
Rearrangement planning using
object-centric and robot-centric action spaces

Jennifer E. King⇤, Marco Cognetti†, Siddhartha S. Srinivasa⇤
⇤Carnegie Mellon University (CMU), †Sapienza University of Rome

{jeking, ss5}@andrew.cmu.edu, cognetti@diag.uniroma1.it

Abstract—This paper addresses the problem of rearrangement
planning, i.e. to find a feasible trajectory for a robot that must
interact with multiple objects in order to achieve a goal. We
propose a planner to solve the rearrangement planning problem
by considering two different types of actions: robot-centric and
object-centric. Object-centric actions guide the planner to perform
specific actions on specific objects. Robot-centric actions move the
robot without object relevant intent, easily allowing simultaneous
object contact and whole arm interaction. We formulate a hybrid
planner that uses both action types. We evaluate the planner on
tasks for a mobile robot and a household manipulator.

I. INTRODUCTION

In this paper, we offer a method for solving rearrangement
planning problems. In these problems, a robot must work
in clutter, reasoning about moving multiple objects in order
to achieve a goal. In particular, we focus on rearrangement
planning problems that require nonprehensile interactions,
such as pushing, to interact with objects.

Several previous works have solved the problem using
purely object-centric actions [1]–[5]. Here the planner is
guided to perform specific actions on specific objects. These
object-centric actions are often exposed to the planner in the
form of user-defined high-level primitives. These primitives
can be highly effective - allowing the planner to make large
advancements toward the goal. However, the use of only these
actions limits the types of solutions generated by the planner.
In particular, these interactions usually involve only contact
with a single part of the robot, i.e. the end-effector, and often
forbid simultaneous object contact.

Recent work [6] proposed the use of lower-level primitives
that describe only robot motions, with no object-relevant
intent or explicit object interaction. The use of these robot-
centric motions relaxes the restrictions imposed by the object-
centric actions, allowing the planner to generate solutions that
exhibit whole arm interaction and simultaneous object contact.
However, the resulting planner often suffers from long plan
times due to the lack of goal directed motions available to the
planner.

Humans use a diverse set of actions when interacting with
the world. While many of these actions are object-centric,
focusing on interacting in a specific way with a single object,
other interactions are purely coincidental. These interactions
are the unplanned result of a motion with different intent.
Consider the example of reaching for a milk jug in the back
of a refrigerator. One might first carefully slide the juice jug

(a) A rearrangement task for the HERB robot (b) End-effector path

(c) The KRex robot (d) Two example paths for KRex

Fig. 1: Rearrangement planning examples for two manipulators, the HERB
robot and KRex robot. In each scenario, the robot must push the green
box from its start pose to the goal region indicated by the green circle.
Our planner combines Robot-centric (dashed purple) and object-centric (solid
orange) actions to generate feasible solutions.

out of the way, then simply reach for the milk, and trust that
other objects that are touched will naturally be pushed out
of the way, without requiring specific actions to move them.
We wish to enable our motion planners to generate similar
solutions to planning in clutter.

In this paper, we address the following research question:
How can we blend the use of object-centric actions
and robot-centric actions to best produce solutions
to rearrangement problems?

Our insight is that both types of actions are critical to
generating expressive solutions quickly. By integrating the
two actions types, we can use the freedom of interaction
fundamental to the robot-centric actions while still allowing
for the goal oriented growth central to the object-centric
methods.

We propose a planner that incorporates both object-centric
and robot-centric actions. In addition we propose to use
physics models like those used in [6]–[8] to forward propagate
both the object-centric and robot-centric actions. This allows
the motion primitives central to object-centric planners to
produce simultaneous object contact and whole arm interaction
without explicitly requiring the primitive designer to express
and model such interaction. We demonstrate our algorithm
on rearrangement planning problems for both a mobile robot
KRex and the high degree-of-freedom HERB robot from Fig.1.
We show that by allowing the planner to consider hybrid paths

(a) Start configuration (b) A short transit primitive
followed by a random mo-
tion

(c) The robot uses the back
of the forearm to move the
box to a location where a
push primitive can be ap-
plied.

(d) An object-centric push
primitive is used to move
the box to the goal region.

(e) The final configuration.
The robot moves the object,
blue box and glass simulta-
neously to achieve the goal.

Fig. 2: (Top) The execution of a trajectory that moves the green box from its start configuration to the goal region. The robot uses a mix of random robot-centric
motions and object-centric primitives to accomplish the goal. By using a physics model to rollout all actions the planner can easily generate solutions that
use the whole arm and move multiple objects simultaneously. (Bottom) A top-down render of the path of the end-effector. Random robot-centric motions are
shown in purple, object-centric transit and push primitives are shown in orange.

that combine both action types, such as the one in Fig.2, our
planner perfoms as well or better than planners that use only
object-centric or robot-centric actions.

The remainder of this paper is organized as follows. In Sec-
tion II we describe the rearrangement planning problem this
paper addresses in detail. We offer an overview of existing
solutions and our method in Section III. We then provide ex-
perimental evaluation of our planner in Section IV. Finally, we
offer limitations and ideas for future extensions in Section V.

II. THE REARRANGEMENT PLANNING PROBLEM

Assume we have a robot, R, endowed with configuration
space C

R. The robot is working in a bounded world popu-
lated with a set, M, of objects that the robot is allowed to
manipulate. Each object is endowed with configuration space
C

i for i = 1 . . .m. Additionally, there is a set, O, of obstacles
which the robot is forbidden to contact. Fig.3 depicts each of
these sets.

We define the state space X as the Cartesian product space
of the configuration spaces of the robot and objects: X =
C

R ⇥ C

1 ⇥ · · · ⇥ C

m. We define a state x 2 X by x =�
q, o

1
, . . . , o

m
�
, q 2 C

R
, o

i 2 C

i 8i. We define the free state
space Xfree ✓ X as the set of all states where the robot and
objects are not penetrating themselves, the obstacles or each
other. Note that this allows contact between entities, which is
critical for manipulation.

The task of the rearrangement planning problem is to find
a feasible trajectory ⇠ : R�0 ! Xfree starting from a state
⇠(0) 2 Xfree and ending in a goal region ⇠(T) 2 XG ✓ Xfree

at some time T � 0.
The state x evolves nonlinearly based on the physics of the

manipulation, i.e. the motion of the objects is governed by the
contact between the objects and the manipulator. We describe
this evolution as a non-holonomic constraint:

ẋ = f(x, u) (1)

R Robot
C

R Robot c-space
M Movable objects
C

i Movable i c-space
O Obstacles

Xfree Free state space
U Control space

XG Goal region

Fig. 3: The planning environment

where u 2 U is an instantaneous control input. The function f

encodes the physics of the environment. A path ⇠ is feasible if
there exists a control, u 2 U , at every time t � 0 that allows
the constraint f to be satisfied while following ⇠.

III. RANDOMIZED REARRANGEMENT PLANNING IN
DETERMINISTIC ENVIRONMENTS

We utilize a Rapidly Exploring Random Tree (RRT) [9] to
solve the rearrangement problem. Traditional implementations
of the algorithm solve the two-point boundary value problem
(BVP) during tree extension. Because we must plan in the
joint configuration space of the robot and objects, solving the
two-point BVP is as difficult as solving the full problem.
In particular, the objects are not directly controllable. An
object can only move as a result of contact between the
manipulator and the object. Therefore, solving the two-point
BVP to connect x1, x2 2 Xfree requires finding a path for the
robot that moves each object in M from its position in x1 to
its position in x2.

Previous works have handled this limitation in two ways,
described in the following sections.

2 4 6 8 10

Num samples (k)

0

20

40

60

80

100

120
D

is
ta

n
ce

re
m

a
in

in
g

(%
)

object-centric
robot-centric

Fig. 4: The distance between the achieved state and targeted state. As can
be seen, sampling object-centric actions leads to significant improvement in
reaching the target state.

A. Random sampling

Algorithm 1 Kinodynamic RRT with random action sampling
and physics model propagation

1: T {nodes = {x0},edges = ;}
2: while not ContainsGoal(T) do

3: xrand SampleConfiguration()

4: xnear Nearest(T,xrand)

5: for i = 1 . . . k do

6: (ui, di) SampleUniformAction()

7: (xi, di) PhysicsPropagate(xnear, ui, di)

8: i

⇤ = argmini Dist(xi, xrand)
9: if Valid((xnear, xi⇤), ui⇤ , di⇤)) then

10: T.nodes [{xi⇤}
11: T.edges [{((xnear, xi⇤), ui⇤ , di⇤)}
12: path ExtractPath(T)

As suggested by Lavalle [10] a useful alternative to solving
the two-point BVP is to use a discrete time approximation
to (1) to forward propagate all controls and select the best
using a distance metric defined on the state space. In particular,
define an action set A : U ⇥ R�0 where a = (u, d) 2 A
describes a control, u, and associated duration, d, to apply the
control. Then, a transition function, � : X ⇥A! X , is used
to approximate the non-holonomic constraint.

Our control space U is continuous, rendering full enumer-
ation of the action set infeasible. Instead, we can sample
k actions, forward propagating each under � and selecting
the best from this discrete set. Algorithm 1 shows the basic
implementation.

This technique relies on robot-centric actions and uses the
transition function � to model the interactions that result from
these robot motions. Recent work [6], [8] has shown the
use of physics models to implement this transition function.
This is attractive because it allows complex interactions like
multi-object pushing and whole arm manipulation to evolve
naturally. It is also straightforward to implement, requiring
only a physics model and a sampling method defined on the
action space.

The drawback to this technique is its lack of focused tree
growth. In particular, during each extension the tree is not

strongly pulled toward the sampled configuration. Fig.4 shows
an example of the reduction in distance between the end of
an extension and the sampled state as the number of samples
actions, k, to select from increases. Even with a large value
of k the tree makes very little progress toward the sampled
state when using robot-centric actions. This is particularly
detrimental when the sampled state is a goal state. The result
is that the tree must randomly “stumble” on a goal rather
than intentionally growing in that direction. This often leads
to higher than desired plan times.

B. High-Level Actions

Algorithm 2 Kinodynamic RRT using motion primitives
1: T {nodes = {x0},edges = ;}
2: while not ContainsGoal(T) do

3: xrand SampleConfiguration()

4: xnear Nearest(T,xrand)

5: a1, . . . , aj GetPrimitiveSequence()

6: xnew PrimitivePropagate(xnear, (a1...aj))
7: if Valid((xnear, xnew), (a1, . . . , aj)) then

8: T.nodes [{xnew}
9: T.edges [{((xnear, xnew), (a1, . . . , aj))}
10: path ExtractPath(T)

An alternative method employed in [1], [3] is to use a a set
of object-centric primitives capable of solving the two-point
BVP in a lower dimensional subspace. For example, a “push-
object” primitive would be capable of providing a sequence
of actions that moves an object from a start configuration to a
sampled configuration. Robot-centric primitives are restricted
to transit motions - actions where the robot moves without
making contact with any object in the scene. Algorithm 2
shows the integration of primitives into the RRT.

This method is attractive because it can allow large exten-
sions of the tree, and the sampling method is highly connected
to tree growth. Fig.4 shows the reduction in distance to the
sampled state on an extension is much better when using these
object-centric primitives. This is particularly useful when the
sample is a goal state: it allows the tree to grow to the goal.

However, the reliance on object-centric actions to gen-
erate all object motion is detrimental in two ways. First,
the actions are limited in their expressiveness. In particu-
lar, contact is restricted to only interactions between the
manipulator and the single object targeted by the action.
The PrimitivePropagate function (Algorithm 2-line 6)
explicitly prohibits contact with other movable objects or
obstacles in the scene. This prevents simultaneous object
interactions, eliminating many feasible solutions when the
robot is working in clutter.

Second, and possibly more importantly, this method is
susceptible to failure if the primitive cannot be successfully
applied. Consider the example in Fig.5a. An example primitive
may be to move the hand near the box with palm facing in
the direction of the desired push, then push the box in the
direction of its sampled location. The box is near the edge of

(a) Desired end-effector pose for a
“push-object” primitive is not within
the reachable workspace of the robot

(b) An alternative achievable end-
effector pose that cages and pulls the
object.

Fig. 5: An example failed “push-object” primitive. The desired end-effector
pose is not reachable. An alternate primitive that cages and pulls the object
must be defined for the planner to find a solution in object-centric primitive
based approaches.

the reachable workspace of the manipulator. As a result, all
attempts at applying the high-level action will fail because the
robot cannot reach the desired pose relative to the box. Even
more problematic, a solution to the scene cannot be found
given the current action space. To generate a solution, the
programmer must define alternative primitives (Fig.5b).

C. Hybrid Approach

Algorithm 3 Kinodynamic RRT using hybrid action sampling
1: T {nodes = {x0},edges = ;}
2: while not ContainsGoal(T) do

3: xrand SampleConfiguration()

4: xnear Nearest(T,xrand)

5: for i = 1 . . . k do

6: r Uniform01()

7: if r < prand then

8: Ai SampleUniformAction()

9: else

10: Ai SamplePrimitiveSequence()

11: (xi, Ai) PhysicsPropagate(xnear, Ai)

12: i

⇤ = argmini Dist(xi, xrand)
13: if Valid((xnear, xi⇤), Ai⇤)) then

14: T.nodes [{xi⇤}
15: T.edges [{((xnear, xi⇤), Ai⇤)}
16: path ExtractPath(T)

We propose a method that allows for the freedom of
interaction fundamental to the robot-centric methods while
still allowing for the goal oriented growth central to the object-
centric methods. Algorithm 3 shows the modified algorithm.

Like in the method described in Section III-A, at each
tree extension, the best of k possible extensions is selected.
However, each candidate extension i expresses a sequence of
actions, Ai. With some probability, prand, the sequence Ai

contains a single action a = (u, d) drawn uniformly at random
from the space of feasible actions. With probability 1�prand,
Ai contains a sequence of actions, a1 . . . aj , that are equivalent

(a) Example transit primitive (b) Example push-object primitive

Fig. 6: Two primitives defined for the mobile manipulator. Dubins paths are
used to generate paths between two poses in SE(2).

to the primitives described in Section III-B with noise applied
to the primitive parameters. In all cases, the sampled action
sequence Ai is propagated through the physics model and the
sequence is truncated at the first infeasible state encountered,
i.e. collision with a static obstacle.

This method is attractive because it combines the strengths
of the methods described in Section III-A and Section III-B.
Incorporating the physics model in the propagation removes
the restriction that object-centric primitives can only allow
interaction between the manipulator and the object the primi-
tive is defined on. Instead, any unintended contact with other
objects in the scene can be modeled. Often, this unintended
contact is not detrimental to overall goal achievement and
should be allowed. Sampling random actions with some prob-
ability allows the planner to generate actions that move an
object when all primitives targeted at the object would fail
(i.e. the example in Fig.5).

IV. EXPERIMENTS

We implement the planner described in Section III-C in the
Open Motion Planning Library [11]. We test three versions
of the planner. First, we set prand = 0. This forces the
planner to always sample primitive sequences. We denote
this planner as object-centric in all results. Second, we set
prand = 1. This forces the planner to always sample a random
action. We denote this planner as robot-centric in all results.
Finally, we set prand = 0.5. This allows the planner to choose
primitives or random actions with equal probability. We denote
this planner as hybrid in all results. We discuss alternative
selections for prand and their impact on results in Section V.

Using the planner, we execute a set of experiments to test
the following hypotheses:

H1: On scenes easily solvable using object-centric ac-
tions, the hybrid planner performs equivalent to the
object-centric planner in both success rate and plan
time. Additionally, both the object-centric and hybrid
planners outperform the robot-centric planner that sam-
ples only random actions.
H2: The hybrid planner achieves higher success rate
and faster plan times than the object-centric or robot-
centric planners on difficult scenes.

We test the hypotheses in two scenarios: a steered car push-
ing boxes and a 7 degree-of-freedom household manipulator

0 10 20 30 40 50 60

Planning Time Budget (s)

0.0

0.2

0.4

0.6

0.8

1.0
S
u
cc

es
s

R
a
te object-centric

hybrid
robot-centric

(a) Success rate as a function of plan time accumulated from
150 runs across three easy scenes.

(b) Example object-centric
solution

(c) Example hybrid solution (d) Example robot-centric
solution

Fig. 7: Example solutions for each of the three planners for an easy scene.

pushing objects on a table. We define “easy” and “difficult”
scenes more precisely in the scenario descriptions.

A. Mobile manipulator

1) Problem setup: We first test our planner using a mobile
manipulator (Fig.1c). The robot behaves as a steered car. For
this robot, C

R = SE(2) and a control u = (v, �) 2 U
describes the forward velocity and steering angle applied to
the robot. The robot interacts with objects in the plane. We
use the Open Dynamics Engine (ODE) [12] as our physics
model to forward propagate all actions. We use objects that
are quasistatic in nature, i.e. the object comes to rest as soon
as the robot ceases to apply forces. This allows us to represent
the state of objects by only their configuration, ignoring object
velocities. As a result, Ci = SE(2) for i = 1 . . .m.

We task the robot with pushing a box from its start con-
figuration into a goal region with radius 0.5m. We confine
the robot to move in a 15m ⇥ 10m region. Any actions that
move the robot or any object outside of this bounded region
are considered invalid.

For this problem the following primitive set is defined:
1) Transit: The transit primitive moves the robot from a

start to a goal configuration in SE(2) by finding the
shortest length Dubins curves [13] connecting the two
configurations (Fig.6a).

2) Push: The push primitive pushes an object along the
straight line connecting a start and goal configuration for
the object. The primitive returns a set of actions that first
move the robot to a position and orientation “behind”
the object, then drives the robot straight along the ray,
pushing the object (Fig.6b).

When sampling random actions, we sample forward velocity
from the range [�0.5, 0.5] m/s and duration from the range
0.5s to 5.0s. We define the sampling range for steering angle
using the same minimum and maximum angles as used for
generating the Dubins paths.

2) Simple scenes: We first test our planner on three scenes
solved in less than 10s on average using the object-centric
primitives defined in the previous section. We denote these
three scenes “simple” or “easy” scenes. Fig.7 shows an ex-
ample scene and a single solution from each planner. We run
each planner 50 times on each scene, for a total of 150 trials

per planner. For each trial, we record the total time to find
a solution. Fig.7a shows the success rate as a function of
plan time for up to 60 seconds of total plan time budget.
As can be seen, both the hybrid and object-centric planners
solve all scenes in the allotted plan time, while the robot-
centric planner fails often. A one-way ANOVA with Tukey
HSD post-hoc analysis reveals there is no significant difference
in mean plan time between the hybrid and object-centric
planners (p = 0.297). There is a significant difference between
hybrid and robot-centric (p < 0.001) and object-centric and
robot-centric (p < 0.0001). This supports our hypothesis:
The hybrid planner outperforms the robot-centric planner,
and performs as well as the object-centric planner on simple
scenes.

3) Difficult scenes: Next we test our planner on three scenes
that require more than 60s on average to be solved with object-
centric actions. We denote these three scenes as “difficult”
scenes. Fig.1d and Fig.8 show these scenes and example
solutions. Again we run each planner 50 times on each scene.

Fig.9 shows the success rate of all three planners as a
function of plan time. As can be seen, the hybrid planner
is far more successful than the object-centric or robot-
centric planners. A one-way ANOVA with Tukey HSD post-
hoc analysis reveals that the difference in mean plan-time
between the hybrid and object-centric planners is statistically
significant (p < 0.001) as is the difference between the hybrid
and robot-centric planners (p < 0.05). This supports our
hypothesis: The hybrid planner achieves higher success rate
and faster plan times than the object-centric or robot-centric
planners on difficult scenes.

4) Qualitative analysis: Next we examine some qualitative
aspects of the solutions. Neither the push primitive nor the
transit primitive allow the robot to move in reverse. As a
result, in difficult scenes like in Fig.8, we see random actions
used to back the robot away from boundaries and obstacles
(Fig.8b, Fig.8c).

Additionally, in the difficult scenes (Fig.1d, Fig.8) a static
obstacle blocks any path from the start configuration to an
object. Thus the push primitive fails in most applications
from the start. In addition, the static obstacles also cause
many applications of the transit primitive to fail, as they often
drive the robot into an obstacle. Here, the use of random

(a) Start configuration (b) A robot-centric random
action is used to reverse the
robot away from the bound-
ary

(c) A transit primitive
moves the robot near the
wall

(d) Two robot-centric ran-
dom actions are used to re-
verse the robot away from
the obstacle and then drive
the robot into open space

(e) Finally, an object-
centric action is used to
push the target to the goal
region.

Fig. 8: In this scene, the wall (black) serves as an obstacle preventing application of the push primitive from the start configuration. Robot-centric actions are
needed to grow the tree until such a primitive can be applied. Once available, the object-centric push primitive extends the tree to the goal.

0 10 20 30 40 50 60

Planning Time Budget (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
cc

es
s

R
at

e

object-centric
hybrid
robot-centric

Fig. 9: Success rate as a function of plan time on scenes difficult to solve
using only the available primitives (i.e. Fig.1d and Fig.8)

actions available to the hybrid planner is advantageous because
they can be used to start tree growth from the root. Then,
after the tree begins growing, the push primitive and transit
primitive can be applied more freely. In fact, if we analyze
all solutions generated by the hybrid planner (across easy and
difficult scenes), we see that 89.2% (207/232) end in an object-
centric primitive. This supports our intuition that object-centric
actions help grow the tree to the goal.

B. Household manipulator

1) Problem setup: Next, we execute a series of tests in
simulation for the HERB robot [14]. We task HERB to push
an object on a table top from a start configuration to a 10
cm radius goal region. We plan for the 7 degree-of-freedom
(DOF) left arm of the robot, thus C

R = R7 and a control
for the arm defines joint velocities for each of the 7 DOFs.
Following the example in [6], we confine the end-effector of
the robot to move in the plane parallel to the table surface.
We note that we allow and model pushing contact between
the full arm and all objects. Any motions that push an object
off of the table are considered invalid.

For this problem the following primitive set is defined:
1) Transit: The transit primitive moves the end-effector

from a start pose to a goal pose. The motion of the
end-effector follows a straight line in workspace along
the plane parallel to the table surface.

2) Push: The push primitive pushes an object along the
straight line connecting a start and goal configuration

for the object. The primitive returns a set of actions that
first move the end-effector to a position and orientation
“behind” the object, then move the end-effector straight
along the ray, pushing the object. The motion of the
end-effector is confined to the plane parallel to the table
surface during the entire primitive.

We use a quasistatic model of planar pushing as our physics
model [15]. Because we only model objects moving in the
plane, C

i = SE(2) for i = 1 . . .m. We note that more
complicated primitives could be defined. For example, we
could implement the transit primitive by calling a motion
planner for the arm and allowing the end-effector to move
out of the plane. The primitives we use are selected to have
computational complexity similar to that of sampling random
actions, allowing us to more fairly compare plan times between
the object-centric and robot-centric approaches.

2) Simple scenes: We first test our planner on three scenes
solved in less than 60s on average using the primitives defined
in the previous section. We denote these scenes as “easy”
scenes for the household manipulator. Fig.10 shows an exam-
ple scene and solution. We run each planner 50 times on each
scene, for a total of 150 trials per planner. Fig.11 shows the
success rate as a function of plan time for up to 300 seconds
of total plan time budget. As can be seen, both the hybrid
and object-centric planners perform equivalently. A one-way
ANOVA with Tukey HSD post-hoc analysis confirms the
hybrid and object-centric planners to not differ significantly
in mean plan time (p = 0.782). The hybrid and robot-centric
do show significant difference (p < 0.0001) as do the object-
centric and robot-centric (p < 0.0001). This further supports
H1.

3) Difficult scenes: We then test our planner on four
scenes for HERB that require more than 300s on average to
solve using object-centric actions. We denote these scenes as
“difficult” scenes. Each either has clutter blocking the path to
the goal, or the goal object near the edge of the reachable
workspace of the robot. Again we run each planner 50 times
on each scene.

Fig.12 shows the success rate of all three planners as a
function of plan time. These scenes are difficult and each plan-
ner struggles to find a solution. The hybrid planner performs
slightly better than the other planners but a one-way ANOVA

(a) Start configuration (b) The object-centric push
primitive can be applied al-
most immediately

(c) The push primitive
moves the hand behind the
object

(d) Then the push primitive
moves the hand in the di-
rection of the push

(e) Goal configuration

Fig. 10: (Top) The execution of a trajectory that moves the green box from its start configuration to the goal region. In easy scenes like this, a path can be
found by the hybrid planner that uses mostly transit and push primitives. (Bottom) Top down view of the end-effector motion in the resulting path.

0 50 100 150 200 250 300

Planning Time Budget (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

R
at

e

object-centric
hybrid
robot-centric

Fig. 11: Success rate as a function of planning time for a set of 50 trials
on each of 3 scenes. These scenes can easily be solved using the defined
primitives. As can be seen, the hybrid approach performs as well as the object-
centric approach.

0 50 100 150 200 250 300

Planning Time Budget (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
u
cc

es
s

R
a
te

object-centric
hybrid
robot-centric

Fig. 12: Success rate as a function of plan time for scenes difficult to solve
using object-centric primitives

with Tukey HSV post-hoc analysis reveals the difference in
mean plan time is not significant when compared to the object-
centric (p = 0.629) or robot-centric (p = 0.566) planners.
This does not support H2.

We believe this result is strongly tied to the expressive-
ness of our primitives enabled by the physics propagation.
Specifically, by propagating the primitives through a physics
model, we eliminate many of the failure cases that would
prevent application of object-centric primitives in our scenes,
i.e. collision between the robot and other movable objects.

0.0 0.2 0.4 0.6 0.8 1.0

prand

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

R
a
te

Fig. 14: Success rate as a function of prand for the scenes in Fig.7 (red)
and Fig.8 (blue)

4) Qualitative analysis: Similar to the KRex results, we see
the random robot-centric actions used often to move objects
to a location where object-centric primitives can be applied.
For example, in Fig.2 the push primitive cannot be applied
to the object in its start location. The back of the forearm is
used to move the box nearer the robot (Fig.2c), enabling the
primitive to then be applied (Fig.2d-Fig.2e). Similar to KRex,
80.3% (155 / 193) of paths across all scenes end with an
object-centric primitive, further supporting our intuition that
object-centric primitives are important to goal achievement.
Fig.1a and Fig.10 show two other example paths ending in
object-centric primitives.

V. DISCUSSION

In this work, we have presented a method for combining
robot-centric and object-centric action spaces to improve
rearrangement planning. Our experiments show that by using
a combination of the two action types, we are able to improve
success rate and plan time when compared to planners that use
only a single action type. In addition, we show that by using a
physics model to forward propagate object-centric primitives,
we are able to allow the primitives to express simultaneous
object interaction and whole arm manipulation without explicit
encoding.

Fig. 13: Successful execution of a planned path containing object-centric and robot-centric actions on the HERB robot.

In all results, we used a value of prand = 0.5 for our
hybrid planner. This value allows object-centric primitives
and robot-centric random actions to be selected with equal
probability on each extension. However, we can vary this value
to possibly improve performance. Fig.14 shows the success
rate as prand is varied for one of the easy KRex scenes and
one of the difficult KRex scenes. The results seem to indicate
that low values of prand are move effective. Future work
should examine more closely the relationship between problem
composition and prand.

The randomized nature of the planner means the resulting
paths may be highly suboptimal in path length. One common
approach to improving optimality is to apply shortcutting
techniques to the paths [16]–[19]. These techniques attempt to
connect two points on the path with shorter segments that solve
the two-point BVP. Applying this technique to rearrangement
planning is difficult because the two-point BVP cannot be
solved in the general case. However, it may be possible to
extend prior work [6] and select points where the two-point
BVP only needs to be solved in a lower-dimensional subspace.
Then an object-centric primitive sequence could be applied.

We focus on scenarios that can be solved using only
pushing interactions. Future work should examine the impact
of expanding the search to include other interactions such as
grasping or toppling. This expanded search increases the size
of the state space, requiring objects to be represented in SE(3)
rather than SE(2), and the action space, likely requiring
we consider actions that move the end-effector in SE(3).
However, it may result in simpler plans for scenarios that can
easily be solved using alternative interaction primitives, i.e.
pick-and-place.

Finally, while we have shown success in executing the gen-
erated trajectories on a real robot (Fig.13), some trajectories
fail to achieve the goal when executed due to uncertainties in
the object perception, robot forward kinematics and physical
model of robot-object interaction. Prior work has shown that
actions similar to the “push-primitive” used in Section IV-B
can be uncertainty reducing [20]. Including such primitives,
and guiding the planner to select them, may improve the ro-
bustness of the generated trajectories to uncertainty, increasing
the planner’s applicability in everyday use.

VI. ACKNOWLEDGEMENTS

This material is based on work supported by the NASA
Space Technology Research Fellowship program (award

NNX13AL61H), the National Science Foundation IIS (award
1409003), Toyota Motor Engineering and Manufacturing
(TEMA), and the Office of Naval Research.

REFERENCES

[1] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation
with multiple action types,” in ISER, 2012.

[2] M. Dogar and S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” AuRo, vol. 33, no. 3, pp.
217–236, 2012.

[3] S.Jentzsch, A.Gaschler, O.Khatib, and A.Knoll, “MOPL: A multi-modal
path planner for generic manipulation tasks,” in IEEE/RSJ IROS, 2015.

[4] M. Stilman. and J. Kuffner, “Navigation among movable obstacles: Real-
time reasoning in complex environments,” in IEEE-RAS Humanoids,
2004.

[5] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in IEEE ICRA, 2007.

[6] J. King, J. Haustein, S. Srinivasa, and T. Asfour, “Nonprehensile whole
arm rearrangement planning on physics manifolds,” in IEEE ICRA, 2015.

[7] J. Bruce, S. Zickler, M. Licitra, and M. Veloso, “Cmdragons: Dynamic
passing and strategy on a champion robot soccer team,” in IEEE ICRA,
2008.

[8] J. Haustein, J. King, S. Srinivasa, and T. Asfour, “Kinodynamic random-
ized rearrangement planning via dynamic transitions between statically
stable configurations,” in IEEE ICRA, 2015.

[9] S. LaValle, “Rapidly-exploring Random Trees: A new tool for path
planning,” 1998.

[10] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” IJRR,
vol. 20, no. 5, pp. 378–400, 2001.

[11] I. Sucan, M. Moll, and L. Kavraki, “The Open Motion Planning Library.”
IEEE RAM, vol. 19, no. 4, pp. 72–82, 2012.

[12] “Open Dynamics Engine,” http://www.ode.org, 2000 (accessed August
2014.

[13] L. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tan-
gents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–516,
1957.

[14] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Di-
ankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. Weghe, “HERB:
A Home Exploring Robotic Butler,” AuRo, vol. 28, no. 1, pp. 5–20,
2010.

[15] K. Lynch and M. Mason, “Stable pushing: Mechanics, controllability,
and planning,” in WAFR, 1995.

[16] C. V. Geem, T. Siméon, and J.-P. Laumond, “Mobility analysis for
feasibility studies in cad models of industrial environments,” in IEEE
ICRA, 1999.

[17] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator tra-
jectories using optimal bounded-acceleration shortcuts,” in IEEE ICRA,
2010.

[18] G. Sánchez and J.-C. Latombe, “On delaying collision checking in PRM
planning - application to multi-robot coordination,” IJRR, vol. 21, no. 1,
pp. 5–26, 2002.

[19] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. Overmars, “Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems,” IJRR, vol. 17, no. 8, pp. 840–857, 1998.

[20] M. Dogar and S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in IEEE/RSJ IROS, 2010.

http://www.ode.org

	I Introduction
	II The Rearrangement Planning Problem
	III Randomized Rearrangement Planning in Deterministic Environments
	III-A Random sampling
	III-B High-Level Actions
	III-C Hybrid Approach

	IV Experiments
	IV-A Mobile manipulator
	IV-A1 Problem setup
	IV-A2 Simple scenes
	IV-A3 Difficult scenes
	IV-A4 Qualitative analysis

	IV-B Household manipulator
	IV-B1 Problem setup
	IV-B2 Simple scenes
	IV-B3 Difficult scenes
	IV-B4 Qualitative analysis

	V Discussion
	VI Acknowledgements
	References

