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Abstract— There is growing interest in applying machine
learning to motion planning. Potential applications are pre-
dicting an initial seed for trajectory optimization, predicting
an effective heuristic for search based planning, and even
predicting a planning algorithm for adaptive motion planning
systems. In these situations, providing only a single prediction is
unsatisfactory. It leads to many scenarios where the prediction
suffers a high loss. In this paper, we advocate list prediction.
Each predictor in a list focusses on different regions in the space
of environments. This overcomes the shortcoming of a single
predictor, and improves overall performance. A framework for
list prediction, CONSEQOPT, already exists. Our contribution is
an extensive domain-specific treatment. We provide a rigorous
and clear exposition of the procedure for training a list of
predictors. We provide experimental results on a spectrum
of motion planning applications. Each application contributes
to understanding the behavior of list prediction. We observe
that the benefit of list prediction over a single prediction is
significant, irrespective of the application.

I. INTRODUCTION

There have been a number of efforts to introduce pro-
cedures from machine learning to motion planning. These
procedures offer the ability to adapt motion planning algo-
rithms to a specific environment. Adaptation is performed
in a data-driven manner, and past experience in the form of
solved motion planning environments can be leveraged to
train the learning procedure.

In this work, we consider adaptation in the form of
selecting from a fixed set of options. Assume we have
a library of elements, and each element is an option for
a motion planning algorithm. Given an environment, we
want to predict which element to use. For instance, in a
trajectory optimization algorithm, the library elements are
seed trajectories, and the environment is the configuration of
obstacles. The objective is to find a learning procedure that
has good prediction performance, i.e, how well can the learnt
procedure predict the best element in the library?

Machine learning procedures provide guarantees on ex-
pected performance, which is the average performance over a
probability distribution of environments. A predictor trained
on this distribution has interesting behavior. It predicts the
correct element on most environments, but has extremely
low performance on environments which are infrequent. This
is particularly unsatisfactory for motion planning, which
demands good prediction performance on all environments.

In this work, we do not tease a worst-case performance
guarantee out of learning theory. Instead, we advocate a pro-
cedure that takes steps towards meeting the motion planning
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Fig. 1: An illustration of how list prediction works for seed prediction. The
first level predictor, 71, performs well on environments such as A and B
which are likely under the distribution p(z). It performs poorly on infrequent
environments like C' . At the second level, unsolved environments are likely
under the distribution p(z|m1). C' is solved by predictor ma.

performance demand—Ilist prediction. This involves training
not one, but multiple predictors. They are trained sequen-
tially. Importantly, they focus on different environments. As
illustrated in Fig. 1, the second predictor will focus on
environments where the first predictor had low performance.
The third will focus on environments where the first two had
low performance, and so on.

From a learning viewpoint, a list of predictors will always
perform better than a single predictor. A list also addresses
the motion planning concern of not only how, but also
where performance is low—the second predictor will attempt
to do well on the infrequent environments which the first
predictor ignored. A list is also compatible with motion
planning applications which have the scope to evaluate
multiple options in parallel, and select the best one. The size
of the list, henceforth called the budget, can be chosen to
reflect the computational resources available to the motion
planning systems to make a decision within a time period.

List prediction is not a new topic, having been introduced
to motion planning as CONSEQOPT [1]. We use CONSE-
QOPT as a base, but make the following contributions

1) Clear derivation of the training procedure for list

prediction in the framework of loss-sensitive multiclass
classification.



2) Analyzing the behavior of predictors at different levels
across a spectrum of motion planning applications.

The overview of the paper is as follows—in Section II
we describe the problem formally, at the end of which
it is evident that training a list of predictors is justified.
Section III is devoted to implementation, where we spend
time discussing exactly how prediction is performed. Some
properties of list prediction are highlighted in Section I'V. In
Section V, we explore the operation of CONSEQOPT, devel-
oping intuition and visualizing predictions. Our experiments
are on the entire spectrum of planning problems—from
predicting seeds for trajectory optimization, to heuristics for
search based planners, to planning algorithms for adaptive
motion planning systems. We believe that our insights will
benefit any effort undertaken in applying prediction to motion
planning, clarifying understanding and arguing for the well-
grounded procedure of list prediction.

II. FORMULATION
A. Element prediction

We start with predicting a single element. Let x € X
denote a motion planning environment sampled from a
distribution p(z). We assume a library £ of L elements is
given, such that £ = {{;},j = 1: L, §; € =. Each element
has a cost when applied in an environment. We denote this
cost by a scalar, ¢(x, £). If planning time was not a constraint,
we would step through the library and pick the lowest cost
element. Instead, we want to predict an element which will
have low cost. Since prediction can only do as well as the
best element in the library, we define loss as a relative cost.
The loss of predicting element &; is

l(xafj) ZC(J,‘,{j)—IglEi?C(I,f) (1)

A predictor 7, belonging to a class of predictors II, takes
an environment as input and outputs a library element, i.e,
m: X — E. The loss of a predictor is

l = c(x, — mi , 2
(2.7) = el 7(a)) — min c(z, ) @)
Finally, the risk of 7 is the expected loss

R(m) = /l(m,ﬂ')p(m)dm (3)

We would like to find the minimum risk predictor. Assume
we have training data in the form of environments and
element costs, D = {(x;,c(z;,¢;))},i = 1: N,j = 1: L,
x; ~ p(x), & € L. Training environments are i.i.d samples.
We also assume that the costs of all elements in the library
are available. The objective can then be stated as finding the
predictor which minimizes the empirical risk

R 1 X
R(m) =+ D Uxi,m) (4a)
=1
7 = arg min R(7) (4b)

7ell
Observe that predicting one of L elements given x is like
classifying = into one of L classes. So 7 is a multiclass

classifier. The ‘correct’ class is the minimum loss element,
but misclassification losses differ. Specifically, finding 7 is
a case of loss-sensitive multiclass classification'.

The loss ! is non-convex, which makes it difficult to
directly minimize the empirical risk. The solution approach
detailed in [2], which we follow, is to replace [ with a
convex function, known as the surrogate loss. This is a
well-known procedure in learning. To recall the simple case
of binary classification, the 0 — 1 loss is also non-convex.
Binary classification is solved by replacing the loss with a
convex surrogate. The step here can be thought of as a more
general version of using surrogates. As per the analysis in
[2], minimizing the convex surrogate risk implies minimizing
the true risk. Using the surrogate requires the predictor 7 to
be defined in terms of a scoring function. Let s(z,£) € R
be a function which assigns a score to library element £ in
environment z. The predictor then picks the element with
the highest score

7(x) = arg max s(x, &) )
J

Risk will be minimized in terms of the scoring function
s, and therefore m. The predictor space II also depends on
the space of scoring functions. For any environment, the
scores are required to be centered over the library elements.
Intuitively, this means that the scores are required to be well-
behaved. Otherwise, we would be free to assign arbitrarily
high scores to low-loss elements, or arbitrarily low scores to
high-loss elements. This constraint is expressed as

s(z,&) =0,V (6)

L
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The last ingredient is ¥ (t) € R, a convex function of ¢.
The surrogate loss is then defined as

l¢(1’,8) :Zl(x,ﬁg)ﬂ’(s(%é})) (7

Jj=1

Note that the scores s(x, £) don’t enter the loss I,, directly,
but through the convex function 1. The surrogate loss is
large when either the true loss I(x, &) is large, or ¢ (s(z, &;))
is large. Intuitively, minimizing this loss encourages high
scores to be assigned to the low-loss elements. The empirical
surrogate risk is defined in terms of the surrogate loss. With
the following shorthand: l;; = l(x;,&;), sij = s(x;,§;), the
transformed optimization problem is

R 1 N L
Ry(s) = DD ligd(siy)

i=1 j=1

(8a)

5 = argmin Ry(3) (8b)

We detail the choices of the convex surrogate v (t), scorer
s(z, ), and the optimization scheme in Section III.

I Called cost-sensitive classification in the learning literature. Since we use
costs to refer to element costs, we use the term loss-sensitive classification.



B. List prediction

We now move on to list prediction. An algorithm for
this task, CONSEQOPT, was presented in [1]. We broadly
follow their treatment to find a list of predictors. The
length of the list, or budget B, is fixed and decided by
computational resources. The list of predictors is denoted
by (m!: 7B). The list of elements predicted for environment
x is (m'(z): 7B (x)). We use superscripts for levels in the
list. Definitions in II-A are extended to lists. The loss in (2)
is extended to take a list of predictors as argument

1. _B\\ _ _ - k .
l(z,(m: 7)) = mklnc(x,w (x)) — I{nelgc(x,f) )

Observe that the loss only cares about the lowest cost
element in the predicted list, Inkin c(z, 7% (x)). The risk of a

list of predictors is the expected loss

R({r*: ©B)) = /l(z, (' 7PV p(x)dx

The increased power of a list of predictors over a single
predictor may seem to be offset by the difficult task of finding
the optimal list. The optimal list requires a search over all
lists of length B

(10)

1*: B*>

R((i: #8))

min
(#1: #B)ellB

= arg an

However, the risk is a monotone supermodular function.
We don’t spend time on supermodular and submodular
functions here, but see [1] for details. The implication of
this property is that there exists a simple algorithm for
finding a near-optimal list: greedy selection. Selecting the
first predictor m! is exactly the minimization in (4b). The
second predictor is selected as 72 = {11611111 R((m', 7)), or

™

minimizing the risk after fixing the predictor at the first level.
In general, the greedy procedure is

R¥(m) = R({(z! : 7=, 7)) (12a)
ﬂk:argmeiﬁle(ﬁ'), k=1:B (12b)

We refer to R¥(m) as the risk at level k. It is a func-
tion of (w': 7F~1). We also use the shorthand If; =
(a, (ml: 7h=1 ¢;)) for the losses at the level k. They
calculate the loss of element &, given the list of predictors
(m': 7%=1). For example, if one of the earlier predictors has
already predicted the lowest loss element for environment x;,
then it does not matter which element is predicted at level &,
and all the marginal losses will be zero, lfj = 0 Vj. We again
use the convex relaxation, optimizing the empirical surrogate
risks at each level. The predictor 7% is defined in terms of a
scoring function s* at that level

R 1 N L
Ry (s) = 57 D D liyi(siy)

(13a)
i=1j=1
sF = arg mgn Ri(é) (13b)
7 (x) = argmax s*(x,&;), k=1: B (13¢)
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Fig. 2: A flowchart of the train and test steps of list prediction.

We close this section with an observation about the risks.
If X is the space of environments, let X|—1 be the space
of environments where loss is non-zero under 7. Similarly,
X|—-1: =(k — 1) is the space of environments where loss is
nonzero under the list (7*: , 7%~1), or the space of unsolved
environments at level k. Then

= / W, (mt: 71 o))p(z)de (14)
X|=1: =(k—1)

It is only the space of unsolved environments that appear

in the risk at level k. The environments already correctly

classified are of no concern.

III. IMPLEMENTATION
A. Train

The data D consists of N environments z;. We run
elements of the library £ on each environment, resulting
in L costs ¢;; for z;. This gives us information about the
performance of all elements over a number of environments.
A further step is to extract features ¢ € RY from the
data. As in other learning procedures, the features encode
the information relevant to prediction. The scoring function
s(x,&) was referred to in an abstract form in Section IL
Here we make the scorer concrete. It is chosen to be a linear
function of the features ¢. We discuss how to solve loss-
sensitive classification without referencing k, the list level.
There are two cases for the features.

1) ¢ = o¢(x,§): Features are computed on an
environment-element pair. There is unique information for
each element in the context of an environment. ¢;; =
¢(x4,&;) is an abbreviation. éij =¢ij— T Zle ¢ are the
centered features, required for (6), the constraint that scores



sum to zero. Scores are linear in features, s;; = BTéij,
B € R, We choose two standard convex forms for v: hinge,
¥(t) = (1 +t)4, and square, ¥(t) = (1 + t)2. Plugging all
terms into the expression for the empirical surrogate risk
(8a), the optimization problems are

tuﬂz

D L1+ B i)+ + BTB (15a)
=1 j=1
N L A
:Zzlu 1+ﬂT¢U) +§5TB (le)
=1 j=1
min J(5) (15¢)
BERE

J(B) is the sum of the empirical surrogate risk and a reg-
ularization term. A is the regularization weight and controls
for overfitting the training data. In binary classification, using
a hinge 1 leads to an SVM. The form in (15a) is similar to an
SVM. In binary classification, a square ¢ leads to regression.
Similarly, the form in (15b) corresponds to loss-weighted
regression. We try to regress from the features to the losses,
but focus on cases where losses [;; are high.

2) ¢ = ¢(x): Features are computed on the environment
only. We abbreviate ¢; = ¢(z;). Since the features have
no information about the library elements, the scorers use
a set of weights, 3, € Rd, j = 1: L, one for each library
element. §; = f; — %Zl]‘:l B are the centered weights,

required for constraint (6). With this choice, s;; = BAJ-T(;SZ‘.
The optimization problems are
J(Br:L) ZZ% (1+ 57 )t + = Zﬁ% (162)
= 1] 1
J(Br:L) ZZ% (1+ 57 ¢:) Zﬁfﬁj (16b)
=1 j=1 j:l
min  J(S1.1) (16¢)
B1.L €ERY

All the above optimization problems are convex optimiza-
tion problems. In this paper, we solve them using the primal
subgradient method. By introducing a superscript k into
the losses, lt , and weights, BJ’?, in the above, we get the
objectives, J¥, to be optimized at each level.

B. Test

After training, we obtain a list of scorers, which in turn
defines a list of predictors, (7!: 75). The scorers are used
for prediction as in (13c). During testing, we are handed a
query environment x. We compute features ¢ based on x
and the library L. The features are fed to each predictor,
resulting in a list of elements (7!(z): 72 (z)). Training and
testing for list prediction are summarized in Figure 2.

IV. DISCUSSION

We highlight some aspects of the training procedure in
this section.

A. Focus on unsolved environments

Rewriting the risk at level £ as in (14), we see the
mathematical reason for the intuition that deeper in the list,
the focus is on unsolved environments. This is also clear
from the optimization setup (15, 16). If x; has been classified
correctly before level £, lfj = 0V, and z; is ignored by
the optimization. Earlier predictions in the list tend to be
generic, while subsequent predictions focus on the specifics
of the training data.

The predictor space II plays a role in performance. A
weak space may not be able to deal with the unsolved
environments. Increasing the length of the list will not help,
as X|—1: =(k — 1) will not reduce significantly with k. On
the other hand, a powerful space II may achieve sufficiently
low risk in the first level. The issue of II is, however,
orthogonal: predicting a list will never have higher risk than
predicting a single element, and is always helpful.

B. Cost regression

Given the training data, an approach that comes to mind
is to regress directly from features ¢ to costs ¢, and pick
the element with the lowest cost. We refer to this procedure
as cost regression. If successful, cost regression provides a
lot of information. It would estimate the minimum cost that
can be achieved by the library. It would also allow arbitrary
addition of elements to the library.

In this work, we assume the library is given, and focus
only on prediction. This allows us to deal with losses instead
of costs. Cost regression is aiming for a more difficult task
than necessary. The next approach that suggests itself is to
regress from features ¢ to losses [. This is close, but not
correct. The right procedure following from using the convex
surrogate is loss-weighted regression, as seen in (15b). With
classification, we have not found scope for adding new
elements to the library. When the library is modified, the
list of predictors must be trained again.

C. Element costs

Element costs may have to be preprocessed to capture
the quantity of interest. For example, in trajectory seed
optimization, a large finite cost may have to be assigned to
‘failed’ seeds. Similarly, if we consider any cost below a limit
as ‘solving’ trajectory planning, thresholding is required.
Once costs are decided, a fixed notion of loss is used
throughout list prediction.

V. EXPERIMENTS

We now discuss our experiments applying list prediction to
a spectrum of motion planning applications. The presentation
of each application follows a pattern. We first describe the
application setting and motivation for list prediction. We
then walk through the experiment setup. Details such as the
size of training data are collected in Table I. Due to space
constraints, the details are kept concise. Further information
can be found in [3]. Since we have already described the
implementation, we jump straight to the results after the
setup.



TABLE I: Application Details

Application Library Length L.  List Budget B Feature Dimension d Train Data N  Validation Data  Test Data

Seed Prediction 2D 39 3 73 700 200 100

Seed Prediction 7D 30 3 17 310 112 100

Heuristic Prediction 101 3 1620 675 193 96

Planner Prediction 100 3 1764 579 166 82

Empirical risks for all applications are in Tables 1I-V. We Level 3

observe that the risk of a list is significantly lower than the N
risk of a single element, irrespective of the application. In .

.. . . . . Ly -~
addition, the risk is lower when using the hinge surrogate - -
loss compared to the square surrogate loss. Each subsection .. ...
is accompanied by figures showing sample lists predicted for - x
the application.

A. Seed Prediction for Trajectory Optimization of 2D Point ‘ -

Robot - -
1) Motivation: For the problem of planning a trajectory o -

from a start to goal configuration, local trajectory optimiza- o

tion is an approach where an initial seed joining the start

to goal is optimized. While these methods are fast, their

solution quality is heavily dependent on the initial seed.
Often these methods converge to a bad local minimum
around the initial seed, e.g, passing through the middle of
obstacles. The effectiveness of a seed is not known apriori.
A computationally expensive approach is to optimize every
element in a library of seed trajectories. List prediction can
be used instead to predict a small set of elements.

2) Environment x and distribution p(x): We consider a
point robot in a 2D environment. The environment x consists
of square obstacles generated from a uniform random distri-
bution p(x), see Figure 3. The start and goal configuration
are fixed for all environments.

3) Element £ and library L: An element is a seed trajec-
tory that connects the start to the goal. The library £ consists
of diverse trajectories that are optimal on environments
drawn from p(x).

4) Costs c(x,£): A seed £ is used as an input to a local
optimizer in environment z. The cost of a trajectory is the
sum of a smoothness term and an obstacle proximity term.
CHOMP [4] was used as the local optimizer. ¢(z,§) is the
cost of the trajectory that results after the seed ¢ is optimized.

5) Features ¢: Features ¢(x,&) are computed on a pair
of environment and seed. The optimization problem for this
case is (15). ¢ is a vector containing information about
downsampled gradients around £ and in a local region around
it.

6) Results: The distribution p(x) places large probability
mass on environments where obstacles are clustered. The
predictor at the first level predicts simple seeds that go
around these clusters. But there are environments which
require the optimal seed to be in a complicated homotopy
class. These are infrequent under p(z), so they are ignored
by the first predictor. Subsequent predictors focus on these
environments, making customized predictions. Figures 3
and 4 make this point with specific examples.

Fig. 3: Training phase for Section V-A. The objective is to optimize a trajec-
tory from start to goal (cyan dots) in an obstacle field (grayscale image). The
examples shown are problems solved by predictors at different levels and the
trajectories shown are post-optimization. The level 1 predictor (red) learns
a simple classification rule to solve a large number of problems—it predicts
seeds that simply go around a cluster of obstacles to achieve the lowest cost.
The level 2 predictor (blue) focusses on and solves environments that level 1
did not solve. It learns to predict seeds in better homotopy classes. The level
3 predictor (green) focusses on corner cases, e.g the two instances shown
have the optimal trajectory passing through a narrow gap that is surrounded
by local minima. The level 3 predictor learns seeds that are optimized into
this narrow gap.

B. Heuristic Prediction in Search Based Planning

1) Motivation: Heuristics are essential to improving the
runtime performance of search based planning. Recent ap-
proaches such as MHA* [5] create a framework that allows
the use of an inadmissible heuristic as long as it is anchored
by weighted A*. MHA* allows heuristics to have a lot of
flexibility and effectively act as modules that expand promis-
ing states only. Given a library of inadmissible heuristics, list
prediction can be used to predict a small subset of heuristics.

2) Environment x and distribution p(x): The objective is
to the plan the motion of a 4 link arm from start to goal.
The environment x consists of two rectangular blocks, one
above and one below the arm. p(x) is such that the horizontal
positions of the blocks are uniformly random. See Figure 5.

3) Element & and library L: An element is an inad-
missible heuristic. A heuristic is an exponential kernel on
a chosen state, called an ‘attractor state’. The heuristic
penalizes arm states away from the attractor state *. A library
of heuristics is generated by randomly sampling attractor
states. We also add an element to the library corresponding
to no heuristic—MHA* reverts to weighted A*.

2The kernel is defined only in 3 out of the 4 dimensions, i.e, the function
is invariant to the base joint.



TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss
Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933

3 Elements 0.0325 0.0360
Solved by Level 1 Solved by Level 3

'y

-’
‘I

— Level 1 — Level 2 Level 3 |

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x,£): The element ¢ is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(z,§) is set to be the number
of states expanded when using ¢ (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features ¢: Features ¢(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
¢ is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning

1) Motivation: The effectiveness of a planning algorithm
to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss  Square Loss
Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss
Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(z) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element £ and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x,£): The planner ¢ is used to plan a trajectory
within a time constraint of 0.05s. ¢(z,§) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c¢(z, &)
is set to 20.

5) Features ¢: Features ¢(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
¢ is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in
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Fig. 5: Sample lists predicted for Section V-B. MHA* is used to plan a
trajectory for a 4 link arm from a start state (cyan) to goal state (magenta).
The environment has two blocks creating a gap. To pass through, the arm
has to tuck in and roll out again. Heuristics used are attractor states. The
figure shows an infrequent environment for which the gap is narrow. The
predictor at level 1 predicts a heuristic (red) that naively tucks the arm in the
direction of the gap. However the upper block hinders this approach. The
predictor at level 2 predicts a heuristic (blue) that brings the end effector
closer to the base joint, however, the gap is small enough that this too is
ineffective. The predictor at level 3 predicts a heuristic (green) that tucks
the arm in a non-trivial configuration that allows it to pass through the gap.
Snapshots from the trajectory resulting from the third heuristic are shown.

the training data. The threshold itself required tuning. In
our approach, weighting training data by losses, as in (15),
naturally follows from using a surrogate loss. Importantly,
both [9] and [10] provided only single predictions. While
a stronger predictor class II was suggested to increase
performance, a list was not. As our results show, predicting
lists can lead to significant improvements.

CONSEQOPT for list prediction appeared in Dey et al.
[1]. The algorithm was presented along with a theoretical
analysis. Direct regression from features to losses was used
for prediction in [1]. In contrast, our discussion I'V-B points
out that loss-weighted regression is what follows from the
square surrogate loss. We also investigate the behavior of
list prediction in motion planning more thoroughly. [1]
considered seed prediction on a 7D manipulator’, while we
show results on a larger variety of problems. A follow up to
CONSEQOPT was Ross et al. [11]. It considered the online
setting, with data streaming in. In that setting, it was shown

3We ran experiments on the dataset from [1] for seed prediction on a 7D
manipulator. Results are in Table III.

BIT* RRT-Connect RRT*-Tunnel

Fig. 6: Sample lists predicted for Section V-C. A planning algorithm is used
to plan a trajectory from start to goal (beige). The environment consists
of random circular obstacles. In this environment, the goal happens to be
blocked off by a wall of 3 obstacles. The predictor at level 1 naively
predicts BIT* [6], given its effectiveness in solving frequently occurring
environments. However, the wall makes it difficult for BIT* to find a good
solution in the time budget. The predictor at level 2 predicts RRT-Connect
[7], given its effectiveness on environments where BIT* fails—however this
too cannot plan around the wall. The predictor at level 3 predicts RRT*-
Tunnel [8], as it concentrates sampling in a tunnel around the initial straight-
line solution, and finds a path through the gap in the wall.

that training a single predictor for predicting a list works
well.

We believe the concepts of libraries, loss-sensitive classifi-
cation and list prediction will be of benefit to existing work in
motion planning. Specifically, they will benefit applications
that allow multiple predictions to be made and evaluated,
either sequentially or in parallel.

One such area that can benefit is trajectory prediction.
Zucker [12] generates a ‘behavior library’ of optimized
trajectories and predicts the best trajectory given a query.
Berenson et al. [13] generates a library of past plans and
uses a heuristic to select one that can be repaired easily to
solve a new environment. Pan et al. [14] predicts if a seed
trajectory will be successful for local optimization. Poffald et
al. [15] uses a library of motion primitives and predicts the
best primitive that can be adapted for a new environment.
Jain et al. [16] learns a preference function on a library
of trajectories. List prediction fits seamlessly into all these
frameworks.

A niche where list prediction would make a direct impact
is in the generation of diverse trajectory library. Current
approaches resort to greedy maximization of coverage to
generate a library of trajectories [17], [18], [19]. Such prob-
lems would benefit greatly from machine learning techniques
generating lists of diverse trajectories, as shown in [1].

Wzorek et al. [20] predicts a motion planning strategy,
from a library, that can be applied to repair a plan. Palmieri
and Arras [21] learns a distance metric for an RRT to predict
the nearest neighbor. Pan et al. [22] learns a collision proba-
bility for queries to reduce the number of collision checking.
Morales et al. [23] predicts a motion planner to apply to
different sections of a planning problem. Vernaza and Lee
[24] learn a descent direction for trajectory optimization.
Even in these applications, it is possible to use list prediction
for improving performance.



VII. CONCLUSION

We have presented comprehensive arguments advocating
list prediction. We set up a framework, developed intuition,
and demonstrated results on a variety of planning problems.
To establish a firm base, each step in list prediction that
we considered is theoretically justified. However, there are a
number of modifications to the procedure, which may help
improve performance in practice.

In this work, the same features ¢ were used at all lev-
els. We could instead propagate information down levels
to improve performance. For example, in seed prediction,
knowing which seed was predicted at the first level, and
failed, might enable better predictions at the second level.
One way to propagate information is to construct different
features at different levels, ¢¥. ¢* includes information from
(ml(x): 7%=1(z)), so 7" has explicit knowledge of the past
predictions. Note that the space of predictors at each level,
I1*, is now different.

Building the set £, or library generation, is higher than
list prediction in the hierarchy of decision making. The
simplest method of library generation is to sample the space
of elements, as in our heuristics library. It may be beneficial
to generate the library more intelligently.

Our trajectory seeds library, for example, consisted of
optimal trajectories in environments drawn from p(z). At any
given iteration of the library creation process, an environment
is randomly sampled. If the library does not contain a seed
which when optimized leads to an acceptable solution, an
expensive global optimization routine is invoked to solve the
optimization. The result is then appended to the library. The
process is repeated till the library size crosses a size limit.

The library elements are thus associated with environ-
ments. This ‘library information’ could also be appended to
the features ¢. See [3] for results of these strategies on our
datasets. A formal investigation into library generation is an
interesting direction for future work.
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