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Abstract

CHOMP is a popular trajectory optimization algorithm that uses covari-
ant gradient techniques to produce high quality solutions. In its original
formulation, it solves an unconstrained sequentially quadratic problem with
extensions for handling equality constraints. In this paper we present an
approach to solve sequentially quadratic problem with linear inequality con-
straints. We present a dual projected newton method to efficiently solve
this problem. The proposed method alternates between primal and dual up-
dates thus leading to faster convergence than solving a constrained quadratic
program at each iteration.
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1 Unconstrained CHOMP

Let ξ ∈ Rn×d be a waypoint trajectory with n intermediate waypoints of
dimension d. Let U [ξ] be a cost functional and ∇̄U [ξ] be the gradient. Let
A be a metric tensor in which the norm between trajectories is measured.
Let η be a regularization coefficient.

CHOMP[2] defines an unconstrained sequential quadratic problem at
each iteration i as follows

ξi+1 = arg min
ξ

U [ξi] + (ξ − ξi)T ∇̄U [ξi] +
ηi
2
||ξ − ξi||A (1)

The update step to this is closed form as follows

ξi+1 = ξi −
1

ηi
A−1∇̄U [ξ] (2)

2 CHOMP with linear inequality constraints

Let Cξ ≤ d be a linear inequality constraint on the trajectory. The modified
optimization problem at each iteration i is as follows

ξi+1 = arg min
ξ

U [ξi] + (ξ − ξi)T ∇̄U [ξi] +
ηi
2
||ξ − ξi||A

s.t Cξ ≤ d
(3)

The optimization problem in (3) is a quadratic programming problem.

3 Dual Projected Newton Method

3.1 Dual Problem

Let u be the Lagrange multipliers. The Lagrangian is as follows

L [ξ, u] = (ξ − ξi)T ∇̄U [ξi] +
ηi
2
||ξ − ξi||A + uT(Cξ − d) (4)

The Lagrange dual function is as follows

g [u] = min
ξ
L [ξ, u]

= − 1

2ηi

(
∇̄U [ξi]− CTu

)T
A−1

(
∇̄U [ξi] + CTu

)
+

uT
(
Cξi − d−

1

ηi
CA−1

(
∇̄U [ξi] + CTu

)) (5)
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Hence the dual optimization problem at every iteration is as follows

ui = arg max
u

g [u] s.t u ≥ 0

= arg max
u

− 1

2ηi

(
∇̄U [ξi]− CTu

)T
A−1

(
∇̄U [ξi] + CTu

)
+

uT
(
Cξi − d−

1

ηi
CA−1

(
∇̄U [ξi] + CTu

))
s.t u ≥ 0

= arg max
u

− 1

2ηi
uTCA−1CTu+ uT

(
Cξi − d−

1

ηi
CA−1∇̄U [ξi]

)
s.t u ≥ 0

= arg min
u

1

2ηi
uTCA−1CTu− uT

(
Cξi − d−

1

ηi
CA−1∇̄U [ξi]

)
s.t u ≥ 0

(6)
The primal solution can be recovered from the dual as follows

ξi+1 = ξi −
1

ηi
A−1∇̄U [ξi]−

1

ηi
A−1CTui (7)

Note that the difference in the update rule (7) from (1) is the addition
of a term due to lagrange multipliers.

3.2 Projected Newton Method

The problem defined in (6) is a quadratic box constrained optimization prob-
lem. For cases where the Hessian CA−1CT is non-singular, such problems
can be solved using projected Newton methods [1].

Consider the following box constrained problem.

min
u

G [u] s.t u ≥ 0 (8)

The method starts with an initial point u0, a small constant ε > 0 and
performs the following steps at iteration i

1. Define a binding set Bi = {k : uki ≤ ε,
[
∇̄G [ui]

]
k
> 0}, where uki

is the kth variable of vector ui, and
[
∇̄G [ui]

]
k

is the kth variable of

the gradient ∇̄G [ui]. These are variables close to the boundary and
moving them further would decrease the criterion.

2. Define the free set Fi = {1, . . . , n} \ Bi.

3. Define the principal submatrix of the inverse Hessian along the free
variables Si =

[
∇̄2G [ui]

]
Fi

4. A projected Newton step is taken along the free variables only

ui+1 = P≥0

(
ui − αi

[
Si 0
0 I

] [[∇̄G [ui]
]
Fi[

∇̄G [ui]
]
Bi

])
(9)

where P≥0 projects each variable to positive half, αi is the step size.
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3.3 Algorithm

We propose a dual projected newton method to solve the constrained se-
quential quadratic problem (3). We start of with an initial primal trajectory
ξ0, initial dual variables u0 and at iteration i perform the following steps

1. Perform one iteration of projected Newton

ui+1 = P≥0

(
ui − αi

[
Si 0
0 I

] [[∇̄G [ui]
]
Fi[

∇̄G [ui]
]
Bi

])
(10)

where G [u] = 1
2ηi
uTCA−1CTu− uT

(
Cξi − d− 1

ηi
CA−1∇̄U [ξi]

)
2. Perform one primal update

ξi+1 = ξi −
1

ηi
A−1∇̄U [ξi]−

1

ηi
A−1CTui+1 (11)

The basic idea behind the algorithm is that instead of ensuring the con-
straints are satisfied at each interim stage of CHOMP, a balance is main-
tained between objective minimization and constraints satisfaction. Since
the original problem is non-convex, there is always a possibility that enforc-
ing hard constraints initially might result in a poor local minimum. Instead
in our algorithm, the cost minimization moves the trajectory away from ob-
stacles first. As the trajectory approaches the local minimum, the quadratic
approximations of the cost functions remain invariant thus allowing the dual
ascent to converge and result in a feasible trajectory.

From a computation standpoint, this is also efficient as the time com-
plexity of the update step is well defined (as opposed to solving the QP at
each iteration depends on the conditioning of the problem).

4 Results

To illustrate the algorithm we will present some canonical results of 2D
trajectory optimization with different constraints.

The cost and runtimes for all experiment and algorithm are shown in
Table. 1.

Table 1: Performance of CHOMP variants for 3 experiments

Experiment Unconstrained Iterative QP Dual Proj Newton
Time(s) Cost Time(s) Cost Time(s) Cost

No constraints 0.016 1.019 - - - -
Trajectory constraint - - 0.775 2.838 0.031 2.894
Goal constraint - - 0.421 0.862 0.0728 0.8158
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Figure 1: Unconstrained CHOMP (a) The cost map is visualized in gray
scale along with all intermediate trajectories in the optimization (blue to
green). (b) The cost at each iteration
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Figure 2: Constrained CHOMP with trajectory constraints (a) The cost
map is visualized in gray scale along with all intermediate trajectories in
the optimization (blue to green). The red dashed lines shows the trajectory
constraints (b) The cost at each iteration. Note the cost increases at the end
due to the dual ascent taking precedence.

5 Code

The MATLAB code for CHOMP is open source and available at https:

//bitbucket.org/castacks/matlab_chomp/overview
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Figure 3: Constrained CHOMP with goal constraints (a) The cost map
is visualized in gray scale along with all intermediate trajectories in the
optimization (blue to green). The red dashed lines shows the goal constraints
(b) The cost at each iteration.
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