detailed description of the results, it is important to describe the

experimental setup that was used for validating the proposed architecture. The following

section describes therefore the features of the simulator. Also included are the results of

the experimental perception system after which the simulator's map evaluator was build.

This section is concluded with the results from the experiments done with this simulator.

5.1.1 Simulation model

The simulator is able to address the following functions: Motion of the robot on surfaces

represented by polygons can be simulated. The speed of the robot can be adjusted dynam-

ically. The con�guration of the robot can be changed by rotating the articulated treads to

the appropriate angles. Measurements from the laser line sensor can be simulated with a

realistic model of measurement error. Speci�cally, the measurement error is controlled by

the amount of error in detecting the line in the image, measured in pixels. The frequency

of measurement can be adjusted arbitrarily. In the experiments, the pixel noise was set to 1

and a 50ms sampling time was used. The accumulation of range data from the laser into a

37

local map is also simulated, as well as the scrolling of the local map as the vehicle advances.

Processing of the local map to evaluate navigability, and compute height and slopes of po-

tential hazards is also simulated. The map evaluator classi�es the data as found in the local

map and returns entities such as \no-obstacle", \
at-obstacle", \tall-obstacle", \stairs" etc.

If the evaluator lacks suÆcient data to classify the obstacle, it returns something like \
at-

obstacle-suspected". It is then up to the CSM to schedule an observation posture in order

to gather more data so that the evaluator can then con�rm this observation. An internal,

simulated time is maintained so that the order and frequency of occurrence of events over

time, e.g., range measurements, con�guration changes, etc. is correctly simulated. Also,

the computation time of the various components and their synchronization over time is

simulated. Because the simulator was intended only for validating some of the critical com-

ponents of the software architecture, it does not include a full three-dimensional model of

the robot and its kinematics. Also, it uses a simpli�ed model of physical interactions, such

as friction.

The laser range �nder and the map evaluator in the simulator are based on the results

from experiments with an experimental laser range �nder. Some of the results from these

experiments are presented here to show that the simulated model is valid. We refer to

the Pandora design document [RI98] for a more detailed description and the underlying

fundamentals. Figure 5-1 shows a sequence of images from a staircase which was scanned

by the laser range �nder with a 10cm distance interval.

Figure 5-1: Laser data on outdoor sequence of images of stairs; (upper) raw video images;
(lower) �ltered images for stripe detection.

38

The line is detected in the �ltered images, the position of the line in the image is then

used to calculate the range. The result of this operation is plotted in �gure 5-2. The map

evaluator extracts a feature curve from this data by plotting the elevation of the range data

for the direction of travel. Figure 5-3 is included to give an impression of the resolution and

accuracy of the system,

−0.2
−0.1

0
0.1

0.2
0.3

0

0.05

0.1

0.15

0.2
0.9

1

1.1

1.2

1.3

X (m)Y = Height (m)

Z
 =

 R
an

ge
 (

m
)

Figure 5-2: Three-dimensional view of the data from Figure 5-1 scans were obtained by
moving the sensor at intervals of 0.1m from 0.9m to 2.0m from the steps; the �gure shows
the 3-D location of the points measured on a 0.2m step.

Resolution Measured accuracy

0.5 0.75 1 1.25 1.5 1.75
0

0.005

0.01

0.015

0.02

0.025

Range (m)

R
es

ol
ut

io
n

(m
)

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.005

0.01

0.015

0.02

0.025

0.03

Range (m)

E
rr

or
 (

m
)

Figure 5-3: Laser range �nder resolution and accuracy.

Based on the results presented in this section, we can conclude that we can safely use the

Pandora simulator to test our architecture. The model as used by the simulator incorporates

a model for the locomotion system, obstacles, surfaces and an accurate sensor model which

was modeled after the results of data from experiments with a real laser range �nder.

39

5.1.2 Simulation results

The Con�guration Selection module was integrated with the simulator. The simulated

robot can only move forward in the x direction. As a consequence, there is no high level

planner available and the CSM will therefore only receive a move forward or stop command

in this simulation. The CSM used during the experiments was generated from the following

speci�cation:

Goal Constraint expression Action Sequence Method no.

move mapEval = MapIsClear move(),
goalReached() 1

default newGoal(recon�gure),
newGoal(observe) 2

observe mapEval = SmallObstacleSuspected & setCon�guration(ObserveSmallObstacle2),
riskLevel � Normal goalReached() 3
mapEval = SmallObstacleSuspected & setCon�guration(ObserveSmallObstacle1),
riskLevel � Careful goalReached() 4
mapEval = TallObstacleSuspected setCon�guration(ObserveTallObstacle),

goalReached() 5
default goalReached() 6

recon�gure mapEval = SmallFlatObstacle & setCon�guration(SmallFlatObstacle4),
riskLevel = Aggressive goalReached() 7
mapEval = SmallFlatObstacle & setCon�guration(SmallFlatObstacle2),
riskLevel = Normal goalReached() 8
mapEval = SmallFlatObstacle & setCon�guration(SmallFlatObstacle3),
riskLevel = Careful goalReached() 9
mapEval = SmallFlatObstacle & setCon�guration(SmallFlatObstacle1),
riskLevel = VeryCareful goalReached() 10
mapEval = TallFlatObstacle & setCon�guration(TallFlatObstacle1),
riskLevel � Normal goalReached() 11
mapEval = TallFlatObstacle & setCon�guration(TallFlatObstacle2),
riskLevel � Careful goalReached() 12
mapEval = LowSlopeObstacle & setCon�guration(LowSlopeObstacle3),
riskLevel = Aggressive goalReached() 13
mapEval = LowSlopeObstacle & setCon�guration(LowSlopeObstacle1),
riskLevel = Normal goalReached() 14
mapEval = LowSlopeObstacle & setCon�guration(LowSlopeObstacle2),
riskLevel � Careful goalReached() 15
default newGoal(observe) 16

default default requestOperatorAssistance() 17

With the generated CSM, the simulated Pandora was able to traverse all the cases as

speci�ed in the design speci�cation. Some of the traverses are shown in the �gures �gure 5-

4 to �gure 5-8. In 5-4, Pandora receives a move command. Because no obstacles are

detected, this command is immediately reduced and a move command is posted (method

1). It receives another move, but now the map-evaluator returns \SmallObstacleSuspected",

no match is made, so the default for this goal (method 2) is applied and two new sub goals

are stacked. This new goal is then reduced by method 4 and Pandora raises to sweep the

40

�eld of perception over the obstacle. The map evaluator has now enough information, and

returns a con�rmation of a \SmallFlatObstacle". Method 10 matches now and Pandora

recon�gures for attacking the obstacle. The obstacle is now traversed and a new goal is

requested which is as before reduced by method 1. For �gure 5-5 The beginning is the same,

a move is received and the sequence of applying the methods 1,2,3,7,1 results is Pandora

negotiating the same obstacle but now in an aggressive mode. In the next �gure (5-6),

Pandora is confronted again with a
at obstacle, but this time the obstacle is higher than

can be negotiated by the con�gurations used before. Based on the observed obstacle and the

careful risk level, the CSM selects now the methods 1,2,4,16,5,12. This sequence contains

two observation postures. The result of the �rst observation is still ambiguous, therefore a

di�erent observation posture is selected which yields the required information. If a more

aggressive mode is allowed, a di�erent observation pose is used which yields immediately a

con�rmation for the appropriate obstacle class. Finally, in �gure 5-8 the CSM applies the

sequence 1,2,3,14,1 of methods in order to negotiate a staircase in \normal mode".

The Con�guration Selection Module was not designed to be interfaced to the simulator,

nevertheless it was just a matter of providing the necessary call-back functions for retrieving

sensor data and sending motion commands. The methods as given previously were presented

to the compiler in the required syntax and compiled and linked together with the simulator

code. The resulting system was tested successfully in a variety of situations and parameters.

We experienced that generating a controller from a compact speci�cation is straightforward.

Nevertheless, the system needs to be tested on more complicated systems to evaluate its

true value.

41

0

4

8

12

16

24

28

32

36

20

40

44

48

52

Observation: All clear

Observation: Small Obstacle Suspected
Configuration: Observe Small Obstacle1

Configuration: Small Flat Obstacle1
Observation: Small Obstacle Confirmed

72

68

64

56

60

Time[s]

Observation: All clear

Figure 5-4: Pandora negotiating a small step in \very careful" mode.

42

0

2

4

6

8

10

12

14

16

18

20

Configuration: Observe Small Obstacle2

Observation: Small Obstacle Suspected

Observation: All clear

Observation: Small Obstacle Confirmed
Configuration: Small Flat Obstacle4

Time[s]

Observation: All clear

Figure 5-5: Pandora negotiating a small step in \aggressive" mode.

43

0

4

8

12

16

24

28

32

36

20

40

44

48

52

Observation: All clear
Observation: Small Obstacle Suspected
Configuration: Observe Small Obstacle1

Observation: All clear

60

64

56

Time[s]

Observation: Tall Obstacle Suspected
Configuration: Observe Tall Obstacle

Observation: Tall Obstacle Confirmed

Configuration: Tall Flat Obstacle2

Figure 5-6: Pandora negotiating a tall step in \careful" mode.

44

0

4

8

12

16

24

28

32

36

20

40

44

48

52

56

Observation: All clear
Observation: Small Obstacle Suspected
Configuration: Observe Small Obstacle2

Time[s]

Observation: Tall Obstacle Confirmed

Configuration: Tall Flat Obstacle2

Observation: All clear

Figure 5-7: Pandora negotiating a tall step in \aggressive" mode.

45

Configuration: Observe Small Obstacle2

Observation: All clear

0

2

4

6

8

10

12

14

16

18

24

22

20

Time[s]

Observation: All clear

Observation: Small Obstacle Suspected

Observation: Stairs Obstacle Confirmed
Configuration: Stair/Slope Obstacle1

Figure 5-8: Pandora negotiating a staircase in \normal" mode.

46

5.2 Nomadic Scout

The Nomadic Scout as shown in �gure 5-9 is obviously not con�gurable. The experiments

conducted with the Scout were focused on testing the responsiveness, recovery and fault

tolerance of the system. Instead of recon�guring the robot, the Scout would be given a

di�erent orientation.

Figure 5-9: The Nomadic Scout.

To simulate a similar architecture as proposed for the Pandora system, the Scout control

software architecture was build in 3 layers. The planning layer was simulated with a joystick

interface, the sequencing layer was provided by the CSM and the control layer provided

the interface to the Scout's sensors and actuators. Interfacing to the sensors was a bit

cumbersome due to the fact that the system does not support the array type, this problem

was circumvented by processing the sensor data outside the system and returning a more

abstract value to the system. The system was not adapted to incorporate more versatile

data types, because it is expected, and shown in the previous section, that the processed

data of the perception system can be represented with an enumeration type. The layered

architecture also incorporated a safeguarding system that would abort the current motion

command if the robot was very close to an obstacle or if the motor current exceeded a

prede�ned threshold. New goals were provided by the operator by means of the joystick.

The templates used to control the robot contain methods that depending on the desired

heading (goal) would generate the appropriate motion command. If an obstacle was present

in that direction, a new goal would be stacked on top of the stack which would lead to

reorienting the robot such that it was as close to the desired direction and not blocked by

obstacles.

47

From the experiments done we could draw the following conclusions. The o�-line compi-

lation of methods into a stack machine generated a controller that was capable of presenting

an output signal without any noticeable delay. When the Nomad was placed in a completely

blocked environment, it was not able to �nd a way out, therefore the stack was purged after

the goal's timeout expired and a default recovery method was then matched which asked

for operator assistance. In order to test some more fault recovery behaviour, the sampling

time was increased so that the robot could bump into an obstacle before detecting it. As

expected, the control layer would abort such an operation before the CSM would notice

the obstacle. In the next cycle, the CSM would detect this violation and would stack a

reorientation goal. Failure of a method can not always be detected, for example the case of

the timeout when the Nomad is trying to �nd a way out in a completely blocked environ-

ment is not detectable from sensor data only. This problem was solved by setting a variable

before executing such a method and resetting it after successful completion. The state of

this variable can then be used to trigger fault recover methods.

5.3 Summary

From the experiments we can conclude that a reactive controller architecture based on

action templates can be used to select con�gurations for a recon�gurable robotic system.

Although not tested with the real Pandora system, the proposed system seems to be capa-

ble to control such a recon�gurable robotic system in the real world. This assumption is

based on the positive results from both the experiments done with the Nomadic Scout and

the Pandora simulator. The experiments done with the Simulator validated the proposed

concept, whereas the experiments with the Scout provided data about the system's dynamic

behavior in the real world.

48

Chapter 6

Conclusion

This thesis describes a control architecture for recon�gurable robots. The system consists

of a compiler and an execution engine, which provides the coupling between the low level

control software and the high level planning software. A speci�cation is used by the compiler

to generate the robot dependent code. The execution engine uses a stack to administrate the

goals. The methods as found in the speci�cation are used to reduce the goals on the stack.

These methods consist of a selection criteria and an action sequence. An action sequence is

scheduled for execution if this selection criteria holds. The system makes no assumptions

about the actual robot, so it could be applied to any recon�gurable robot. The methods

are o�-line evaluated and the generated stack machine is therefore fast, the price that is

to be paid for this is that no methods can be added during execution, so it can not learn

or adapt. The speci�cation language is compact and not much code is needed to specify

the con�guration selection module. The generated C-code implementing the system can be

integrated by using the generated header-�les. The syntax of these interface functions is

very strict, which can be somewhat cumbersome.

This framework was tested with the Nomadic Scout robot and a 2D simulation of a

recon�gurable robot. The complementary result from these experiments give a strong in-

dication that the system will be capable to cope with a recon�gurable robotic system. In

order to validate the system for its true purpose, it needs testing on a recon�gurable robot.

Validation on other recon�gurable robots would be necessary to show show that the system

is generic. The research in bi-pedal walking robots at the Carnegie Mellon University will

pursue these goals.

49

50

Appendix A

Syntax diagrams

The language as depicted in the following syntax diagrams consists of two sections: the dec-

laration and the template de�nition section. The following sections describe these sections

in some more detail.

A.1 Declaration section

This section contains prototypes for the goals, observations and actions. It also contains an

enumeration type declaration and variable declaration. These prototypes are used for type

checking and the generation of the header �les.

Enumeration type de�nitions

The enumeration type declaration is provided to allow the usage of symbolic values for the

observation and action parameters. In our case, we use the enumeration type to label the

results from the map evaluator and the robot commands.

Goal prototypes

A goal declaration speci�es the identi�er token and has an optional argument declaration.

The argument list is provided to allow parametrized goals. The parameters provided when

a goal is pushed on the stack are available within the scope of the associated templates.

These arguments are especially useful for providing subgoals with data.

51

Observations and Action prototypes

These declarations are prototypes for the user de�ned call-back functions. The observation

functions are used to retrieve (sensor) data, whereas the action functions are primarily used

to change the current situation (command the robot).

A.2 Template de�nition section

The action templates are listed per goal. A single goal can have one or more methods and

may have an optional default method. There is also an idle template which will be selected

if the goal stack is empty and no new goals are provided. The mandatory default template

is selected when no method was found for the current goal.

Goal related Methods

A priority list of methods for a goal must contain at least a single method. If the goal

corresponding to these methods is considered to be volatile, the goal is stacked with a

timeout value. The execution engine will purge the stack up to and including the expired

goal when this value is exceeded. This feature is added to unstuck the system when it

becomes stuck in a loop.

Every single method has an expression which is evaluated during execution in order

to determine if this method is to be selected for execution. When this expression holds,

the corresponding actions are executed. As mentioned before an asynchronous timeout

interval could be speci�ed for these actions. An action sequence could also push new (sub)-

goals onto the stack with the NEW GOAL operator or remove the current goal with the

GOAL REACHED operator.

A default method can be speci�ed for a particular goal. This default method will be

tried if no other method for this goal matches, but before the mandatory global default

method.

52

templateSystem

�

Æ- ENUMERATIONS
�
Æ

�

- id- f

�
Æ
�

- id�

Æ ,
�
Æ
�

�

�

- g
�
Æ
�

- ;
�
Æ
�

�

Æ

�

�

�

�

Æ- GOALS
�
Æ

�

- id - (

�
Æ
�

- argDecl-)

�
Æ
�

- ;
�
Æ
�

�

Æ

�

�

�

Æ- OBSERVATIONS
�
Æ

�

- type- id - (

�
Æ
�

- argDecl-)

�
Æ
�

- ;
�
Æ
�

�

Æ

�

�

�

Æ- ACTIONS
�
Æ

�

- id- (

�
Æ
�

- argDecl-)

�
Æ
�

- ;
�
Æ
�

�

Æ

�

�

�

Æ�

Æ- VARS
�
Æ
�

 �

Æ- extern
�
Æ

�

�

- type- id- ;
�
Æ
�

�

Æ

�

�

�

�

Æ- TEMPLATES
�
Æ

�

�

Æ- id- f
�
Æ
�

 - expr- :

�
Æ
�

- actions�

Æ- DEFAULT
�
Æ

�

- :
�
Æ
�

- actions

�

- ;
�
Æ
�

�

Æ

�

- g
�
Æ
�

- ;
�
Æ
�

�

Æ

�

�

�

�

Æ�

Æ- IDLE
�
Æ
�

- :
�
Æ
�

- f
�
Æ
�

- expr- :
�
Æ
�

- actions�

Æ- DEFAULT
�
Æ

�

- :
�
Æ
�

- actions

�

- ;
�
Æ
�

�

Æ

�

- g
�
Æ
�

- ;
�
Æ
�

�

�

�

Æ- DEFAULT
�
Æ

�

- :
�
Æ
�

- f
�
Æ
�

- expr- :
�
Æ
�

- actions�

Æ- DEFAULT
�
Æ

�

- :
�
Æ
�

- actions

�

- ;
�
Æ
�

�

Æ

�

- g
�
Æ
�

- ;
�
Æ
�

- END
�
Æ
�

-

53

argDecl

�

Æ- type- id�

Æ
,

�
Æ
�

�

�

�

-

type

- id�

Æ- int
�
Æ
�

Æ- long
�
Æ
�

Æ- double
�
Æ

�

�

-

actions

- TIMEOUT
�
Æ

�

- (
�
Æ
�

- expr-)

�
Æ
�

- f
�
Æ
�

- action- ;

�
Æ
�

�

Æ

�

- g
�
Æ
�

�

Æ- f
�
Æ
�

- action- ;

�
Æ
�

�

Æ

�

- g
�
Æ
�

�

-

action

- id- (
�
Æ
�

�

Æ- expr�

Æ ,
�
Æ
�

�

�

�

-)
�
Æ
�

�

Æ- id- =
�
Æ
�

- expr

Æ- NEW GOAL
�
Æ

�

- (
�
Æ
�

- expr- :

�
Æ
�

�

Æ

�

- id - (
�
Æ
�

�

Æ- expr�

Æ ,
�
Æ
�

�

�

�

-)
�
Æ
�

-)
�
Æ
�

Æ- GOAL REACHED
�
Æ

�

�

-

54

expr

- expr- +
�
Æ
�

- expr�

Æ- expr- -
�
Æ
�

- expr

Æ- expr- *
�
Æ
�

- expr

Æ- expr- /
�
Æ
�

- expr

Æ- expr- &&
�
Æ
�

- expr

Æ- expr- ||
�
Æ
�

- expr

Æ- expr- ==
�
Æ
�

- expr

Æ- expr- !=
�
Æ
�

- expr

Æ- expr- <
�
Æ
�

- expr

Æ- expr- >
�
Æ
�

- expr

Æ- expr- <=
�
Æ
�

- expr

Æ- expr- >=
�
Æ
�

- expr

Æ- expr- ?
�
Æ
�

- expr- :

�
Æ
�

- expr

Æ- -
�
Æ
�

- expr

Æ- !
�
Æ
�

- expr

Æ- (
�
Æ
�

- expr-)

�
Æ
�

Æ- double

Æ- num

Æ- id

Æ- id- (
�
Æ
�

�

Æ- expr�

Æ ,
�
Æ
�

�

�

�

-)
�
Æ
�

Æ- id- =
�
Æ
�

- expr

�

-

id

- [A-Za-z]

�
Æ

�

�

Æ- [A-Za-z0-9]

�
Æ

�

�

Æ

�

�

-

num

- [0-9]

�
Æ

�

�

Æ

�

-

55

double

- [0-9]

�
Æ

�

�

Æ

�

�

Æ�

Æ- [0-9]

�
Æ

�

�

Æ

�

�

- .

�
Æ
�

- [0-9]

�
Æ

�

�

Æ

�

�

Æ- e

�
Æ
�

�

Æ- E

�
Æ
�

�

�

Æ- -

�
Æ
�

�

Æ- +

�
Æ
�

�

�

- [0-9]

�
Æ

�

�

Æ

�

�

�

-

56

Bibliography

[BK] R. Peter Bonasso and David Kortenkamp. Characterizing an architecture for

intelligent, reactive agents. Metrica Inc. Robotics and Automation Group NASA

Johnson Space Center,1996.

[BK96] R. Peter Bonasso and David Kortenkamp. Using a layered control architecture

to alleviate planning with incomplete information. In National Conference on

Arti�cial Intelligence (AAAI), 1996.

[Bro86] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE

Journal on Robotics and Automation, RA-2(1), 1986.

[Bro91] Rodney Brooks. Intelligence without representation. In Arti�cial Intelligence,

volume 47, pages 139{160, 1991.

[Con89] Jonathan Connell. A colony architecture for an arti�cial creature. Technical

Report 1151, Massachusetts Institute of Technology Arti�cial Intelligence Labo-

ratory, 1989.

[Con92] Jonathan Connell. "sss: A hybrid architecture applied to robot navigation. In

IEEE Conference on Robotics and Automation (ICRA), 1992.

[Fir89] R. James Firby. Adaptive Execution in Complex Dynamic Domains. PhD thesis,

Yale University, 1989.

[Gat91] Erann Gat. Alfa: A language for programming reactive robotic control systems.

In IEEE Conference on Robotics and Automation (ICRA), 1991.

57

[Gat92] Erann Gat. Integrating planning and reaction in a heterogeneous asynchronous

architecture for controlling mobile robots. In Tenth National Conference on Ar-

ti�cial Intelligence (AAAI), 1992.

[Gat94] Erann Gat. Behavior control for robotic exploration of planetary surfaces. In

IEEE Transactions on Robotics and Automation, volume 10, 1994.

[Gat97] Erann Gat. On three-layer architecture. Jet Propulsion Laboratory, 1997.

[HF90] Steve Hanks and R. James Firby. Issues and architectures for planning and exe-

cution. In DARPA Workshop on Innovative Approaches to Planning, Scheduling

and Control, pages 59{70, 1990.

[Kae87] Leslie Pack Kaelbling. Rex: A symbolic language for the design and parallel

implementation of embedded systems. In AIAA conference on Computers in

Aerospace, 1987.

[Kae88] Leslie Pack Kaelbling. Goals as parallel program speci�cations. In National

Conference on Arti�cial Intelligence (AAAI), 1988.

[Kae90] Leslie Pack Kaelbling. Specifying complex behavior for computer agents. In

DARPA Workshop on Innovative Approaches to Planning, Scheduling and Con-

trol, pages 433{438, 1990.

[Lat91] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,

1991.

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O'Reilly & Asso-

ciates, 1992.

[McD90] Drew McDermott. Planning reactive behavior: A progress report. In DARPA

Workshop on Innovative Approaches to Planning, Scheduling and Control, pages

450{458, 1990.

[McD91] D. McDermott. A reactive plan language. Technical Report 864, Yale University,

Department of Computer Science, 1991.

[NG96] Illah R. Nourbakhsh and Michael R. Genesereth. Assumptive planning and exe-

cution: A simple, working robot architecture. Autonomous Robots, 3:49{67, 1996.

58

[Nil80] Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga, Palo Alto, 1980.

[Nom97] Nomadic Technologies inc., Mountain View, CA. Language Reference Manual,

1997.

[Pay86] David W. Payton. An architecture for re
exive autonomous vehicle control. In

Robotics Automation, pages 1838{1845, 1986.

[RI98] The Robotics Institute. Pandora: A robotic system for operations in urban envi-

ronments. Carnegie Mellon University, 1998.

[RK95] Stanley J. Rosenschein and Leslie Pack Kaelbling. A situated view of representa-

tion and control. Arti�cial Intelligence, 73, 1995.

[RP89] J. Kenneth Rosenblatt and David W. Payton. A �ne-grained alternative to the

subsumption architecture. In AAAI Stanford Spring Symposium Series, 1989.

[Sim90] Reid Simmons. An architecture for coordinating planning, sensing and action. In

DARPA Workshop on Innovative Approaches to Planning, Scheduling and Con-

trol, pages 292{297, 1990.

59

