
A Framework for Optimal Repairing of Vector Field-based
Motion Plans

Guilherme A. S. Pereira1, Sanjiban Choudhury2, and Sebastian Scherer2

Abstract— This paper presents a framework that integrates
vector field based motion planning techniques with an optimal
path planner. The main motivation for this integration is the
solution of UAVs’ motion planning problems that are easily and
intuitively solved using vector fields, but are very difficult to be
even posed as optimal motion planning problems, mainly due
to the lack of clear cost functions. Examples of such problems
include the ones where a goal configuration is not defined,
such as circulation of curves, loitering and road following.
While several vector field methodologies were proposed to solve
these tasks, they are susceptible to failures in the presence of
previously unmodeled obstacles, including no-fly zones specified
during the flight. Our framework uses a vector field as a high
level specification of a task and an optimal motion planner
(in our case RRT*) as a local, on-line planner that generates
paths that follow the vector field, but also consider the new
obstacles encountered by the vehicle during the flight. A series
of simulations illustrate and validate the proposed methodology.
One of these simulations considers a rotorcraft UAV equipped
with a spinning laser patrolling an urban area in the presence
of unmodeled obstacles and no-fly zones.

I. INTRODUCTION

To guide and control robots in environments with obsta-
cles, several vector field methodologies have been proposed
in the last three decades. In these methodologies, a velocity
or acceleration vector is associated to the robot’s free con-
figurations such that the integrals of the resultant vector field
are collision-free trajectories that, starting from any possible
initial configuration, drives the robot to complete its task.
The first vector field methodology was proposed by Khatib
in [1], where the vector field was computed as the negated
gradient of an artificial potential function with a minimum
at the goal configuration. Several methodologies followed
this first idea, notably the proposition of Navigation Func-
tions [2] and Harmonic Functions [3] for potential functions
without local minima. These methods are used when a robot
needs to reach a goal position without colliding with the
obstacles in the environment. More recently, different vector
fields methodologies, which are not necessarily based on the
gradient of functions, have been created to solve different
and more complex tasks, such as circulation of curves [4] and
tracking [5], among others. The main motivations for the use
of vector field techniques are their intuitiveness, simplicity,

This work was supported by CNPq/Brazil process 232587/2014-0 and
NSF grant #1328930, “NRI: Fast and Accurate Infrastructure Inspection
with Low-Flying Robots.”

1G. A. S. Pereira is with Department of Electrical Engineering, Univer-
sidade Federal de Minas Gerais, Brazil. gpereira@ufmg.br

2S. Choudhury and S. Scherer are with the Robotics Institute,
Carnegie Mellon University, USA. sanjibac@andrew.cmu.edu,
basti@andrew.cmu.edu

No-fly
zone

start

Fig. 1. A UAV uses a vector field, represented by the arrows, to navigate.
Assuming that the vector field was created with partial knowledge of the
problem, the red path, computed as the integral of the field, would yield a
path that crosses a no-fly zone. Instead of creating a new vector field that
considers the no-fly zone, an optimal motion planner, such as RRT*, may be
used to locally repair the original plan. The resultant path, shown in green,
avoids the no-fly zone while still following the vector field. The blue graph
represents the optimal tree used to compute the path.

low computational cost and, since they are closed loop meth-
ods, robustness to small localization and actuation errors.
Moreover, some methods present mathematical guarantees
that the tasks will be completed [5].

Unfortunately, vector field methodologies present at least
two important drawbacks: (i) although the technique was
originally created to deal with dynamic environments, global
convergence properties are generally lost in the presence of
movable or previously unknown obstacles; and (ii) they do
not consider the vehicle’s differential constraints. The motion
planning framework proposed in this paper can be used to
overcome these two drawbacks, although only (i) will be
addressed here. Regarding, drawback (i), a few works have
locally modified the vector field in real time to avoid dynamic
obstacles and still maintain convergence properties [6], [7].
However, this modification generally does not consider the
quality of the final path.

The novel idea of this paper is to combine vector fields
methodologies with an optimal motion planner. More specif-
ically, we tightly couple the optimal motion planner to a
vector field by considering the vector field as a high level
global plan that must be safely followed by a robot with the
aid of the optimal planner. We assume that the vector field
does not consider some of the details of the environment,
such as small and dynamic obstacles, which usually yields
simple and fast field computation. Figure 1 illustrates this
idea. In this figure, the red path, obtained as the integral of
the vector field, represented by the arrows, crosses a no-fly
zone, which was ignored during the field computation. A
sampling based optimal planner is then used to find a path,

2016 International Conference on
Unmanned Aircraft Systems (ICUAS)
June 7-10, 2016. Arlington, VA USA

WeBTT2.2

978-1-4673-9333-1/16/$31.00 ©2016 IEEE 261

shown in green, which follows the vector field as close as
possible, but also avoids the no-fly zone.

Optimal motion planners have been the focus of attention
of several researchers nowadays, since they can deliver global
optimal and differential constrained trajectories computed in
state spaces of large dimensions. Among these planners,
a recent and efficient one is the asymptotically optimal
version of the Rapidly-Exploring Random Tree (RRT), called
RRT* [8]. Although RRT* has been used to solve several
robotic problems, it is so far limited to compact workspaces
with a well defined goal region. It is then difficult to use
this tool in some tasks that include persistent monitoring of
ground areas, tracking of moving targets, and navigation in
urban environments, where the environment is unbounded
or a goal configuration is not specified. Moreover, for this
kind of task, where the workspace can be very large, the
computational time of RRT* may rule it out for use in
real-time operations. Solutions for these problems have been
proposed by some authors, generally integrating RRT* with
another strategy. One example is [9], which uses a higher
level planner to define a sequence of waypoints and use
RRT* to reach each waypoint in minimum time avoiding
obstacles and respecting the vehicle’s constraints.

Although several optimal planners can be used in the
proposed framework, in this paper we use RRT* as the
motion planner to be combined with a vector field. Even
though RRT* was originally conceived to be a global planner,
in our approach it will work as a local planner, which will
make the robot to optimally avoid the obstacles and no-fly
regions not considered by the vector field. RRT* will work
on a bounded, small region of the workspace while the vector
field will be constructed over the whole, possible unbounded,
workspace. We do not assume any specific vector field
methodology. Therefore, the vector field may be computed
as the gradient of a potential function [1], [2], [3] but, more
interesting, it can be a vector field that aims for, for example,
circulation of curves for perimeter surveillance [4], corridor
following [10] or multi-robot deployment [11]. These last
applications are very hard to be posed as optimal motion
planning problems due to the lack of clear cost functions.

The use of vector fields to direct the growth of RRT* trees
is considered in [12]. The authors propose a new sampling
strategy that, using the vector field, guides the search tree
towards the goal, thus speeding up the method. To the best
of the authors’ knowledge, [12] is the only work published so
far that considered both techniques in the same framework.
Differently from [12], in this paper RRT* is tightly coupled
with the vector field in the sense that the field is used to
define a cost function and also to guide the sampling process.

After the formal definition of our problem in the next sec-
tion, the proposed methodology is presented in Section III.
Illustrative simulations are presented in Section IV while
conclusions and future work are in Section V.

II. PROBLEM DEFINITION

Let Q ⊂ Rn be the configuration space of a robot
and Qobs ⊂ Q be an invalid set of configurations that

represent obstacles and/or no-fly zones. We assume that
Qobs = Qkobs ∪ Qmobs, where Qkobs is the set of previously
known invalid configurations, and Qmobs is the set of movable
and previously unknown obstacles or no-fly zones. The free
configuration space is defined as Qfree = Q\Qobs. Also,
let u : Q\Qkobs → Rn be a continuous vector field that
assigns a vector u(q) to each configuration q ∈ Qfree∪Qmobs.
This vector field is responsible for the specification of the
robot task and is computed by a global planner that has no
knowledge about Qmobs. Finally, let the path be the continuous
function ξ : [0, 1]→ Q. Our local motion planning problem
can then be posed as:

Problem 1: Find, inside the ball Br ⊂ Q of radius r
centered at the initial configuration q0 ∈ Qfree, the smallest
collision free path that starts at q0 and follows the vector
field as close as possible. This problem can be written as:

minimize
ξ

F [ξ,u] =

∫ 1

0

f (ξ(s),u (ξ(s))) ds

subject to:
ξ(0) = q0 ,

‖ξ(1)− ξ(0)‖ = r ,

ξ(s) ∈ Qfree,∀s ∈ [0, 1] .

(1)

It is important to notice that Problem 1 presents two
major differences in relation to the standard motion planning
problem. First, there is no definition of a goal configuration.
This is replaced by a constraint that enforces the distance
between the initial configuration and the end limit of the path.
Second, F [ξ,u], which is a cost functional, substitutes the
traditional euclidean distance function used in path planning
problems. This is a function of both the length of the
path and of how “close” the path is from the vector field.
Since no goal configuration is defined, it is the role of this
functional to dictate the direction of the robot’s movement.
The definition of the functional is discussed in Subsection III-
B. Our methodology to solve Problem 1 is discussed in next
section.

III. METHODOLOGY

In this work we chose to use RRT* as the method to solve
Problem 1. RRT* is an anytime computation framework for
optimization problems with complex constraints [13]. In this
context, “anytime” means that the method quickly finds a
feasible, but not necessarily optimal solution for the problem,
then incrementally improve it over time toward optimal-
ity [14]. This characteristic fits well to our problem, which
is computed on-the-fly. In our case, it means that even with
limited computational resources and a small interval of time,
a solution may be found. With more resources and time, this
solution is then improved. Additionally, another important
characteristic of RRT* is the fact that it does not require an
explicit geometric representation of the obstacles, which is
very important in the case of unknown obstacles detected
during the motion. Because our methodology depends on

262

RRT*, for the sake of easier understanding, this method
will be reviewed in the next subsection. The following
subsections will present how RRT* was adapted/used to
solve the problem presented in the previous section.

A. RRT*

The RRT* motion planning algorithm is computed in two
steps. In the first step, a tree (graph without loops) with the
root at the initial configuration is constructed using samples
of the configuration space. In this tree, the nodes (samples)
are free configurations while the edges represent the robot’s
paths between two configurations. In the second step of the
algorithm, the goal configuration is connected to the tree
and a path is found from the initial configuration to the
goal as a sequence of nodes. If the goal configuration cannot
be connected to the tree, either there is no solution to the
problem, or more nodes (samples) would be necessary. One
interesting point is that RRT* constructs an optimal tree in
the sense that any path from the initial configuration to a node
of the tree is the best possible, given a cost function and the
current number of samples. A more in-deep discussion about
RRT* is presented in [15].

In this work, since we do not specify a goal configuration
a priori, we are mostly interested in the first step of the
method, which is the optimal tree construction. Once the tree
is found, our solution will be the path between the root of the
tree and one of the nodes that are approximately at distance
r from it. Among the equidistant nodes from the root, the
node chosen to be the end of the path is the one associated
to the smallest path cost. The algorithm for computing a
search tree using RRT* is shown in Algorithm 1. The basic
functions called by this algorithms are:
• SAMPLEFREE: Generate a random configuration in
Qfree.

• NEAREST(G = (V,E), qi): Finds the node of graph
G that is the closest to qi in terms of a given distance
function.

• STEER(qi, qj, η): Returns a new configuration qk, which
is obtained by steering qi towards qj in a straight line
such that ‖qk − qj‖ is minimized and ‖qk − qi‖ ≤ η.

• COLLISIONFREE(qi, qj): Returns TRUE if the path from
qi to qj lies in Qfree and FALSE otherwise.

• NEAR(G = (V,E),qi, η): Computes the set of nodes
that are inside the ball centered in qi. If the radius of the
ball is given by min{γ(log(card(V))/card(V))1/d, η},
where γ > (2(1 + 1/d))1/d(µ(Qfree)/ζd)

1/d, d is the
dimension of Q, µ(Qfree) is the volume of Qfree and
ζd is the volume of the unit ball in the d-dimensional
Euclidean space, RRT* is asymptotically optimal, as
showed in [8].

• COST(qi): Returns the cost of the path that starts in q0

and finishes in qi.
• PATHCOST(qi, qj): Computes the cost of the path

between qi and qj using the specified cost function.
• PARENT(qi): Returns the parent node of qi.
To solve Problem 1 using the RRT* tree, function

PATHCOST(·) needs to be defined in agreement with the

Algorithm 1 RRT*
1: V ← {q0} ; E ← ∅ ;
2: for i = 1 : n do
3: qrand ← SAMPLEFREE ;
4: qnearest ← NEAREST(G = (V,E), qrand) ;
5: qnew ← STEER(qnearest, qrand, η);
6: if COLLISIONFREE(qnearest, qnew) then
7: Qnear ← NEAR(G = (V,E),qnew, η) ;
8: V ← V ∪ {qnew} ;
9: qmin ← qnearest;

10: cmin ← COST(qnearest) + PATHCOST(qnearest,qnew) ;
11: for all qnear ∈ Qnear do
12: if COLLISIONFREE(qnear,qnew) ∧
13: COST(qnear)+PATHCOST(qnear,qnew) < cmin then
14: qmin ← qnear;
15: cmin ← COST(qnear) + PATHCOST(qnear,qnew) ;
16: E ← E ∪ {(qmin,qnew)} ;
17: for all qnear ∈ Qnear do
18: if COLLISIONFREE(qnew,qnear) ∧
19: COST(qnew) + PATHCOST(qnew,qnear) <

COST(qnear) then
20: qparent ← PARENT(qnear) ;
21: E ← (E\{(qparent,qnear)}) ∪ {(qnew,qnear)}
22: return G = (V,E)

cost functional F [ξ,u]. Also, to improve the efficiency of
the method, function SAMPLEFREE may take into account
the vector field. The definition of these functions is presented
in the next subsections.

B. Cost functional

To consider both the vector field and the length of the
path, we propose a cost functional of the form:

F [ξ,u] =

∫ 1

0

(
a− b ξ′(s)

‖ξ′(s)‖
· u(ξ(s))

‖u(ξ(s))‖

)
‖ξ′(s)‖ds .

(2)

where ξ′(s) = dξ/ds is the first derivative of the path with
respect to the spacial parameterization variable s, and a, b ∈
R+ are constants such that a > b. The values of a and b are
chosen so that the cost is small when the path is parallel to
the vector field (the inner product between the normalized
field vector and the unit vector tangent to the path is one),
and increases when the path is not parallel to the field (inner
product is smaller than one). If a = 2 and b = 1, for example,
the cost for the case in which the path is anti-parallel to the
field (inner product is -1) will be three times higher than
the one in which it is parallel to field, considering the same
length of the tangent vector given by ‖ξ′(s)‖.

Assuming that c(i, j) = F [ξ,u] represents the cost of a
path that connects i and j, for i, j ∈ Q, it is important to say
that Cost Functional (2) is additive and, as long as a−b > 0,
it is also monotonic, in the sense that, c(x, y) + c(y, z) ≥
c(x, y) and c(x, y) + c(y, z) ≥ c(y, z). Additionally, notice
that the cost functional is strictly positive, since c(i, j) = 0
only if i = j, and bounded, since there exist a constant
k such that c(i, j) < k for all i, j ∈ Q and all existing
paths between i and j. On the other hand, the functional is

263

Algorithm 2 Cost computation between two configurations
connected by a straight line path.

1: function PATHCOST(qstart, qend, step)
2: if COLLISIONFREE(qstart, qend) then
3: path length = ‖qend − qstart‖
4: v = qend−qstart

path length

5: number of segments = round(path length
step)

6: step = path length
number of segments

7: cost = 0
8: for length from start=0 : step : path length− step do
9: qi = qstart + lenght from start · v

10: u = u(qi)
‖u(qi)‖

11: cost = cost + (a− b (v · u)) · step
12: else
13: cost=∞
14: return cost

not symmetric, i.e. c(x, y) 6= c(y, x), which is an important
information for some RRT* implementations.

Assuming a straight line path, the computation of the cost
between two configurations can be done using Algorithm 2.
In this algorithm, the path is discretized using a sequence
of segments. The number of segments will depend on the
size of the original path and is determined by a nominal
segment size, which is an input of the algorithm (step). The
integral of the cost functional is then transformed into the
sum of the costs of the segments. One observation regarding
Algorithm 2 is that, frequently, the path length is not a
multiple of the given step. Therefore, a new step, which is
close to the nominal one, needs to be computed as shown in
lines 5 and 6 of Algorithm 2.

C. Sampling Strategy

Since Problem 1 specifies that a path must start at q0

and finish at the surface of a ball of radius r centered
at q0, it makes sense to uniformly generate samples only
inside this ball. A way to do this is to represent the ball
in spherical coordinates and sample for each coordinate.
Another possibility is to sample uniformly inside the box that
circumscribes the ball and to reject the samples outside the
ball. Notice that this process, which would be implemented
by function SAMPLEFREE used in Algorithm 1, creates a
compact set of configurations, thus allowing RRT* to be
used to compute paths in the original, possibly unbounded,
configuration space.

By sampling inside the ball and by using cost func-
tional (2), RRT* will find the shortest path that asymptot-
ically converge to the integrals of the vector field in the
absence of unmodeled obstacles. However, depending on
the volume of the spheric search space and the number
of obstacles, it may be necessary a very large number of
samples to obtain a good solution. To speedup this process,
we propose a strategy that eliminates samples that, likely,
will not be part of the final solution.

Given a new sample qrand ∈ Qfree we compute its nearest
vertex, qnearest, among all nodes of the current search tree, as
is done in the standard RRT* algorithm. If we assume that the

qrand

qnearest

u

qrandqnearest

uθ θ

Fig. 2. Sample evaluation strategy. Given a specified angle θ and vector
u(qnearest), represented by the blue arrow, qrand would be accepted on the
left and rejected with some probability at the right.

Algorithm 3 Vector field based sample evaluation.
1: function REJECTSAMPLE(qnearest, qrand, pr , θ)
2: v = qrand−qnearest

‖qrand−qnearest‖

3: u = u(qnearest)
‖u(qnearest)‖

4: if v · u ≥ cos(θ) then
5: reject sample=False
6: else
7: if RAND ≤ pr then
8: reject sample=True
9: else

10: reject sample=False
11: return reject sample

connection between two nodes of the tree is a straight line,
the normalized vector v, that points from qnearest to qrand,
represents a vector that is tangent to a path that contains these
nodes. With this in mind, we propose an acceptance/rejection
test that accepts qrand if v is “similar” to the vector field
at qnearest, given by u(qnearest), or reject qrand with some
probability if v and u(qnearest) are not similar. The measure
of similarity is the angle between the vectors, which can be
easily computed by the inner product between them, provided
that the field is normalized. An illustration of this strategy is
shown in Fig. 2. On the left is shown a situation where qrand
would be accepted and on the right is an example where this
sample would be rejected with some probability. A function
that implements the strategy is shown in Algorithm 3. In
this function, RAND returns a random number sampled with
uniform distribution over [0, 1], pr represents the probability
of rejection and θ the maximum acceptable angle between
the vectors. This function must be used right after line 4 of
Algorithm 1 to decide if the current qrand will be used to
generate qnew or not.

The proposed strategy rejects samples that are not likely
to be part of the final path when only modeled obstacles are
considered. However, since we also want to avoid obstacles
that were not considered during the computation of the vector
field, it is important to keep some samples whose v vectors
points against the field, which requires the probability of
rejection of qrand to be smaller than 1 and the angle between
v and u(qnearest) to be larger than 0.

Next section presents simulations that illustrates and eval-
uates our complete methodology.

IV. SIMULATIONS

We have implemented the proposed methodology both in
Matlab and in C++ with OMPL [16] and ROS [17] for Q ⊂

264

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

(a) (b)

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

(c) (d)

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

x(m)

-40 -30 -20 -10 0 10 20 30 40

y
(m

)

-20

-10

0

10

(e) (f)

Fig. 3. Effect of the probability of sampling rejection. From top to bottom,
each line of figures show the search results for pr = 0%, pr = 90% and
pr = 100%. The trees were computed for a fixed amount of time.

R2. Therefore, q = [x, y]T . In our first set of simulations,
we have constructed a continuous vector field inside a 40m
wide corridor. The objective of the field is to navigate a robot
along a longitudinal line positioned at distance d0 from the
center of the corridor. Assuming that the corridor is aligned
with the x-axis of the world coordinate frame, this vector
field can be computed as:

u(q) =

[
1

k (d0 − y)

]
, (3)

where d0 is the position of the longitudinal line and k is
a positive gain that determines how fast the robot moves
towards the line. In our simulations we made d0 = 5 and
k = 0.1. For the sake of clear presentation, in our figures
we show normalized versions of this field.

We set the radius of the planning region to be r =
50m. Therefore, the path computed by RRT* must start
at q0 and finish at a configuration that is 50m from q0.
To guarantee that, we grow an optimal search tree that
may slightly exceeds the limits of the planning region and,
during the query phase, choose, among the configurations
within distances (r − δ, r + δ), the one with the smallest
cost to represent the final configuration. In our simulations,
δ = 0.5m. Other parameters of the simulations are a = 10,
b = 9 (Equation 2) and η = 1m (Algorithm 1).

Figure 3 shows the behavior of the method in different
situations and with different parameters. In this figure, the
RRT* tree is shown in blue and the final path is shown in
yellow. The red circles are the samples at distant r from
q0 = [−25,−15]T . These simulations were performed in
Matlab for a fixed and constant interval of time. Figures 3(a)

and 3(b) present simulations with no sample rejection. In (a),
no unmodeled obstacles are considered while in (b) a L-
shaped obstacle is introduced. Observe that the path in (a)
approaches the integral of the vector field (shown in red),
while the one in (b) deviate from the field to avoid the
obstacle. Figures 3(c) and 3(d) show similar situations but
now with the use of function REJECTSAMPLE with θ = 60◦

and pr = 90%. Notice that the path in (c) is closer to the
integral of the field than the one in (a). Figures 3(e) and
3(f) were obtained by setting θ = 60◦ and pr = 100%.
Notice that the path in (e) is even closer to the integral
of the field than the one in (c), since more samples are
“around” the optimal path. However, notice that the tree
was “trapped” by the obstacle and no paths were found in
(f). This indicates that, although biasing the sampling can
lead to better trajectories within a fixed amount of time, a
careful choice of the parameters is necessary to allow the
convergence of the method in presence of obstacles.

Figure 4 shows a complete simulation of a robot starting
at q0 = [−30, 15]T following a corridor with several unmod-
eled obstacles. In this simulation, the robot computes, for a
fixed amount of time, a path that starts at q0 and finishes at
the borders of the sampling region. Then, it follows 50% of
the path and compute, for the same fixed amount of time, a
new path that starts at its current configuration and finishes at
borders of the new sampling region centered at the new start
configuration. This is repeated until the end of the simulation.
In Fig. 4, the red circles represent the initial configurations
for each intermediate path computed by the robot. Sampling
rejection was performed with pr = 60% and θ = 60◦.

In our second set of simulations we used Gazebo [18]
to test the method in a more realistic situation, where the
obstacles are discovered by a UAV on-the-fly. The simulated
UAV is an octo-rotor vehicle equipped with a spinning laser,
such as the one presented in [19]. To detect obstacles, a local
occupancy grid centered on the current robot configuration
is constructed during the flight. The robot may also receive
messages with no-fly zones information. The task of the UAV
is to patrol a neighborhood by circulating a planar curve at a
fixed height. To specify this task, we used the methodology
proposed in [4] to generate a vector field that makes the robot
to circulate along an implicit curve of the form x4+y4 = c4 ,
where c = 20m. Regarding RRT*, we set the local planning
radius to be r = 12m. During the flight, the UAV follows the
current path for 1.8 s and, in parallel, computes the next path,
which starts at the end of the current one. Its forward speed
was set to be 2.0m/s. A snapshot of the simulation along
plots of the robot’s paths without and with obstacles is shown
in Fig. 5. A video of the simulation can be found at http:
//www.cpdee.ufmg.br/˜coro/movies/icuas16.

V. CONCLUSIONS

We have presented a motion planning methodology that
uses intuitive vector field approaches to define the main
behavior of a robot and an optimal motion planner as local
strategy to avoid previously unknown obstacles and no-
fly zones. Our simulated results indicate that the proposed

265

x(m)

-40 -20 0 20 40 60 80 100 120 140

y
(m

)

-20

-10

0

10

Fig. 4. Simulation showing a robot following a corridor with obstacles. The red path is the original path computed as the integral of the vector field. The
yellow path is the path computed by the proposed methodology. The red circles indicate the start point of the intermediate paths computed by the robot.

No-fly zone Obstacles

UAV

Nominal
Path

(a)

x(m)
-20 -10 0 10 20

y
(m

)

-25

-20

-15

-10

-5

0

5

10

15

20

25

x(m)
-20 -10 0 10 20

y
(m

)

-25

-20

-15

-10

-5

0

5

10

15

20

25

(b) (c)

Fig. 5. Gazebo simulation of a UAV in a patrolling task: (a) Snapshot of
the simulation; (b) planned path without unmodelled obstacles and no-fly
zones; and (c) path in the presence of new obstacles and a no-fly zone (blue
circle). In (b) and (c) the vector field is represented by the arrows.

methodology can be used to safely navigate UAVs in differ-
ent tasks, including curve following and loitering, tasks in
which a cost function is not well defined.

To speed up the the path computation, our future work will
include the proposition of a steering function that considers
the vector field. Also, we will add the vehicle’s differential
constraints into the optimization problem, which will allow
its implementation in different UAVs, even at high speeds.

ACKNOWLEDGMENT

The authors thanks Sezal Jain for the help with the
ROS/Gazebo simulations.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The Intl. J. Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[2] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation,, vol. 8, no. 5, pp. 501–518, 1992.

[3] C. I. Connolly, J. Burns, and R. Weiss, “Path planning using laplace’s
equation,” in IEEE Intl. Conference on Robotics and Automation,
1990, pp. 2102–2106.

[4] V. M. Gonçalves, L. C. A. Pimenta, C. A. Maia, B. C. O. Dutra, and
G. A. S. Pereira, “Vector fields for robot navigation along time-varying
curves in n-dimensions,” IEEE Transactions on Robotics, vol. 26,
no. 4, pp. 647–659, 2010.

[5] E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated standoff
tracking of moving targets using Lyapunov guidance vector fields,”
Journal of Guidance, Control, and Dynamics, vol. 31, no. 2, pp. 290–
306, 2008.

[6] J. M. Esposito and V. Kumar, “A method for modifying closed-loop
motion plans to satisfy unpredictable dynamic constraints at runtime,”
in IEEE Intl. Conf. Robotics and Automation, 2002, pp. 1691–1696.

[7] S. G. Loizou, H. G. Tanner, V. Kumar, and K. J. Kyriakopoulos,
“Closed loop motion planning and control for mobile robots in un-
certain environments,” in IEEE Conference on Decision and Control,
vol. 3, 2003, pp. 2926–2931.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The Intl. Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[9] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, 2009.

[10] G. A. S. Pereira, L. C. A. Pimenta, L. Chaimowicz, A. R. Fonseca,
D. S. C. Almeida, L. Q. Corrêa, R. C. Mesquita, and M. F. M. Campos,
“Robot navigation in multi-terrain outdoor environments,” The Intl.
Journal of Robotics Research, vol. 28, no. 6, pp. 685–700, June 2009.

[11] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in Distributed Autonomous
Robotic Systems 5. Springer, 2002, pp. 299–308.

[12] A. H. Qureshi, K. F. Iqbal, S. M. Qamar, F. Islam, Y. Ayaz, and
N. Muhammad, “Potential guided directional-RRT* for accelerated
motion planning in cluttered environments,” in IEEE Intl. Conference
on Mechatronics and Automation, 2013, pp. 519–524.

[13] J. H. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation
of time-optimal off-road vehicle maneuvers using the RRT*,” in
IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), 2011, pp. 3276–3282.

[14] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in IEEE Intl. Conference
on Robotics and Automation, 2011, pp. 1478–1483.

[15] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in IEEE Conference on
Decision and Control, 2010, pp. 7681–7687.

[16] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, http://ompl.kavrakilab.org.

[17] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[18] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[19] S. Jain, S. T. Nuske, A. D. Chambers, L. Yoder, H. Cover, L. J. Cham-
berlain, S. Scherer, and S. Singh, “Autonomous river exploration,” in
Field and Service Robotics, Brisbane, December 2013.

266

