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Abstract—Detecting cars in large aerial photographs can be
quite a challenging task, given that cars in such datasets are
often barely visible to the naked human eye. Traditional object
detection algorithms fail to perform well when it comes to
detecting cars under such circumstances. One would rather use
context or exploit spatial relationship between different entities
in the scene to narrow down the search space. We aim to do so
by looking at different resolutions of the image to process context
and focus on promising areas. This is done using a hierarchy of
deconvolution networks with each level of the hierarchy trying
to predict a heatmap of a certain resolution. We show that our
architecture is able to model context implicitly and use it for finer
prediction and faster search.

Keywords—Object detection, Neural networks, Deconvolution
nets

I. INTRODUCTION

While there are several methods for detecting objects like
cars on roads, prevalent object detection algorithms perform
well when the target object to be detected occupies a significant
portion of the image. The main reason why such algorithms fail
to provide impressive results in our case is that in our dataset
cars are often so small that they might just as well be treated
as noise. Also given that, such aerial images captured from a
MAV are usually huge, a few megapixels, a sliding window
approach will take a significant amount of time processing
the entire image. Even downsampling the image to a lower
resolution is not a good idea, as lowering the resolution means
potential loss of information(a small car might just vanish
when the image is downsampled to a much lower resolution).
Hence we don’t want to naively downsample or use a sliding
window based method. Instead we propose an intermediate
strategy where we process the image at low resolution to
choose areas to examine at higher resolution. We do this
via a hierarchical network architecture. At every level of our
architecture, we take help of context to locate areas of interest
where we might find cars in an image and narrow down our
search scope as we go up to the next level. This not only helps
us to detect cars in a large photograph without downscaling it
but also discard areas where there is absolutely no chance of
finding cars, thereby resulting in faster prediction.

II. RELATED WORK

A. Object detection methods
One of the very common ways of doing object detection and

semantic segmentation in natural images is rcnn (regions with
cnns) [1]. Essentially, this approach involves identifying region
proposals in an image and passing it through a convolutional
neural network. Features are hence extracted from the CNN

S. Chakraborty e-mail: (satyaki.cs15@gmail.com D. Maturana
email:(dimatura@gmail.com) S. Scherer email:(basti@andrew.cmu.edu)
This work was done when S. Chakraborty was a summer intern at the
AirLab, RI, CMU under the mentorship of D. Maturana and S. Scherer.

Figure 1 A sample image showing cars that are to be
detected from the aerial vehicle. Some cars are too small to

be identified distinctly by a human eye.

and used for classification tasks, refining bounding boxes etc.
One thing that is to be noticed here is that the region pro-
posals used are bottom-up proposals based on approaches like
selective search [2], category independent object proposals[3],
multi-scale combinatorial grouping [4] etc. RCNN, however
is a relatively slow process and not meant for detecting and
identifying small objects. In recent years, there have been sev-
eral modifications to the original RCNN approach. Fast RCNN
[5], for example, surpasses the performance of the original
RCNN architecture in terms of accuracy while being 213x
faster during test time. While both these approaches rely on
bottom-up region proposal detection approaches like selective
search, the faster RCNN [6] shares full-image convolutional
features with the object detection network, thus enabling nearly
cost-free region proposals and real-time object detection.

YOLO [7] is another approach for fast object detection
in natural images (which also have generalised well in case
of artwork). The basic idea is to divide the image into SxS
grid cells and for each grid cell predict a bounding box
with a confidence score. Simultaneously, each grid cell is
also categorized into what class it belongs to. Finally both
pieces of information are merged to produce the final result,
The main reason why YOLO performs so fast is because it
treats the object detection problem as a regression problem by
predicting bounding boxes around objects and hence it does
not require a complex pipeline. Although YOLO is a faster
method compared to RCNN it is relatively less accurate and
hence is even worse for detecting small objects.
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B. Methods for capturing context
Exploiting context becomes useful for a variety of tasks

from object detection to semantic segmentation. rCPN [14],
for example, semantically segments an image using a recur-
sive neural network that propagates context. [13] uses spatial
context to learn to generate rich visual representations, which
are then used for unsupervised visual discovery of objects in an
image. [12] tries to model the relationship between an object
and its surrounding context and in the process shows that
context can be a rich source of information about an object’s
identity.

One approach that is of particular interest and can be viewed
as a possible solution to the problem is the memex model [8]
which takes an image as input and builds a graphical model
of different segments or objects present in the image. Such a
model is capable of capturing the spatial relationship between
different objects present in an image. Once we have built
the graphical model from an image, we can easily perform
queries, search for objects etc. Although, this might give a
solution to our problem, this method requires presegmentation
of the image, which becomes quite expensive for large aerial
photographs.

C. Deconvolution nets and semantic segmentation
Deconvolution networks [9] as introduced by Zeiler et al.

helps capturing features beyond certain edge primitives. A
deconvolution network consists of an encoder part which is
similar to a convolutional network without the softmax and the
MLP layers, and a decoder part which is basically a mirror im-
age of the encoder part i.e. the encoder part consists of convo-
lution and pooling layers while the decoder part comprises of
deconvolution (transposed convolution) and unpooling layers.
While Zeiler et al. had originally used deconvolution networks
for building representations, deconvolution networks have also
been used for semantic segmentation and scene labelling. For
example, [15] also advocates using a stack of deconvolution
layers for non-linear upsampling while performing semantic
segmentation. Noh et al. [10] used deconvolution networks
for identifying pixel level labels and segmentation masks.They
have also shown that finer details of objects in a scene are re-
vealed as features are forward propagated through the layers of
the deconvolution network. This suppresses noisy activations
and amplifies only those which are related to any target class,
thus aiding better scene labelling. We take inspiration from
these methods and use deconvolution nets for object detection
while modifying our architecture in certain ways, which is
discussed in the following section.

III. OUR APPROACH

One thing that is evident, is that in order to narrow down our
search space for finding cars, we need to use context as a tool
or exploit spatial relationship. This is because of the generic
assumption that a car is more likely to be on a plain road than
on a grassland. In stead of looking directly into a particular
patch at a high resolution, we first look into the entire image
at a low resolution to find out areas of interest. Once we have

Layer kernel size stride pad Output dim.
Input - - - 1x128x128

Conv-1 3x3 1 1 64x128x128
Pool-1 2x2 2 0 64x64x64
Conv-2 3x3 1 1 128x64x64
Pool-2 2x2 2 0 128x32x32
Conv-3 3x3 1 1 512x32x32
Pool-3 2x2 2 0 512x16x16
Conv-4 3x3 1 1 1024x16x16
Pool-4 2x2 2 0 1024x8x8

Unpool-1 2x2 2 0 1024x16x16
Deconv-1 3x3 1 1 512x16x16
Unpool-2 2x2 2 0 512x32x32
Deconv-2 3x3 1 1 128x32x32
Unpool-3 2x2 2 0 128x64x64
Deconv-3 3x3 1 1 64x64x64
Unpool-4 2x2 2 0 64x128x128
Deconv-4 3x3 1 1 1x128x128

TABLE I. THE FIRST HALF OF THE NETWORK CONSISTS OF
CONVOLUTION (CONV) AND POOL LAYERS, FOLLOWED BY A NUMBER OF

DECONVOLUTION (DECONV) AND UNPOOLING LAYERS.

done that we now look at promising area in the image at a
relatively higher resolution and repeat this process for several
times, each time increasing the resolution of the patch we are
looking into. With our hierarchy of neural networks we aim
to do so by capturing context implicitly – a particular level
of the hierarchy aims to predict regions of interests with a
certain degree of accuracy. Lower levels have a large context
as input but make very coarse predictions. Higher levels only
have a portion of the high resolution photograph as input but
predictions are finer. The complete architecture is described in
the following section.

A. Architecture
At the heart of the proposed architecture lie three deconvo-

lution networks. The architecture of the three deconvolution
nets in the three different levels of the hierarchy are identical
and described in table 1. Similar to Zeiler et al.’s, work we also
make use of switch matrices (in our case to aid construction
of heatmaps).

Our motivation for using deconvolution networks for pre-
dicting heatmaps arises from their use as a tool for semantic
segmentation as discussed in the previous section. In our
case, we use such networks to predict heatmaps that highlight
regions containing cars or regions with possibility of finding
cars. All three networks have the same exact architecture
taking a 128x128 image as input and producing a heatmap
of the same resolution. The lowest level network takes the
entire image as input at 128x128 resolution and is trained to
predict areas where there is a possibility of finding cars. How
we have trained different levels of the architecture is discussed
in the training methodology section. After the prediction has
been made at the lowest level, we perform binarisation using
a threshold of 0.5(emperically chosen). Next we divide the bi-
nary image into 4 sections equally (each of dimension 64x64),
and isolate those sections where there are white patches (i.e.
possibilities of finding cars). We remember the positions of
these patches and use this information for selecting 128x128
patches from the image at 256x256 resolution where we should
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Figure 2 The overall architecture of the hierarchy of deconvolution networks. The hierarchy consists of 3 different levels. Each
of the three levels essentially consists of a single deconvolution network, the exact architecture of which is described in Table
1. As we go up the hierarchy, the size of context provided as input decreases on one hand, but the prediction gets finer on the

other.



4

look for cars at level 2 of the hierarchy. Now the entire process
is repeated as we go from level 2 to level 3. Level 3 takes
128x128 patches from the image at 512x512 resolution (the
highest resolution we have considered in our tasks) and tries
to predict heatmaps of cars as accurately as possible. Finally
we stitch all the level 3 predictions together to get the final
heatmap.

B. Training Methodology
The dataset of aerial images used in this case consisted

of roughly 300 images. Hence for better generalisation we
pretrained the network on the MSCOCO [11] car dataset which
consists of roughly 2000 labelled images and later on fine-
tuned the parameters while training on our own dataset. How
we have trained at different levels of the hierarchy is explained
as follows.

As already discussed, the lowest level of the hierarchy aims
to predict regions with high probability of finding cars, whereas
the highest level tries to predict cars as accurately as possible.
Hence, as we go up the hierarchy our prediction gets finer,
although the context used for prediction decreases. The labels
against which we train our network are different for the three
different levels. For training at level 1, we downsample the
label to 128x128 resolution and perform dilation and gaussian
blurring on the same. The reason for dilation and blurring
is that at this level we want to train the network in such a
away that it is able to predict areas of interests and not the
individual cars. For training at level 2, we downsample a label
to 256x256 resolution, crop out 128x128 patches and then
perform dilation and blurring on those. It is to be noted that as
the level increases we reduce the parameters for dilation and
blurring the labels. At level 3, we directly crop out 128x128
patches from the label at original 512x512 resolution and train
the network without any dilation and blurring. Figure 3a and 3b
show the labels for training at level 3 and level 1 respectively.

Figure 3a, 3b and 3c (from left to right). 3a is a sample
label with which we train the network at level 3, the highest
level. 3b is a sample label with which we train the network
at level 1. 3c is a blended image which shows how simple
dilation and blurring is able to capture part of the context

surrounding the cars.

IV. RESULTS AND ANALYSIS

We now show the performance of our approach on the
test dataset. First we show the predictions made by the three
different levels of the architecture in fig. 4. The results agree
with our previous claim that as we go up the hierarchy our
prediction gets finer.

Figure 4: 4a(top left) is the actual input image, 4b(top right)
is the prediction at level 1, 4c(bottom left) is the prediction

at level 2, 4d(bottom right) is the prediction at level 3. Level
1 prediction is all about capturing the regions of interest like

roads in this case, whereas level 3 tries to predict the
location of the cars as accurately as possible.

Fig. 4 shows an example which highlights the importance of
the dilation and blurring done on the labels while training the
lower levels of the network. The prediction at level 1 tries to
identify potential regions of interest. In this case the roads are
predicted with somewhat higher probability compared to the
grassy areas. This shows the ability of the lower levels of the
hierarchy to identify potential regions of interest, as in areas
where to look for our target object.

Fig. 4 also shows the significance of using a hierarchy of
neural networks. As we go up the hierarchy, we only consider
those patches or areas where the network thinks there is a
chance of finding the target object(s). For eg., in the level
1 prediction the right half of the heatmap does not indicate
any region of interest, so we only consider the left half of the
input image at level 2. This not only decreases the search space
efficiently, thereby reducing the overall time taken to locate the
objects of interest, but also takes care of reducing the number
of false positives as redundant patches are discarded as the
level increases.

We show the precision recall curve for labelling cars at the
pixel level in Fig. 5. The curve shows a low recall value in
general. This is because of the presence of some false negatives
at the level 3 (the highest level) prediction. The main reason
for such is primarily the bottleneck of the neural network – as
we go deep inside a neural network, by the time we reach the
end of the convolution network, due to successive averaging
out and pooling, most of the information about very tiny cars
are essentially lost. Figure 6a shows a patch consisting of a
congested scene fed to the level 3 network and figure 6b shows
a feature map generated from the patch (figure 6a) at layer 4 of
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Figure 5 Shows the precision recall curve. The X axis is the precision axis
whereas the Y axis is the recall axis.

the level 3 neural network. As is evident from the figure, most
of the information of the small cars have essentially vanished.
One thing that can be inferred from this is that we need to
somehow preserve the information of such small objects as
we go deep inside the neural network.

Figure 6: 6a(a sample input patch fed to the level 3 neural
network), 6b(a sample feature map generated at layer 4 of

the level 3 neural network from the input patch)

V. CONCLUSION AND FUTURE WORK

Accurate detection of cars from aerial vehicles like MAVs
can be extremely useful for traffic monitoring. We have shown
why bottom-up approaches for object detection are not much
helpful in this particular scenario and hence proposed a novel
way of solving this problem from a top-down perspective by
exploiting context. More importantly, our approach tries to
solve a small piece of a bigger puzzle – by narrowing down
our search space using context for detecting cars we aim to
exploit spatial relationship to identify any particular object
of interest. Since the architecture is able to capture context
implicitly, hopefully, the same architecture can be trained to
identify pedestrians, other aerial vehicles, any object of interest
which might be too small to be detected from an aerial view.

However, experiments conducted on our small dataset have
revealed the tendency of our architecture to detect false neg-
atives, a possible explanation of which is given in section 4.
One way to solve this issue would be to use connections across
different layers in the same neural network. For eg., a layer
can have the output of the previous layer as an input as well
as a scaled version of the original input image patch. Fig. 7
shows an example of such an architecture. This way it might

Figure 7 A possible solution to the stated issue by using
cross layer connections from the input layer.

be possible to somehow counterbalance the information loss by
preserving texture, shape, colour and other similar properties.
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