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Abstract— We present an algorithm for generating open-
loop trajectories that solve the problem of rearrangement
planning under uncertainty. We frame this as a selection
problem where the goal is to choose the most robust
trajectory from a finite set of candidates. We generate each
candidate using a kinodynamic state space planner and
evaluate it using noisy rollouts.

Our key insight is we can formalize the selection
problem as the “best arm” variant of the multi-armed
bandit problem. We use the successive rejects algorithm to
efficiently allocate rollouts between candidate trajectories
given a rollout budget. We show that the successive rejects
algorithm identifies the best candidate using fewer rollouts
than a baseline algorithm in simulation. We also show
that selecting a good candidate increases the likelihood of
successful execution on a real robot.

I. Introduction

We explore the rearrangement planning problem [11]
where a robot must rearrange several objects in a clut-
tered environment to achieve a goal (Fig.1-Top). Recent
work has used simple physics models, like quasistatic
pushing [8, 9, 22, 32, 39, 43], to quickly produce efficient
and intricate plans. However, the intricacy of these
plans makes them particularly sensitive to uncertainty
in object pose, physics parameters, and trajectory exe-
cution.

We address this problem by generating open-loop
trajectories that are robust to uncertainty. However, this
is particularly hard for rearrangement planning.

First, the problem is set in a high-dimensional space
with continuous actions. Second, contact causes physics
to evolve in complex, non-linear ways and quickly leads
to multi-modal and non-smooth distributions [25, 26,
34]. Third, finding good trajectories is inherently hard:
most trajectories achieve success with zero probability.

As a consequence, this problem lies outside the
domains of standard conformant planning [19, 37],
POMDP [20] and policy search [7] algorithms.

In response to these challenges, we propose a
domain-agnostic algorithm that only requires: (1) a
stochastic method of generating trajectories, (2) the
ability to forward-simulate the system’s dynamics, and
(3) the capability of testing whether an execution is
successful.

Exploiting the fact that we can quickly generate feasi-
ble state space trajectories [22], we formulate rearrange-
ment planning under uncertainty (sections III and IV)

...

p̂ = 0.3 p̂ = 0.5 p̂ = 0.8

Fig. 1: (Top) HERB [38] is trying to push the white box
into the circular goal region. One goal configuration is
shown as a semi-transparent overlay. (Bottom) HERB
estimates the success probability of several candidate
trajectories and executes the trajectory with p̂ = 0.8.

as a selection problem (Sec.V). Our goal is to choose the
most robust trajectory from a finite set of state space
trajectory candidates (Fig.1-Bottom) generated by this
planner. We estimate the success probability of each
candidate by performing noisy rollouts.

Thus, given a set of k trajectories, we could perform a
fixed sufficient number n of rollouts on each trajectory,
requiring a total of nk rollouts.

However, rollouts are computationally expensive, re-
quiring the evaluation of a full physics simulation.
Thus, we seek an algorithm that can efficiently choose
the best trajectory given a small rollout budget.

Our key insight is that we can formalize this selection
problem as an instance of the “best arm” variant [31]
of the k-armed bandit problem [35]. In our formulation
(Sec.VI), each candidate trajectory is an “arm” and the
goal is to identify the best arm given a fixed budget
of rollouts. We use the successive rejects algorithm [2] to
select the best candidate.

We evaluate the proposed algorithm on the rearrage-
ment planning problem [11] in simulation and on a
real robot (Sec.VII). First, we validate that a state space
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(a) Initial State (b) p̂ = 0.24 (c) p̂ = 0.58 (d) p̂ = 1.0

Fig. 2: (a) The initial state. Start poses for each object in the scene are drawn from a Gaussian distribution with
µ =~0, Σ1/2 = diag[2 cm, 2 cm, .1 rad]. The robot must push the green box into the goal region indicated by the
gray circle. (b) A candidate with low success probability. Here, several rollouts lead to the target object failing
to end up in the goal. (c) A more robust candidate. Here many of the noisy rollouts achieve the goal. (d) A
trajectory with all noisy rollouts achieving the goal.

planner can successfully generate candidate trajectories
with varying success probabilities (P1, Sec.VII-B). Next,
we show that the successive rejects algorithm identifies
the best candidate using fewer rollouts than a baseline
(H1, Sec.VII-D). Finally, we demonstrate that selecting
a good candidate trajectory increases the likelihood of
successful execution on a real robot (H2, Sec.VII-E).

The proposed algorithm is applicable to planning
under uncertainty in any domain where the ability to
perform rollouts is available. We believe that this algo-
rithm is most useful when the standard assumptions
made by belief space planners are not satisfied. We
describe these assumptions in Sec.II.

II. Related Work

Recent work has formulated rearrangement plan-
ning [39] as a kinodynamic motion planning problem [13]
in the joint configuration space of the robot and mov-
able objects in the environment [15, 22]. This formu-
lation naturally copes with the continuous state and
action spaces. Unfortunately, these algorithms do not
consider uncertainty.

One method of coping with uncertainty is to for-
mulate rearrangement planning as a partially observable
Markov decision process (POMDP) [20]. POMDP solvers
reason about uncertainty and can integrate observa-
tions, but do not easily generalize to continuous action
spaces or non-additive reward functions. Most applica-
tions of POMDPs to manipulation rely on discretiza-
tion [17, 18, 26] or receding horizon planning [34, 41].

In this paper, we consider planning open-loop tra-
jectories. In this case, it is natural to formulate rear-
rangement planning as a conformant planning problem
where the goal is to find an open-loop trajectory that
succeeds despite non-deterministic uncertainty [6, 37].
Conformant probabilistic planning relaxes this require-
ment by maximizing the probability of achieving the
goal under probabilistic uncertainty [19, 29]. Early work
in manipulation applied conformant planning to the
part alignment problem by carefully converting the con-
tinuous configuration space to a discrete graph [4, 5,
14, 16, 18, 33]. More recently, probabilistic conformant
planning has been used to search of discrete sets of
primitive actions [10, 12, 30].

In this paper, we introduce a conformant probabilistic
planning algorithm that searches for solutions in the infinite-
dimensional space of trajectories. This proposed algorithm
can be thought of as a policy search algorithm [7]. Policy
search has been successfully used in reinforcement
learning [3, 24] and, more recently, applied to motion
planning in the form of trajectory optimization [21, 36,
44].

Applying policy search to the rearrangement plan-
ning problem is difficult because the set of all policies
Π is infinite-dimensional and most policies achieve
the goal with probability zero. As a result, little-to-
no information is available to guide a local optimizer.
We subvert this problem by using a motion planner to
generate a set of candidate trajectories that achieve the
goal with non-zero probability. Then, we select the best
candidate from the set.

Similar methods have solved motion planning under
the linear-quadratic-Gaussian (LQG) assumptions [42].
This work uses a RRT [28] to generate candidate tra-
jectories and uses the LQG assumptions to quickly
evaluate their robustness. The rearrangement planning
problem does not satisfy the LQG assumptions. We for-
mulate the selection problem as a multi-armed bandit
and use the successive rejects algorithm [2] to allocate
Monte Carlo rollouts between candidates. Recent work
has applied the same algorithm to select a high quality
grasp under object shape uncertainty [27].

III. The Rearrangement Planning Problem

Suppose we have a robot with configuration space
CR. The world is populated with a set of m objects that
the robot is allowed to manipulate. Each object has a
configuration space Ci. Additionally, there is a set of
obstacles that the robot is forbidden to contact.

We define the state space X as the Cartesian product
space of the configurations spaces of the robot and ob-
jects X = CR ×C1× · · · ×Cm. The free space Xfree ⊆ X
is the set of states where the robot and all objects are not
penetrating themselves, an obstacle, or each other. Note
that this formulation allows for non-penetrating contact
between entities, which is critical for manipulation.

The state x ∈ X evolves nonlinearly based on the
physics of the manipulation, i.e. the motion of the



Algorithm 1 Fixed n Selection

Input: candidates Πcan = {π1, . . . , πk}
Output: selection π̂∗ ∈ Πcan

1: for i = 1, . . . , k do
2: si ← 0
3: for j = 1, . . . , n do ⊲ Perform n rollouts
4: xj ∼ p(xs)
5: ξ j ← Rollout(xj, πi)
6: si ← si + Λ[ξ j]

7: π̂∗ ← arg maxπi∈Πcan
si ⊲ Choose the best p̂πi

objects is governed by the characteristics of the contact
between the objects and the manipulator. We describe
this evolution as a non-holonomic constraint:

ẋ = f (x, u)

where u ∈ U is an instantaneous control input. The
function f encodes the physics of the environment.

The task of rearrangement planning is to find a feasible
trajectory ξ : R

≥0 → Xfree starting from a state ξ(0) =
xs ∈ Xfree and ending in a goal region ξ(Tξ) ∈ Xg ⊆
Xfree at some time Tξ ≥ 0. A trajectory ξ is feasible if
there exists a mapping π : R

≥0 → U such that ξ̇(t) =
f (ξ(t), π(t)) for all t ≥ 0. This requirement ensures
we can satisfy the constraint f while following ξ by
executing the controls dictated by π.

IV. Conformant Probabilistic Planning

Our formulation of the rearrangement planning
problem assumes that the initial state xs is known and
the non-holonomic constraint f is deterministic. This
assumption rarely holds in practice and, as a result, a
sequence of control inputs π that nominally solves the
problem posed in Sec.III is unlikely to succeed when
executed on the robot.

Instead, we frame rearrangement planning as a con-
formant probabilistic planning problem [19]. We begin in
an initial belief state p(xs) that is a probability distribu-
tion over the start state xs.

Our state evolves as a stochastic non-holonomic sys-
tem. We use p(ξ|π) to denote the distribution of state
space trajectories that results from starting in xs ∼
p(xs), then executing the control inputs π under the
stochastic transition dynamics.

Our goal is find a sequence of control inputs π
that maximizes the probability pπ = Pr[Λ[ξ] = 1] of
satisfying the success functional Λ : Ξ→ {0, 1} where Ξ

is the set of all trajectories.
In the case of rearrangement planning, we define the

success functional

Λ[ξ] =

{

1 : ξ(Tξ) ∈ Xg

0 : otherwise
(1)

where Tξ is the duration of trajectory ξ.

V. Trajectory Selection

Our goal is to find the most robust sequence of
control inputs

πbest = arg maxπ∈Π pπ . (2)

where Π is the set of all sequences of control inputs.
Computing πbest exactly is not possible. In the fol-
lowing sections, we outline a method of finding an
approximate solution and provide intuition about the
accuracy of the approximation.

A. Approximating Success Probability

We write pπ as the expectation

pπ = Eξ∼p(ξ|π)

[

Λ[ξ]
]

=
∫

Ξ
Λ[ξ]p(ξ|π)dξ

over the space of trajectories Ξ. Directly computing this
integral requires the ability to evaluate p(ξ|π). In the
case of rearrangement planning, this not available.

Instead, we approximate this expectation as the mean

p̂π =
1

n

n

∑
j=1

Λ[ξ j] (3)

of Λ over n rollouts ξ1, . . . , ξn ∈ Ξ. The law of large
numbers guarantees that limn→∞ p̂π = pπ ; i.e. our ap-
proximation p̂π approaches the true success probability
pπ as the number of samples n increases.

Each rollout is an independent sample from the
distribution ξ j ∼ p(ξ|π). We generate rollout ξ j by
sampling an initial state xj ∼ p(xs), then forward-
propagating xj through the stochastic dynamics while
executing the control inputs dictated by π.

B. Trajectory Selection

Solving Eq.(2) requires finding the global optimum
of the infinite-dimensional set of sequences of control
inputs Π. To gain tractability, we first generate a candi-
date set of control sequences Πcan ⊆ Π and then select
the most robust candidate

π∗ = arg maxπ∈Πcan
pπ

from this finite set.
We populate Πcan by drawing samples from a distri-

bution over Π. In the rearrangement planning problem,
we generate candidates by repeatedly calling a kinody-
namic RRT [22] in the state space X with start xs and
goal Xg. . Our intuition is that the RRT will generate
a diverse set of candidates that achieve the goal with
varying success probabilities.

Given Πcan, the simplest selection algorithm is to
choose

π̂∗ = arg maxπ∈Πcan
p̂π .

using our approximation p̂π of pπ .
Alg.1 outlines this algorithm. For each candidate πi,

we perform n rollouts (line 1) and count the number
of successes, si. Then p̂πi

= si/n.



Algorithm 2 Successive Rejects

Input: candidates Πcan = {π1, . . . , πk}
Output: selection π̂∗ ∈ Πcan

1: A = {1, . . . , k}
2: si ← 0 for all i ∈ A
3: n0 ← 0
4: for l = 1, . . . , k− 1 do
5: n← nl − nl−1 ⊲ See Eq.(6) for def’n
6: for all i ∈ A do
7: for j = 1, . . . , n do ⊲ Perform n rollouts
8: xj ∼ p(xs)
9: ξ j ← Rollout(xj, πi)

10: si ← si + Λ[ξ j]

11: iworst ← arg mini∈A(si/nl)
12: A← A \ {iworst} ⊲ Reject the worst p̂π

13: {π̂∗} ← A

C. Effect of Approximation Error

Approximating pπ with p̂π comes at a cost: we may
incorrectly select a sub-optimal candidate π̂∗ 6= π∗ due
to error. An error occurs when a candidate πi performs
well on the n Monte Carlo rollouts used to estimate pπi

,
but performs poorly on the underlying distribution.
This phenomenon parallels the concept of overfitting.

The number of successful rollouts si is a Binomial
random variable. The magnitude of the error | p̂π − pπ |
is unbounded for any finite number n of rollouts.
However, we can use a Binomial confidence interval
to bound the probability

Pr (| p̂π − pπ | > δ) < α, (4)

of an error with magnitude δ occurring. When the
central limit theorem holds, the Wald interval states

δ = z1−α/2

√

1

n
p̂π(1− p̂π) (5)

where z1−α/2 = Φ−1(1 − α/2) is the (1 − α/2)-th per-
centile of the Gaussian distribution.

Given a desired δ and α, we can solve for the number
of samples n required to satisfy Eq.(4). The value δ is
related to the minimum difference between two trajec-
tories that we can reliably detect. Ideally, we would
drive δ → 0, allowing us to differentiate trajectories
with similar success rates. From Eq.(5) we see this
requires a prohibitively large value of n; e.g. reducing
δ by half requires increasing n by a factor of four.

VI. Multi-Armed Bandit Formulation

The approach described in Sec.V assumes that we
need to perform the same number of rollouts on all
candidates. Our analysis in Sec.V-C suggests that this
is wasteful: we can use fewer samples to differentiate
between two candidates that have vastly different suc-
cess probabilities.

We formalize this intuition by framing the trajectory
selection problem as a variant of the multi-armed bandit
problem [35] (Sec.VI-A). This enables us to use the
successive rejects algorithm [2] to efficiently identify the
best candidate (Sec.VI-B).

A. Multi-Armed Bandit Formulation

A multi-armed bandit problem [35] is a sequential pro-
cess where an agent is presented with k arms and at
each timestep must choose only one arm to pull. After
pulling an arm, the agent receives a reward. The goal of
the agent is maximize expected sum of reward. Since
the agent does not know the distribution of rewards,
it must trade off between exploring different arms and
exploiting its estimate of the best arm.

Trajectory selection is an instance of the multi-armed
bandit algorithm where each candidate πi ∈ Πcan is an
arm. Pulling the i-th arm corresponds to performing
one rollout, ξ j, of πi. We receive a binary reward
Λ[ξ j] ∼ Bernoulli[pπi

] depending upon whether the
rollout, ξ j ∼ p(ξ|πi), achieves the goal.

Unlike the canonical bandit problem [35], the goal
of trajectory selection is not to maximize the expected
sum of reward across all rollouts. Instead, after ex-
hausting a budget of b rollouts, we choose the single
best candidate π̂∗ = arg maxπ∈Πcan

p̂π and execute π̂∗

on the real robot. Our goal is to optimally allocate
the b rollouts amongst the k candidates to maximize
the success probability pπ̂∗ of our selection π̂∗. This is
known as the best arm or pure exploration variant of the
bandit problem [2, 31].

B. Successive Rejects Algorithm

The successive rejects algorithm (Alg.2) is a princi-
pled method of solving the best arm problem [2]. The
intuition behind the algorithm is to partition the b
rollouts between several phases (line 4). A set A ⊆ Πcan

is repeatedly shrunk until it contains the single best
candidate. In each phase, we perform an equal number
of rollouts n (line 5) on each remaining candidate π ∈
A and remove the candidate πworst = arg minπ∈A p̂π

with the lowest estimated success probability from A
(line 12). This repeats until we have completed k − 1
phases. At this point, we return the remaining candi-
date π̂∗ in A as our selection (line 13).

The key component of the successive rejects algo-
rithm is how to select the number of rollouts to perform
in phase l. If we have k candidates and a total budget
b of rollouts, then we choose

nl =

⌈

1

log k
·

b− k

k + 1− l

⌉

(6)

where log k = 1/2+∑
k
i=2

1/i and ⌈·⌉ denotes the ceiling
operator [2]. nl is the total number of rollouts performed
across all phases on each candidate remaining in phase
l. Only n = nl − nl−1 of these rollouts are performed
in phase l.
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Fig. 3: Histogram of the success probabilities p∗

achieved by 50 candidate control sequences under low
(blue) and high (orange) levels of uncertainty. This data
was generated from the scene shown in Fig.2.

Given the choice of Eq.(6) for nl , prior work [2]
shows that the probability ǫ of Alg.2 making an error
is bounded by

ǫ ≤
k(k− 1)

2
exp

[

−
b− k

H2 log k

]

where H2 = max2≤i≤k(i∆
−2
(i)

) and ∆(i) = pπ∗ − pπ(i)
is

the gap between the best candidate and the i-th best
candidate π(i). We can additionally bound H2 ≤ H1

with H1 = ∑
k
i=2 ∆−2

(i)
.

The quantities H1 and H2 formalize the difficulty of
the problem [2]. Since ∆(i) is in the denominator of H1,
a problem is more difficult if the gaps ∆(1), . . . ∆(k) are
small. This confirms our analysis from Sec.V-C that it
is difficult to differentiate between two candidates with
similar success probabilities.

VII. Experimental Results

First, we verify that the following two properties hold
in our test environment:

P1 The state space planner can generate candidate
trajectories with varying success probabilities.

P2 Increasing the number of rollouts per trajectory
improves the selected trajectory.

Finally, we test two hypotheses:

H1 The successive rejects algorithm requires fewer
rollouts to find the best trajectory than a baseline
that uses a fixed number of rollouts.

H2 Selecting a good trajectory increases the likeli-
hood of successful execution on a real robot.

A. Experimental Setup

We evaluate our algorithm on a dataset of seven
randomly generated scenes. In each test, the goal is
to push a target object into a 5 cm radius goal region
with fixed location across all scenes. Each scene con-
tains between one and seven movable objects in the
reachable workspace of the robot. The starting pose of
the robot and all movable objects are selected uniformly
at random from X f ree.
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Fig. 4: Success probability relative to π∗ of the fixed
rollout algorithm. Small values of n quickly find so-
lutions given a small budget (inset). However, large
values of n find better solutions as the budget increases.
This data was generated from the scene shown in Fig.2.

We plan for a hand pushing objects in the plane; i.e.
CR = C1 = · · · = CM = SE(2). This enables us to
use Box2D [1] as our physics simulator. We simulate
quasistatic interactions by forcing small object velocities
to zero at the end of each action and invalidating
actions which result in large object velocities.

We use an implementation of a kinodynamic
RRT [22] implemented in the Open Motion Planning
Library (OMPL) framework [40] to generate candidate
trajectories.

B. Robustness to Uncertainty

We test P1 by using the state space planner to gen-
erate 50 candidate trajectories Πcan for each scene. We
execute 400 noisy rollouts of each candidate πi ∈ Πcan

and count the number of rollouts si that achieve the
goal to compute p̂πi

= si/400. Using n = 400 rollouts
gives us 95% confidence that our estimate p̂πi

is within
5% of the true success probability pπi

.
Fig.3 shows two distributions of success probabili-

ties for Πcan on the scene shown in Fig.2. The first
distribution (orange) samples the initial pose of each
object from a Gaussian distribution with zero mean and
Σ1/2 = diag[10 cm, 10 cm, 0.1 rad]. The results show
that all trajectories lie in the range 0 ≤ p̂πi

≤ 0.6.
For the second distribution (blue), we sample

the initial pose of the objects from a narrower
Gaussian distribution with zero mean and Σ1/2 =
diag[2 cm, 2 cm, 0.1 rad]. Sampling from this tighter
distribution results in several trajectories that achieve
perfect or near perfect probability of success.

These results show that we can easily generate differ-
ent trajectories with our state space planner. More im-
portantly, this confirms that the trajectories produced
by our planner differ in robustness to uncertainty.
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Fig. 5: Success probability relative to π∗ of the fixed
rollout algorithm (n = 400) and the successive rejects
algorithm. The successive rejects algorithm finds better
solutions given the same budget. This data was gener-
ated from the scene shown in Fig.2.

C. Analysis of the Fixed Rollout Method

Next, we verify P2 with a baseline selection algorithm
that uses a fixed number n of rollouts to evaluate
each trajectory. We compare multiple values of n ∈
{15, 50, 150, 400} using the same set of candidate trajec-
tories as in Sec.VII-B. We use the calculated p̂πi

values
as the ground truth success probabilities p∗πi

for each
trajectory. We discard these rollouts and generate 400
new rollouts to test the selection algorithm.

Fig.4 shows the ground truth success probability
p∗ of the trajectory selected with a budget of b total
rollouts. Results are averaged across 300 trials. With
a small rollout budget (b < 1000), small values of n
find trajectories with higher success probability (Fig.4).
This is expected, as these planners are able to evaluate
more trajectories using b rollouts. For example, with a
budget of b = 800 rollouts, the n = 400 planner can
only evaluate two trajectories while the n = 15 planner
can evaluate all 50.

Large values of n find better solutions (Fig.4) as b
increases. This is also expected. Increasing n shrinks
the confidence interval and allows the planner to ac-
curately differentiate between trajectories with similar
success probabilities.

D. Successive Rejects Algorithm

We test H1 by comparing the successive rejects al-
gorithm described in Sec.VI-B against a baseline al-
gorithm that uses a fixed number n of rollouts. We
begin by allocating a budget of b = 800 rollouts to each
algorithm. We run multiple iterations, increasing b by
400 rollouts each time until we reach b = 20000. At this
point, the n = 400 algorithm can evaluate all 50 candi-
dates. We record the ground-truth success probability
p∗ of the trajectory selected in each iteration.

Fig.5 shows the relative success probability of each
selection algorithm averaged over 300 trials. In each
trial, we randomize the order of Πcan and the outcome
of the noisy rollouts for each candidate trajectory πi ∈
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Fig. 6: Comparison of the success probability estimated
through Monte Carlo rollouts (predicted) and observed
during ten executions on the real-robot (actual). Trajec-
tories with a high estimated probability of success tend
to succeed more often when executed on the real-robot.

Πcan. The ordering of both the trajectories and the
outcomes is kept constant within a trial.

For a fixed budget of 20000, both planners find the
same near-optimal trajectory. However, the successive
rejects algorithm finds this trajectory with with far
fewer rollouts on average (1638 rollouts vs. 8685 roll-
outs). A t-test confirms this difference is significant
(two-sample t(318) = 19.7, p < 0.0001). This supports
our hypothesis: The successive rejects algorithm requires
fewer rollouts to find the best trajectory than a baseline
planner that uses a fixed number of rollouts.

E. Real Robot Experiments

Finally, we test H2 by executing trajectories selected
by our algorithm on a real robot. We use HERB [38],
a robot designed and built by the Personal Robotics
Laboratory at Carnegie Mellon University to conduct
these experiments. We plan for the 7-DOF left arm
in joint space. The planner uses a quasistatic physics
simulator capable of modeling interactions with the
full arm, instead of the two-dimensional Box2D physics
engine used to generate the simulation results.

We generate four random scenes using the method
described above, construct each by measuring the nom-
inal location of each object relative to HERB, and
perturb the pose of each object by an offset drawn
from a Gaussian distribution. We use the successive
rejects selection algorithm to generate five trajectories
for each scene and record the success rate estimated by
the planner for each candidate trajectory. Finally, we
select seven trajectories with varying estimated success
rates and execute each 10 times on HERB. We record
success or failure of each execution.

Fig.6 shows the estimated and actual success rate of
each trajectory. The estimated success rate does not
perfectly predict the results that we see on the real
robot. However, there is a clear correlation between
the estimated success rate and the probability that
executing the trajectory succeeds on the real robot.
This supports our hypothesis: Selecting a good trajectory
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Fig. 7: Results from four different scenes. (Top) Initial configuration. (Middle) The best candidate trajectory
returned by the successive rejects algorithm. (Bottom-Left) Histogram of the success probability of plans returned
by the state space planner . See Fig.3 for more information. (Bottom-Right) Success probability of the selected
trajectory as a function of rollout budget for n = 400 (blue) and the successive rejects algorithm (green). See Fig.5
for more information.

increases the likelihood of successful execution on a real
robot.

The qualitative aspects of the real-robot experiments
are perhaps more interesting. Fig.8 shows Trajectory 7.
This trajectory exhibits the highest success rate. As can
be seen, a sweeping motion is used to move the target
object. Prior work [12] shows that sweeping primitives
are particularly effective at reconfiguring objects under
uncertainty. It in encouraging that our selection algo-
rithm can produce similar behavior.

Next, we examine Trajectory 3. Our planner estimated
the success rate of this trajectory to be p̂ = 0.41.
However, we were unable to achieve any successful
executions on the real robot. Examining the rollouts
used to evaluate this trajectory reveals errors in the
physics model that are not modeled in our simulator.
This highlights a fundamental limitation of our formu-
lation: our estimate of p̂π can only be as good as our
model of noise in the system dynamics.

VIII. Discussion and Future Work

Our results show that selecting the best trajectory
from a set of candidates is a surprisingly effective
method of improving the likelihood of the plan execut-
ing successfully. Additionally, we show that using the
successive rejects algorithm [2] dramatically reduces
the number of rollouts as desired level of performance.
This algorithm is simple to implement and performs
strictly better than using a fixed number of rollouts.

The performance of this algorithm depends entirely
on the quality of the trajectories included in Πcan. First,
the successive rejects algorithm is most beneficial when
few candidates achieve the goal with high probabil-
ity (Fig.7b). The improvement is minimal when many
robust candidates exist (Fig.7a). Second, the success
probability of the output trajectory cannot exceed that
of π∗. We see this in Fig.7d: the set of candidate

trajectories all achieve the goal with low probability,
so the best trajectory is brittle.

We can avoid this issue by seamlessly trading off
between evaluating existing candidates and expanding
Πcan. This is a smooth bandit problem [23] defined over
the continuous set of control sequences Π. The key
challenge is to define a meaningful metric over Π and
insure that Λ is sufficiently smooth. This formulation
may result in an anytime planner that continually out-
puts better trajectories over time.

Ideally, we would incorporate uncertainty directly
into the planner. Prior work [10, 12] has shown that
some pushing actions reduce uncertainty, while others
increase it. Currently, we rely on such actions being
randomly generated by a state space planner. Our
planner should actively seek to include such actions,
since they increase the probability of success.
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