
Decentralized Coordinated Motion for a Large Team of Robots
Preserving Connectivity and Avoiding Collisions

Anqi Li, Wenhao Luo, Sasanka Nagavalli, Student Member, IEEE, Katia Sycara, Fellow, IEEE

Abstract— We consider the general problem of moving a large
number of networked robots toward a goal position through
a cluttered environment while preserving network communica-
tion connectivity and avoiding both inter-robot collisions and
collision with obstacles. In contrast to previous approaches
that either plan complete paths for each individual robot in
the high-dimensional joint configuration space or control the
robot group as a whole with explicit constraints on the group’s
boundary and inter-robot pairwise distance, we propose a novel
decentralized online behavior-based algorithm that relies on the
topological structure of the multi-robot communication and
sensing graphs to solve this problem. We formally describe
the communication graph as a simplicial complex that enables
robots to iteratively identify the frontier nodes and coordinate
forward motion through the sensing graph . This approach
is proved to automatically deform robot teams for collision
avoidance and always preserve connectivity. The effectiveness
of our approach is demonstrated using numerical simulations.
The algorithm is shown to scale linearly in the number of
robots.

I. INTRODUCTION

Networked decentralized multi-robot systems employ local
communication and collaborative decision making to carry
out a wide variety of large-scale applications such as search
and rescue [1], exploration of unknown environments [2] and
environmental sampling [3]. In real-world applications, how
to guide the large-scale robot team towards goal regions faces
several challenges. First, the system should be safe, in that
the robots should not collide with one another or obstacles in
the environment. Second, the robots should remain connected
while coordinating. Third, the system should be scalable as
the number of robots grows.

We study the problem of the coordinated motion of a large
group of robots towards a goal region in a decentralized
manner through a cluttered environment that contains narrow
corridors and static obstacles, while avoiding collisions and
ensuring connectivity. We propose to employ the topological
structure of the multi-robot communication and sensing
graphs to compute the robots’ incremental movements at
each time step so as to reduce the navigation complexity. This
allows for interleaving planning and execution that naturally
captures the changing graph topology of the moving robot
team and restricts robot movements to preserve connectivity
and avoid collisions in unknown environments.

This research has been sponsored in part by ONR Grant N0001409-
10680, an NSERC PGS D scholarship and a Siebel Scholarship.

*The authors are with the Robotics Institute, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. Email:
{anqil1, wenhaol, snagaval}@andrew.cmu.edu,
katia@cs.cmu.edu.

There has been extensive work on navigating multiple
robots from an initial to a final region, such as multi-robot
path planning [4]–[7] and swarm control [8]–[13]. In multi-
robot path planning approaches, the entire paths for each
individual robot connecting explicitly pre-defined starting
configurations to goal configurations are computed either
in high-dimensional joint configuration space [4], [5] or in
a decentralized manner [6], [7]. However, planning-based
approaches usually either scales poorly to large-scale robot
teams [1], or required star-shaped communication graph [6],
[7], which is not realistic for large groups of robots.

Swarm control focuses on robots’ distributed incremen-
tal movements governed by predefined control laws to-
wards the goal region such as flocking strategy [8]–[10]
or formation control [11]. To avoid inter-robot collisions
and maintain connectivity, auxiliary controllers that handle
these constraints are usually combined into frameworks of
swarm control. For example, bio-inspired strategies embed
virtual repulsive force to achieve collision free movements
while preserving inter-robot connectivity via attraction forces
[10]. Other work seeks to apply control laws on algebraic
connectivity in order to maintain global connectivity [14],
[15]. However, in the presence of obstacles, merging these
conflicting constraints into a single framework could easily
lead to deadlock when guiding a large number of robots
through a narrow corridor as mentioned in [13].

In this paper, we propose a novel decentralized and
behavior-based approach for a large group of robots moving
in unknown environments with obstacles. Our approach deals
with all of the aforementioned challenges at the same time.
Inspired by [16] that drives robots for sensor coverage
based on simplicial complex from algebraic topology [17],
we reduce our problem dimension by formally describing
the communication graph of the robot team as simplicial
complex that provides feasible frontier nodes for computing
robots’ incremental motions. The resulting lattice-formation
motion pattern in free space is similar with [8], [9] where
the inter-robot collision and connectivity are implicitly con-
sidered, but note that we are not explicitly specifying the
parameters of the rendezvous-like lattice formation as done
in [8], [9]. In our approach only a subset of the robots
move at each time step, hence the robots form a lattice
band formation as is shown in Figure 3. The lattice band
will autonomously deform according to the obstacle-filled
environment. We prove that (a) the robots will never lose
connectivity or collide with one another or obstacles during
moving, and (b) the motion strategy is robust to insertion
and failure of individual robots.

II. BACKGROUND

A. Basic Notations

Consider a multi-robot system consisting of N homoge-
neous robots in a cluttered space W ⊆ Rd, where d ∈ {2, 3}.
Each robot has its own unique identifier (UID). For simplicity
of exposition and without loss of generality, we assume
that the robot UIDs are i ∈ {1, 2, . . . , N}. For each robot
i ∈ {1, 2, . . . , N}, the position of the robot is given by
qi ∈ W . We consider the task of moving the robots from
an initial position to a region centered at a goal position G.

Each robot is assumed to be equipped with an omni-
directional range sensor which can identify whether a point
within its sensing radius Rs is occupied or not. Each robot
can also interact with other robots within its spatial proximity
through local communication and sensing. The communi-
cation graph and sensing graph of the multi-robot system
are defined as Gc = (V, Ec) and Gs = (V, Es) respectively,
where each node in V represents a robot. Two robots i and
j can communicate if and only if the distance between them
is less than or equal to the communication radius Rc (i.e.
‖qi − qj‖ ≤ Rc ⇔ (i, j) ∈ Ec). Two robots i and j can
sense each other (i.e. (i, j) ∈ Es) if and only if (1) the
distance between them must be less than or equal to the
sensing radius Rsen and (2) there is no objects (e.g. obstacles
and robots) on the line between robot i to robot j. We assume
that Rc = Rs = R. It is easy to see that (a) both the
communication graph and sensing graph are undirected, and
(b) the sensing graph is a subgraph of the communication
graph, due to the possible presence of obstacles that prevent
robots from seeing some of their neighbors (see Figure 1).

Fig. 1: Communication graph and sensing graph of six robots with an
obstacle (brown). Note that the edges in the communication graph (both
solid and dashed grey segments) are not the same as edges in sensing graph
(solid grey segments only), since all six robots can communicate with each
other but two of them cannot see each other due to the obstacle.

B. Vietoris-Rips complex

The Vietoris-Rips simplicial complex [17] represents the
topology of the communication graph for the robots. A k-
simplex in a Vietoris-Rips complex R is formed by a subset
of (k+1) points where each pair of points in the subset has
distance of at most R (i.e. the communication and sensing
radius). We denote the set of all k-simplices as Rk. For a
d dimensional space, we will construct up to d-simplices.
Therefore, R = R0 ∪ R1 ∪ . . . ∪ Rd. Specifically, a 0-
simplex is each individual robot; a 1-simplex is constructed
between two robots if the distance between them is less than
the communication radius R; a 2-simplex is formed by a

triple of robots that can all communicate with each other.
In case of 3 dimensional space, we will further construct
3-simplices for quadruples of robots in the same manner.

Definition 1: A (d − 1)-simplex formed by set of points
X is a fence simplex in d dimensional space if all the point
x′ that form a d-simplex with X are on the same side of the
hyperplane defined by X . For example. in Figure 2, {7, 8}
is a fence 1-simplex because there is only one point, 9, that
forms a 2-simplex with {7, 8}, while {3, 4} is not a fence
1-simplex because {2, 3, 4} and {3, 4, 5} are all 2-simplices,
and robots 2 and 5 are on different sides of {3, 4}.

Definition 2: A frontier candidates subcomplex F is the
subcomplex consisting of all fence (d− 1)-simplices.

Definition 3: A degenerate frontier candidates subcom-
plex F∗ is the subcomplex consisting of all k-simplices, with
0 ≤ k ≤ d− 2, such that it is a fence simplex when all the
points are projected onto a k + 1 dimensional space.

Fig. 2: Vietoris-Rips complex formed by 10 robots in 2 dimensional space.
0 -simplices (blue points) are formed by each individual robot. 1-simplices
(gray lines) are constructed between two robots if the distance between them
is less than the communication radius R, which is the same as edges in the
communication graph. 2-simplices (blue triangles) are formed by a triple of
robots that can all communicate with each other

III. APPROACH OVERVIEW

We assume that both the communication graph and sensing
graph are connected in the initial configuration. Inspired by
[16], in our approach, only a subset of robots moves in each
step. At each time step, a new desirable unoccupied position,
called the frontier node (see Section III-B) and tail robot (see
Section III-C) for the robot team is chosen. Subsequently,
a shortest path from the tail robot to the frontier node is
found in a decentralized manner (see Section III-D). Then,
a “push” action is performed along the path, i.e. each robot,
starting with the robot closest to the frontier node moving
into its position, moves one position to occupy the forward
position along this path that was vacated by the previous
robot moving along the path. By moving in this pattern, most
of the communication and sensing graph do not change each
step except for the part associated with the frontier node and
tail robot. An illustration of this motion pattern is shown in
Figure 3.

Note that since we select the frontier node, tail robot and
plan path using changed communication and sensing graph
for each time step, our algorithm is inherently robust to
failure and insertion of individual robot, as well as change
of goal position.

(a) (b)

Fig. 3: Motion pattern of the robots over sensing graph (grey edge). (a)
Frontier node (grey) and tail robot (robot 15) are chosen. The shortest path
from tail robot to frontier node is 15 → 14 → 11 → 13 → 12 → 3 →
4 → Frontier Node. (b) Each robot moves to occupy the forward position
that was vacated by the previous robot moving along the path, with robot
4 moving to the frontier node.

In our approach, each robot i has a stepwise goal position,
denoted as gi, which can be the position of frontier note,
forward position along its path or same as the robot’s current
position qi. We assume that there is a low level controller
(PD controller, for example) that can drive the robot to the
stepwise goal position during that time step.

For each step, each of the sub-algorithms (stages) is run in
a decentralized and asynchronous way, and ends implicitly
when there is no message sent regarding to that particular
stage. Therefore, we introduce a pre-defined time limit for
each of the stage s as TL,s. Each robot measures how long
there have been no message received during a stage s. If the
time exceeds TL,s, the robot will decide the current stage
is over, and start to send message for the next stage s +
1. When a robot at stage s receives a message belonging
to the stage s + 1, it switches its current stage to s + 1,
and start the procedure for the new stage. Since each of the
sub-algorithm is asynchronous, any of the robots can initiate
the next stage, and each of the sub-algorithms can converge
to the correct results. Therefore, each of our sub-algorithms
is decentralized, and no global information is needed when
switching between stages, this provides scalability.

A. Decentralized Construction of Simplicial Complex

Algorithm 1 describes how each robot calculates its local
simplicial complex (only the simplicial complexes that in-
clude itself) in a decentralized manner. This makes our work
different from [16], which calculates the simplicial complex
for the multi-robot system in a centralized way. As discussed
in Section II-B, Rk denotes the set of all k-simplices.

At the beginning, all the set for simplices is initialized
to the empty set, except R0 = {u} (line 2). Then, the
asynchronous procedure is initiated by each robot sending a
message to all of its direct neighbors (line 4). The parameters
for SENDMSG(i, u, . . .) are defined as follows, i is the target
of the message, u is the source of the message, and others
are the content of the message. Similar is RECVMSG(u, . . .),
but there is no parameter for the target.

After that, the algorithm calculates the simplicial complex
of each robot i and its direct neighbors (line 6-28). First,

when a message is received from u’s direct neighbor u′ for
the first time (line 9-11), the UID of u′ is added to the local 0-
simplices list, and the the pair of robot u and u′ are added to
1-simplices list. Then robot u sends a message to its neighbor
with the updated local simplicial complex.

Then, the algorithm constructs the local 2-simplices (and
3-simplices in 3 dimensional cases). The algorithm starts by
calculating the union of sets of 0-simplices for robots u, and
u′, which is the set of their common neighbors denoted as S
(line 14). For k range from 2 up to d, for each subset of S
consisting of k robots Sk, the algorithm checks whether all
k subset of robots Ck−1 in Sk is within Rk−1 (line 16-21).
If so, it means that Sk can form a k-simplices complex,
since the distance between each pair of robots is within
communication radius. For example, if {i, l} and {j, l} are
in the 1-simplices list for robot i, and robot j, respectively,
then {i, j, l} should be a 2-simplex in R2 of both robot i, j,
and l. If the simplicial complex is updated when processing
the message, then the robot will send a message to all of its
neighbors (line 23-27).

We note that our algorithm works in an asynchronous way,
that is, our method only requires pairwise communication
between robots, and the order of robots receiving messages
do not matter. Our algorithm will end implicitly when each
robot u constructs all the simplices that contain the robot u.

Algorithm 1 Decentralized Local Simplicial Complex Con-
struction Procedure
1: procedure DECENTRALIZEDSIMPLICIALCOMPLEX(u,Nu)
2: R0 ← {u}.R1 ← ∅, . . ., Rd ← ∅
3: for all i ∈ Nu do
4: SENDMSG(i,u,R0,. . .,Rd)
5: end for
6: while {u′,R′0, . . . ,R′d} ←RECVMSG() do
7: // Construct local 0 and 1 simplices
8: if {u, u′} /∈ R1 then
9: R0 ←R0 ∪ {u′}

10: R1 ←R1 ∪ {u, u′}
11: SENDMSG(i,u,R1,. . .,Rd)
12: end if
13: // Construct local 2 to d-simplices
14: S ← R0 ∩R′0
15: for k = 2, . . . , d do
16: for all Sk ⊆ S with |Sk| = k + 1 do
17: Ck−1 ← {S ⊂ Sk : |S| = k}
18: if Ck−1 ⊆ Rk−1 then
19: Rk ←Rk ∪ Sk
20: end if
21: end for
22: end for
23: if R0,. . .,Rd is updated then
24: for all i ∈ Nu do
25: SENDMSG(i,u,R0,. . .,Rd)
26: end for
27: end if
28: end while
29: end procedure

B. Decentralized Selection of the Frontier Node

For a given fence, we define a virtual node as a node that
is located in the outer side of the fence and its distance to
all the robots that form the fence is R − δ, where δ is a
tunable positive number. We choose the fence based on (1)

whether its corresponding virtual node is visible to a least
one of the robots forming the fence, and (2) the distance
between the virtual node candidate and the goal. We call the
procedure of calculating the virtual node corresponding to
a fence candidate as extending the fence candidate. We will
describe the procedure of selecting the frontier node, namely
the most desirable node that will be the head of the path that
the robots will follow.

First, each robot calculates its local fence candidates,
i.e., the fence (d − 1)-simplices that include the robot. By
definition of a fence, a (d−1)-simplex is a fence candidate if
either there is no d-simplex that has that (d− 1)-simplex as
a boundary, or all the robots that are in d-simplex but not in
the (d−1)-simplex lie in the same side of the (d−1)-simplex
hyperplane. Selecting a fence candidate can be done by each
robot without any communication. The robot iterates all the
(d− 1)-simplices and selects the fence whose distance from
the goal is smallest. In the fence candidate list, there may be
fences that are part of the fence set of an internal hole. Since
the selection criterion for the best fence, the frontier fence,
is smallest distance from the goal, a fence that is part of a
border of an internal hole will not be selected as a fence to
be expanded.

After selecting local fences, each robot extends it by
calculating their corresponding virtual nodes. The virtual
node and the selected (d − 1)-simplex fence form a d-
simplex. Since the robots are desired to move in a lattice
formation, the position of the virtual node is calculated to be
equidistant from each of the robots in the fence (see Figure
3). Some fences may not be able to be expanded for a variety
of reasons: (a) the existence of obstacles on the estimated
position of a virtual node, (b) the virtual node position is
not visible for robot, that is, robot can not go straight into
that position because of the existence of obstacles on its
way. For all the fences that can be expanded, the position of
virtual node and its distance to the goal is calculated. Then,
the robots initialize its belief of best fence to be the one
whose corresponding virtual node is nearest to the goal.

Then, the fence with virtual node nearest to the goal, the
frontier fence fmin, is selected in a decentralized way. That
is, when a robot u receives a message from its neighbor
u′ containing its belief of frontier fence, its corresponding
frontier node, and distance from the frontier node to the
goal, it calculates whether the frontier fence and node in
u′’s message is closer to the goal than its own (u’s) best
fence and virtual node, robot u updates its belief and sends
a message with this update to its direct neighbors. Finally,
every robot will reach a consensus about the best fence, the
frontier fence and corresponding frontier node for this step.

The final selected frontier node is the “head” of the path
that the robots will be following.

Definition 4: The extended sensing graph is Ge =
(Ve, Ee), where Ve is the union of nodes in sensing graph
V and frontier node f , Ee is the union of edges in sensing
graph Es and (f, v) for any node v in the best fence simplex
Fmin such that f is visible to v.

C. Decentralized Tail Robot Selection

After the frontier node has been selected, our algorithm
selects a robot as the tail of the path to the frontier node. As
is illustrated in Figure 3, the edges associated with the tail
robot will be removed for next time step. Therefore, naive
tail robot selection criteria that are based only on the distance
to goal do not preserve the connectivity of the robots. Figure
4 illustrates an example that such naive criteria to select tail
robot cause the robots to become disconnected. However,
directly identifying whether removing an edge can cause the
graph to be disconnected requires centralized information so
it is not appropriate for our decentralized framework.

Algorithm 2 Decentralized Tail Robot Selection
1: procedure DECENTRALIZEDTAIL(u,qu,Nu,f ,G)
2: if u ∈ Fmin ∧ (qu, f) ∈ E ′e then
3: h← 1, m← 0
4: else
5: h←∞, m← i
6: end if
7: for all i ∈ Nu ∧ (qu, qi) ∈ Ee do
8: SENDMSG(i,u,h)
9: end for

10:
11: // Construct a spanning tree rooted at the frontier node
12: while {u′, h′} ←RECVMSG() do
13: if h > h′ + 1 then
14: h← h′ + 1, m← u′

15: for all i ∈ Nu ∧ (qu, qi) ∈ Ee do
16: SENDMSG(i,u,h)
17: end for
18: end if
19: end while
20:
21: // Find the leaf robot that is deepest in the tree
22: tid← u, th← h, td← ‖G− qu‖
23: for all i ∈ Nu do
24: SENDMSG(i,u,tid,thop,tdist)
25: end for
26: while {u′, t′id, t

′
hop, t

′
dist} ←RECVMSG() do

27: if thop < t′hop then
28: tid ← t′id, thop ← t′hop, tdist ← t′dist
29: for all i ∈ Nu do
30: SENDMSG(i,u,tid,thop,tdist)
31: end for
32: else if thop = t′hop ∧ tid 6= t′id then
33: if tdist < t′dist then
34: tid ← t′id, tdist ← t′dist
35: for all i ∈ Nu do
36: SENDMSG(i,u,tid,thop,tdist)
37: end for
38: end if
39: end if
40: end while
41: end procedure

Our algorithm presented in Algorithm 2 uses a decen-
tralized way to select a tail robot such that (a) its deletion
does not harm the connectivity of the graph, and (b) the
constructed path with the frontier node as head has minimal
length.

Therefore we develop an algorithm that implicitly con-
structs a hop-optimal spanning tree [18] (line 3-19). Algo-
rithm 2 is initiated by one or several robots in the best fence
Fmin that can sense the frontier node f (in other words,
robots v suh that (v, f) is an edge in the extended sensing

graph Ee). The spanning tree provides two advantages: (1)
since removal of any leaf of the spanning tree does not harm
the connectivity of the graph (proven in Section IV), we can
choose a leaf in the spanning tree as the tail robot, (2) due to
the hop-optimality of the spanning tree, a shortest path from
the tail robot to the frontier node is exactly the path from
the tail robot (leaf) to the frontier node in the spanning tree.

(a) (b)

Fig. 4: A case where naive criteria for tail robot selection fails to preserve
connectivity. (a) The shortest path from a naively selected tail robot (robot
12) to the frontier node. (b) Selecting robot 12 as tail robot causes the robots
to become disconnected at the next time step.

Another important remark about our procedure of con-
structing the spanning tree is that each robot does not know
the structure of the spanning tree, it is only aware of its
master m (parent) in the spanning tree, and the number of
hops (h) between it and the root.

Then, based on the idea that the deepest node in a tree
is always a leaf, the algorithm starts finding the robot that
has the deepest hop (line 22-40). At the beginning, each
robot believes itself to be a leaf, with tail robot id tid = u,
tail robot hop number thop = h, tail robot distance to goal
position tdist = ‖G − qu‖. If the robot receives message
indicating that (1) another robot is deeper than its current
belief of tail robot (line 27) or (2) another robot is equally
deep as its current belief but it is further from the goal (line
33), it will update its belief, i.e., it will not consider itself as
leaf anymore, and send a message to its neighbors.

D. Plan Path from Tail to Frontier Node

At the beginning of this sub-algorithm, the stepwise goal
positions for robots are initialized as the robots’ current po-
sitions. After the path from the tail robot to the frontier node
has been generated (as described in the previous sections), if
the tail robot is further away from the goal than the frontier
node, the tail robot will first set its goal position for this time
step to be the position of its current (spanning tree) master
and send a message to its master. When a robot receives a
message, it means that it is on the path, and should move
to its master’s position in this time step. It will then send a
message to its own master until the robot actually occupies
the frontier node (head of the path). In this way, each robot
will move towards its stepwise goal position for this time
step (see Section 3).

If the tail robot is closer to the goal than the frontier node,
however, the robots will not move along the path because it
will cause the robot to move further away from the goal.
This makes our algorithm terminate implicitly and achieve a
rendezvous-like behavior near the goal.

E. Handling Corridors

Even though the lattice formation can handle most of the
situations in cluttered spaces, there may be cases where a
corridor is so narrow that the lattice can not be fully expand,
and therefore there will be no frontier fence to be expanded
(for example, Figure 5). In that case, we have to identify
whether the robots are stuck at the opening of a narrow
corridor. This can be done by using the idea of a degenerate
fence discussed in Section II-B when the frontier node is
further from goal than the tail node.

(a) (b)

Fig. 5: Handling corridors. (a) The frontier node is selected as the virtual
node expanded by {8, 9}. The tail robot is selected as robot 3. However,
the tail robot is closer to the goal than the frontier node. (b) Our algorithm
moves on the expand the degeneralized frontier, and drives the robot through
the corridor.

In Figure 5a, for example, the frontier node is selected
as the virtual node expanded by {8, 9}. The tail robot
is selected as robot 3. However, robot 3 is closer to the
goal than the frontier node. So our algorithm moves on
to expand a degenerate frontier. For each degenerate fence,
we choose a virtual node that is nearest to the goal as is
shown in Figure 5b, and select the degenerate frontier and
its corresponding degenerate frontier node with the same
procedure as described in Section III-B. Then, the path
planning stage is the same as in previous sections.

IV. PROOF OF GUARANTEES

Theorem 1: (Collision Free Guarantees) We assume that
a robot can only sense a point if and only if there is no
obstacle or robot sitting on the path between it and a certain
point within its sensing radius. If the obstacles are all static,
then our algorithm can guarantee that the robots will not
collide with other robots or obstacles during locomotion.

Proof: Only a subset of robots which forms a path
in the extended sensing graph Ge is selected to move at
each time step. Therefore, (1) the path from the robot to
its master is clear, and (2) the step-wise goal position is
either being vacated by its master (for the robots not moving
to the frontier node), or is free throughout the step (for the
robot moving to the frontier node). Therefore, the movement
does not result in any inter-robot collision or collision with
obstacles.

Theorem 2: (Connectivity Guarantees) If the communica-
tion and sensing graph are connected in the initial configura-
tion, then the communication and sensing graph will remain
connected throughout moving.

Proof: Consider the spanning tree, T , which we con-
structed implicitly in Algorithm 2 for the extended sensing
graph Ge = (V, Ee). We define the graph G′e induced by Ge
deleting a leaf node v of spanning tree T and its associated
edges. It is easy to see that Ge is a spanning subgraph of the
sensing graph for the next step. Therefore, if G′e is connected,
then both the sensing graph and the communication graph
is connected for the next step. By induction, we can prove
that if initially connected, Gc and Gs will stay connected
during moving. We prove that the graph G′e is connected
by constructing a tree T ′ which is proved to be a spanning
tree of G′e. Construct T ′ by deleting v and its associated edge
(there is only one such edge) from the spanning tree T . Since
v is a leaf of T , T ′ is a connected tree. According to the
definition of the spanning tree, T contains vertices Ve and
edges ET ⊆ Ee, and T is connected. Therefore, T ′ contains
vertices Ve\{v} and edges ET \{{v, n} : n ∈ V}. Therefore,
T ′ is a spanning tree of G′e.

V. SIMULATION RESULTS

In this section, we illustrate the performance of our
algorithm by simulations in 2 dimensional scenarios. In the
simulation, the communication radius and sensing radius are
R = 10. Each robot has circular body with radius r = 1.
In initial configuration, the robots are arbitrarily placed in a
region centered by a starting position (0, 0). The objective of
the robots is to move to a goal region centered at (150, 250).

Figure 6 illustrates our algorithm in a challenging scenario
with 35 robots. A large portion of the area is occupied by
obstacles and there is also a narrow corridor that does not
allow robots to pass in a lattice band formation. Figure 6a
shows the initial configuration of the robots, where robots are
placed near the starting point. Please note that the robots are
not necessarily in a lattice formation initially. Then the robots
start moving to a lattice band formation by extending frontier
fences (Figure 6b). As is shown in Figure 6c, the lattice
band deforms when encountering obstacles. Then the robots
gather at a corner before passing through the corridor (Figure
6d). After that, robots start passing through the corridor
by extending the degenerate frontier fence, i.e., the robots
move in a broken line formation when passing through the
corridor (Figure 6e). After passing the corridor, the robots
autonomously re-form the lattice band. Subsequently, the
robots start gathering near the goal position (Figure 6g).
Figure 6h shows the final configuration of the robots. The
robots succeed in achieving a rendezvous-like behavior in a
finite number of steps, even with the existence of an obstacle
near the goal position.

To show the scalability of our algorithm, we tested our
algorithm with different numbers of robots ranging from 20,
35, 50 to 100. We also tested our algorithm with 50 robots
on 3 different maps: (a) obstacle-free map, (b) low density
map with relatively small portion (10%) of area occupied
by obstacles, and (c) high density map with relatively high
portion (30%) of area occupied (this map is shown in Figure
6). All cases are tested under the same starting and goal
positions as is shown in the map. For each of the settings,

there are 10 trials with different initial configurations near
the same starting point. The average computational time in
seconds, average number of messages for each robot per
step, and number of steps to reach goal region is shown
in Figure 7. All the three properties grows linearly as the
number of robots increases. Moreover, map density does not
have significant influence on average number of messages.
However, the average computational time increases by a
constant as the map density increases. One possible reason
is that the computational time for collision check for obsta-
cles increases as the number of robots increases. This also
matches the constant increase and the invariance of message
numbers. Number of steps to converge to goal configuration
also increases by a constant as the map becomes denser. This
occurs because the distance that the robots have to travel to
the goal increases as the map becomes denser.

VI. CONCLUSION

In this paper we present a decentralized algorithm for
moving large teams of robots through a cluttered environ-
ment. The algorithm has multiple advantageous properties:
(a) it scales linearly in the number of robots, (b) it enables
robot teams to deform flexibly considering the incrementally
sensed obstacles in the environment, (c) it achieves simulta-
neously collision avoidance and connectivity preservation,
and (d) it is robust to insertion or failure of individual
robots. Key performance with respect to the average num-
ber of messages, average computational time and average
number of time steps to converge on different scale of robot
teams in maps with different obstacle density levels were
demonstrated in simulations to validate the effectiveness and
scalability of the proposed algorithm.

REFERENCES

[1] H. Wang, A. Kolling, N. Brooks, S. Owens, S. Abedin, P. Scerri,
P.-j. Lee, S.-Y. Chien, M. Lewis, and K. Sycara, “Scalable target
detection for large robot teams,” in Proceedings of the 6th international
conference on Human-robot interaction. ACM, 2011, pp. 363–370.

[2] J. Butzke and M. Likhachev, “Planning for multi-robot exploration
with multiple objective utility functions,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 3254–
3259.

[3] W. Luo , S. S. Khatib, S. Nagavalli, N. Chakraborty, and K. Sycara,
“Distributed knowledge leader selection for multi-robot environmental
sampling under bandwidth constraints,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2016.

[4] S. Swaminathan, M. Phillips, and M. Likhachev, “Planning for multi-
agent teams with leader switching,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
5403–5410.

[5] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[6] W. Luo, N. Chakraborty, and K. Sycara, “Distributed dynamic priority
assignment and motion planning for multiple mobile robots with kin-
odynamic constraints,” in 2016 American Control Conference (ACC).
IEEE, 2016, pp. 148–154.

[7] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-
agent teams with complex constraints,” Autonomous Robots, vol. 32,
no. 4, pp. 385–403, 2012.

[8] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Transactions on automatic control, vol. 51,
no. 3, pp. 401–420, 2006.

[9] G. Antonelli, F. Arrichiello, and S. Chiaverini, “Flocking for multi-
robot systems via the null-space-based behavioral control,” Swarm
Intelligence, vol. 4, no. 1, pp. 37–56, 2010.

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(a) step 1

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(b) step 16

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(c) step 40

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(d) step 64

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(e) step 67

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(f) step 79

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(g) step 105

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

(h) step 115

Fig. 6: Snapshots of a group of 35 robots (blue circles) moving from initial configuration (step 1) toward the goal position (red circle). The robots implicitly
move in a lattice band formation, pass though corridors, and achieve a rendezvous behavior around goal position (step 115).

Number of Robots
20 35 50 100

A
v

er
ag

e
N

u
m

b
er

 o
f

M
es

sa
g

es

60

80

100

120

140

160

180

200

220

Obstacle-Free Map
Low Density Map
High Density Map

(a)

Number of Robots
20 35 50 100

A
v
er

ag
e

C
o
m

p
u
ta

ti
o
n
al

 T
im

e

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Obstacle-Free Map
Low Density Map
High Density Map

(b)

Number of Robots
20 35 50 100

N
u

m
b

er
 o

f
S

te
p

s
to

 A
ch

ie
v

e
G

o
al

60

80

100

120

140

160

180

200

Obstacle-Free Map
Low Density Map
High Density Map

(c)

Fig. 7: Simulation results for a group of 20, 35, 50 and 100 robots in three 2-dimendional maps with different density level (10 trials each). The average
number of messages, average computational time and number of steps to achieve goal all scale almost linearly. Map density variance causes approximately
constant difference for computational time and number of steps as the number of robots grows, but does not have significant influence on the average
number of messages.

[10] M. M. Zavlanos, A. Jadbabaie, and G. J. Pappas, “Flocking while
preserving network connectivity,” in Decision and Control, 2007 46th
IEEE Conference on. IEEE, 2007, pp. 2919–2924.

[11] X. Yan, J. Chen, and D. Sun, “Multilevel-based topology design and
shape control of robot swarms,” Automatica, vol. 48, no. 12, pp. 3122–
3127, 2012.

[12] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
IEEE Transactions on robotics, vol. 20, no. 5, pp. 865–875, 2004.

[13] N. Ayanian and V. Kumar, “Abstractions and controllers for groups of
robots in environments with obstacles,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
3537–3542.

[14] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed
control of multirobot systems with global connectivity maintenance,”
IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.

[15] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar, “Decentralized estimation and control of graph

connectivity for mobile sensor networks,” Automatica, vol. 46, no. 2,
pp. 390–396, 2010.

[16] R. Ramaithitima, M. Whitzer, S. Bhattacharya, and V. Kumar, “Sensor
coverage robot swarms using local sensing without metric infor-
mation,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 3408–3415.

[17] A. Hatcher, Algebraic topology. Cambridge university press, 2002.
[18] S. Nagavalli, A. Lybarger, L. Luo, N. Chakraborty, and K. Sycara,

“Aligning coordinate frames in multi-robot systems with relative
sensing information,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2014, pp. 388–395.

	Introduction
	Background
	Basic Notations
	Vietoris-â•ﬁRips complex

	Approach Overview
	Decentralized Construction of Simplicial Complex
	Decentralized Selection of the Frontier Node
	Decentralized Tail Robot Selection
	Plan Path from Tail to Frontier Node
	Handling Corridors

	Proof of Guarantees
	Simulation Results
	Conclusion
	References

