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Abstract—The performance of a state lattice motion planning

algorithm depends critically on the resolution of the lattice

to ensure a balance between solution quality and computation

time. There is currently no theoretical basis for selecting the

resolution because of its dependence on the robot dynamics

and the distribution of obstacles. In this paper, we examine the

problem of motion planning on a resolution constrained lattice

for a robot with non-linear dynamics operating in an environment

with randomly generated disc shaped obstacles sampled from a

homogeneous Poisson process. We present a unified framework

for computing explicit solutions to two problems - i) the critical

planning resolution which guarantees the existence of an infinite

collision free trajectory in the search graph ii) the critical speed

limit which guarantees infinite collision free motion. In contrast

to techniques used by Karaman and Frazzoli [11], we use a

novel approach that maps the problem to parameters of directed

asymmetric hexagonal lattice bond percolation. Since standard

percolation theory offers no results for this lattice, we map the

lattice to an infinite absorbing Markov chain and use results

pertaining to its survival to obtain bounds on the parameters.

As a result, we are able to derive theoretical expressions that

relate the non-linear dynamics of a robot, the resolution of the

search graph and the density of the Poisson process. We validate

the theoretical bounds using Monte-Carlo simulations for single

integrator and curvature constrained systems and are able to

validate the previous results presented by Karaman and Frazzoli

[11] independently using the novel connections introduced in this

paper.

I. INTRODUCTION

A very well studied problem in motion planning literature
is finding dynamically feasible collision free trajectories for
ground and aerial vehicles moving through unstructured envi-
ronments, and there exists several state of the art approaches
to solving this problem [13]. However, the success of these
algorithms in practice depends on two key factors. Firstly,
what is the maximum speed at which a collision free trajectory
is guaranteed to exist with a high probability? If the robot
violates this speed limit, there is a non-zero probability that
it will encounter situations where a collision free trajectory
does not exist, irrespective of the planning algorithm being
used. Secondly, if the robot is operating below the speed limit,
what is the minimum planning resolution of an algorithm such
that it can compute a collision free trajectory. This controls
the trade-off between time complexity and the success of the
planning algorithm. The answer to both of these questions is
fundamentally linked to the dynamics of the robot and the
density of obstacles in the environment.

Fig. 1: Robot dynamics affect maximum speed and minimum
planning resolution. The less conservative dynamics of the
quadrotor allow for a higher speed as well as planning with a
coarser resolution while still ensuring collision free motion.

Karaman and Frazzoli [11] solved the problem of the
theoretical speed limit of a system with single integrator
dynamics flying in a Poisson forest. They show that the system
undergoes a phase transition - that above a critical speed there
exists no infinite collision-free trajectory with probability 1,
while below this speed a path exists almost surely. By mapping
the lattice obtained from the single integrator dynamics to a
regular lattice, they use known results from discrete percola-
tion theory [3, 8, 19] to compute bounds on the speed. They
[12] also show that the success of a planning algorithm for a
system with nonlinear dynamics undergoes a phase transition
using arguments based on k-independent bond percolation.
However, they were unable to show how one may compute
explicit bounds for such problems because of the lack of usable
results in k-independent percolation theory.

In this paper, we analyze both problems under a single
framework and provide expressions for the speed limit and
resolution limit as a function of robot dynamics and obstacle
density. The major milestones of our approach are

1) We show that solutions to both problems are equivalent
to solving bond percolation on a directed asymmetric
hexagonal lattice. Any variation in the problem, robot
dynamics or obstacle density corresponds to different
edge probabilities on the hexagonal lattice.

2) Since standard percolation theory lacks analysis of such
a lattice, we map the hexagonal lattice to a discrete time
Markov chain. Using results pertaining to the survival of
the Markov chain as proved by Liggett [14], we compute



the conditions leading to percolation of the lattice.
3) As a result, we provide a solution framework that takes

as input the robot dynamics and the obstacle density and
returns the speed and resolution limit. Our framework is
not only able to recover the results in [11], but provide
results for problems which [12] could not provide explicit
answers to.

4) A key difference in our approach from that of [11, 12] is
that we derive a parametric lattice - where the parameters
depend explicitly on the various aspects of the problem,
and the conditions of percolation are analytic equations
involving the parameters. This allows us to solve a wide
range of problems without having to analyze new lattices
for new problems.

There has been an extensive amount of work in developing
planning algorithms that perform a discrete search on a state
lattice [5, 9, 10, 15–18] . Ascertaining the optimum resolution
is an important problem because of its effect on real-time
performance.

Our main contributions are (under certain assumptions on
the dynamics and obstacle generating process) -

1) Proving a theoretical bound for the resolution of a state
lattice that contains an infinite collision free trajectory
with probability 1, as a function of the dynamics of the
robot.

2) Proving a theoretical bound for the speed limit of a robot
as a function of its non-linear dynamics to ensure the
existence of an infinite collision free trajectory. This is
shown to be a special case of 1.

This paper is organized as follows. In Section II, we
formalize the two problems we wish to solve. In Section
III, we establish an equivalence with directed asymmetric
hexagonal lattice bond percolation and provide conditions for
it. In Section IV, we provide theoretical bounds for the speed
limit and lattice resolution and show examples in Section V.
Finally, we conclude the paper in Section VI.

II. PROBLEM DEFINITION

A. The Dynamics of the Robot
Let X ✓ Rn be the configuration space, U ✓ Rm be

the control space and W ✓ R2 be the workspace of the
robot. Let T 2 R�0

. Let the configuration space trajectory
be x : [0, T ] ! X , control trajectory be u : [0, T ] ! U and
workspace trajectory be y : [0, T ] ! W . The trajectories are
said to be dynamically feasible if they satisfy the following
set of differential equations.

ẋ(t) = f

v

(x(t), u(t))

y(t) = g

v

(x(t))

(1)

where f

v

(., .) and g

v

(.) are Lipschitz continuous in all vari-
ables, as well as time invariant. The parameter v is the
workspace speed.

We make a restrictive set of assumptions about the dynamics
of the robot in order to proceed with the analysis. The
dynamics are parameterized explicitly as a function of the

workspace speed v as the analysis in this paper is restricted
to constant speed regimes.

The workspace dimension is 2. Let y

1

: [0, T ] ! R and
y

2

: [0, T ] ! R be the first and second dimension of the
workspace trajectory y : [0, T ] ! W . For a workspace speed
v, let X

0,v

⇢ X be the forward flight configuration space
regime and u

v

⇢ U be the forward flight control space regime.
This implies if the robot starts at x(0) 2 X

0,v

and follows the
dynamics (1) with u(t) 2 u

v

, then x(t) 2 X

0,v

, ẏ

1

(t) = v and
ẏ

2

(t) = 0 for all t 2 R�0

. In other words, the robot continues
forward flight with constant velocity in this regime.

The dynamics also has a property of constrained lateral
motion which is defined as follows. Let the robot starts at
x(0) 2 X

0,v

and let t

f

be the minimum time to reach a
workspace position y

2

(t

f

) > r, where r 2 R�0

. The length
of the corresponding workspace trajectory ky(t)k increases
monotonically with an increase in v. This assumption forces a
notion of a speed limit at which the robot can no longer move
laterally to avoid an obstacle of size r.

B. The Stochastic Obstacle Field

The environment is assumed to contain disc shaped obsta-
cles in the plane to represent a planar forest. Let (⌦, F , P)

be a probability space where ⌦ is the sample space, F is the
�-algebra and P is the probability measure. Let ⇧

⇢

be the set
of points generated by a homogeneous Poisson process with
intensity ⇢. The realizations of ⇧

⇢

are denoted by ⇧

⇢

(!),
where ! 2 ⌦. Let r 2 R be the radius of the obstacle. Thus
the occupied workspace is

W

⇢,r

obs

(!) :=

[

l2⇧

⇢

(!)

B(l, r)

where B(l, r) is a disc of radius r centered at l 2 R2. The
free workspace is a random set W

⇢,r

free

= W \ W

⇢,r

obs

. We now
define an infinite collision free trajectory

Definition 1: Given a Poisson forest of density ⇢ and radius
r, an infinite collision free trajectory is defined as a workspace
trajectory y(t) that

(i) makes progress towards new regions with probability 1

P(

n

lim inf

t!1
ky(t)k = 1

o

) = 1

(ii) avoids collision with obstacles almost surely

P(

n

y(t) 2 W

⇢,r

free

, 8t 2 R�0

o

) = 1

The homogenous poisson process is a simple instance of
an ergodic marked point process [11], the properties of which
allows us to proceed with the analysis. For arbitrary distri-
butions, the spatial independence and invariance properties of
the ergodic marked point process are not guaranteed to be true
and our analysis will not hold.



C. Goal-directed Lattice Planner
The motion planner used in this paper is a discrete graph

search on a state lattice [18]. A state lattice is a graph (V, E),
where the vertices V are discrete values of the state and
the edges E are dynamically feasible trajectories. The lattice
in this paper is conservative and specifically designed for
analysis purposes. The claim is that if an infinite collision
free trajectory exists in this lattice, it exists in a more dense
lattice that contains this as a subgraph.

To define the connectivity of the state lattice, we need to
define a directed square lattice. Let Z denote the space of
integers. Let Z2

+

be the positive orthant of the space of 2
dimensional vectors with integer elements. Consider a graph
which has vertex set Z2

+

with element z

i

= (z

1

i

, z

2

i

) 2 Z2

+

.
There exists an edge between vertices z

i

, z

j

whenever z

k

j

=

z

k

i

+1 for any k 2 {1, 2} and z

k

0

1

= z

k

0

2

for k

0 6= k. Then this
graph is a directed square lattice in Z2

+

as shown in Fig. 2b.

Definition 2: For a desired forward speed v, and obstacle
radius r, the state lattice that we consider in this paper has
the following properties

(i) V ⇢ X

0,v

is a countable set of states that are all in the
forward flight regime such that the workspace resolution
is D.

(ii) E ⇢ V ⇥V is a set of edges that are dynamically feasible
trajectories y(t) satisfying boundary value conditions
such that y(t) 2 W

⇢,r

free

.
(iii) There exists a labeling function � : V ! Z2

+

such that
for all v, v

0 2 V with (v, v

0
) 2 E, there exists an edge

from �(v) to �(v

0
) in the directed square lattice on Z2

+

.
This implies the state lattice is isomorphic to the directed
square lattice.

(iv) For any 4-tuple v

1

, v

2

, v

3

, v

4

2 V such that
�(v

1

),�(v

2

),�(v

3

),�(v

4

) are all distinct, the edges (if
they exist) y

12

(t) = (v

1

, v

2

) and y

34

(t) = (v

3

, v

4

) satisfy
the relation min

s,t

ky

12

(s) � y

34

(t)k > 2r. This implies
edges not sharing a common vertex cannot be invalidated
by the same obstacle.

Fig. 2a shows an example of the lattice.

D. Problem Formulation
Problem 1: Given the dynamics of the robot described in (1)
and a specified actuator limit u(t)  u

max

, 8t 2 R�0

, find
the speed limit v such that there exists an infinite collision free
trajectory y(t).

Problem 2: Given the dynamics of the robot described by
(1), an operating forward speed v and a specified actuator
limit u(t)  u

max

, 8t 2 R�0

, find the resolution limit D of
a state lattice defined in Definition 2, such that it contains an
infinite collision free path y(t).

E. Key Assumptions
We collect all the key assumptions that we make in this

paper in order to apply our method of analysis

(a) (b)

Fig. 2: Isomorphism of the state lattice with a directed square
lattice. (a) The state lattice in Definition 2 with resolution D.
(b) A directed square lattice in Z2

+

rotated by �⇡

4

to emphasize
the isomorphism with the state lattice. The labeling function
�(v) returns the coordinates of the corresponding vertex in the
directed square lattice.

1) Dynamics: The robot follows the dynamics in (1), the
workspace is restricted to 2D and the dynamics have the
property of constrained lateral motion.

2) Obstacle: The obstacles are of fixed radius r generated
by a homogenous Poisson process.

3) Lattice: The state lattice used for motion planning is
specified in Definition 2.

4) Problem: We will compute a lower bound to speed v and
resolution D at which an infinite collision free trajectory
exists almost surely. This lower bound will still hold if
the robot is not restricted to the proposed lattice (although
the bounds will be significantly less tight).
Note that among the various assumptions, the assumption
about the obstacle generating process restricts the applica-
bility of this work. Violation of the homogenous poisson
process could result in situations where a phase transition
will not occur rendering the objective of this paper to
invalid. This is an area that requires further research.

III. DISCRETE PERCOLATION ON A HEXAGONAL LATTICE

In this section we will use the fact that the structure of
the problems defined in the previous section is equivalent
to the existence of an infinite cluster of connected vertices
on the state lattice. Using the theory of discrete percolation,
the conditions required for such an event can be analytically
derived for certain regular lattices. By finding a suitable
equivalence between the state lattice and a regular lattice, we
will provide answers to Problem 1 and 2.

A. Theory of Discrete Percolation
The directed lattice bond percolation model is as follows.

Given a directed lattice, an edge is declared open with
probability p, independent of every other edge and closed
otherwise. An open path is a sequence (z

0

, z

1

, . . . , z

k

) of
vertices such that an open edge exists between z

i�1

and z

i

for all i 2 {1, 2, . . . , k}. An open cluster is a maximal set of
vertices that are connected with open paths. An infinite open
cluster is an open cluster that has infinite vertices. Percolation
is said to occur for a value of p if there exists an infinite



open cluster. The following theorem as stated by Durrett [7]
summarizes this

Theorem 1. As the value of p increases from 0 to 1, for a
critical probability p

crit

, if p < p

crit

then almost surely there
is no infinite open cluster. If p > p

crit

then there exists a
unique infinite open cluster.

Proof: See Durrett [7] (Equations (7.6) and (12.1))
Results for p

crit

exist for a wide range of lattices such as
square, triangle and hexagonal. In most cases p

crit

is not
known exactly, but is bounded above and below. In order
to transform Problem 1 and 2 to directed percolation on a
lattice for which analysis is possible, a suitable equivalence
must be established. The equivalence must be made such that
edges on the transformed lattice have independent probability
of being closed or open. It is important to note that we are
interested in the upper bound of p

crit

because the problem
requires computing conditions where a solution is guaranteed
to exist.

B. Equivalence to a Hexagonal Lattice
We will now establish the equivalence of the state lattice

in Definition 2 with directed asymmetric hexagonal lattice
percolation.

(a)
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limit v at a specified actuator limit u

max

such that there exists a trajectory y(t) which

(i) makes progress along the forest with probability one, i.e.,

P(

n

lim inf

t!1
ky(t)k = 1

o

) = 1

(ii) avoids collision with trees almost surely, i.e,

P(

�

y(t) 2 X

F

free

8t 2 R�0

�

) = 1

1.5 Problem 2: Planning Resolution limit in sub-critical speed regime

Given the dynamics of the vehicle described by Equation 1 , the vehicle operation limits v , actuator limits u

max

and a forest-generating process F (⇢, r), find the resolution limit D such that there exists a trajectory y(t) which

(i) makes progress along the forest with probability one, i.e.,

P(

n

lim inf

t!1
ky(t)k = 1

o

) = 1

(ii) avoids collision with trees almost surely, i.e,

P(

�

y(t) 2 X

F

free

8t 2 R�0

�

) = 1
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(b)

(c) (d)

Fig. 3: Equivalence of state lattice with a directed asymmetric
hexagonal lattice. (a) Adjacent vertices in a state lattice along
with the swaths of edges. Different zones correspond to
regions of overlap of the swath. (b) An equivalent hexagonal
lattice which maps zones of the swath to edges on the lattice
(c) The open cluster of a state lattice in the presence of a
Poisson obstacle field (d) The open cluster of the hexagonal
lattice that is equivalent to the state lattice.

Fig. 3c illustrates Problem 2, where percolation on the
state lattice would ensure an infinite collision free trajectory.
However, the state lattice does not satisfy the edge indepen-
dence property as edges sharing a common vertex are within r

distance of each other and can be closed simultaneously. Thus
we need the following theorem.

Theorem 2. Given a state lattice satisfying Definition 2,
there exists a directed asymmetric hexagonal lattice with
independent edge collision probability such that the state
lattice contains an infinite open cluster iff the hexagonal lattice
contains an infinite open cluster.

Proof: Since it is assumed that the dynamics of the
robot (1) is translation invariant and the obstacle generation
process is ergodic, the analysis for dependence of incoming
and outgoing edges for a vertex holds for any other vertex
in the lattice. Fig. 3a focuses on a set of adjacent vertices
of the state lattice. Let y

i,i+1

(t) be the workspace trajectory
corresponding to the lattice edge joining the vertex V

i

at time
t = 0 and the vertex V

i+1

at time t = ⌧ . The swath of the
segment, S(y

i,i+1

) is defined by the union of the area swept
out by a disc of radius r following y

i,i+1

S(y

i,i+1

) =

[

s2[0,⌧ ]

B(y

i,i+1

(s), r)

The swath consists of 3 zones
1) Z

1

= S(y

i,i+1

) \ S(y

i,i�1

)

2) Z

2

= S(y

i,i+1

) \ S(y

i+2,i+1

)

3) Z

3

= S(y

i,i+1

) � Z

1

� Z

2

Z

1

and Z

2

are strongly coupled to the dynamics con-
straints that couple adjacent edges on the lattice. An obstacle
appearing in these zones would invalidate both edges. Z

3

exists because of a resolution constraint that prevents sampling
in a dense manner. An obstacle in this zone would only
invalidate the corresponding edge. Also note that from the
constrained lateral motion property of the dynamics (Sec-
tion II-A), Z

1

+ Z

2

increase with speed v - adjacent edges
cover a larger distance before the swaths no longer overlap.

By combining Z

1

from one segment and Z

2

from its parent
segment, we map this combined zone to a horizontal bond
a. The zone Z

3

is mapped to a connecting bond b. Thus
the swath zones are mapped to bonds in a hexagonal lattice
as shown in Fig. 3b. An obstacle appearing in zone Z

1

or
Z

2

is equivalent to invalidating bond a. Similarly an obstacle
appearing in zone Z

3

is equivalent to invalidating bond b. The
probabilities of a and b being closed or open are independent
of each other. Thus percolation on this directed hexagonal
lattice is equivalent to percolation on the original state lattice.
As a result an equivalence has been established.

Let the probability of a bond being open be p

a

and p

b

respectively for bonds a and b. Under the assumption of an
ergodic distribution of obstacles, p

a

and p

b

are independent of
vertex i and time t and can be computed as

p

a

= e

�⇢(Z1+Z2)

p

b

= e

�⇢Z3
(2)

Since p

a

and p

b

need not be equal, the model is that
of directed asymmetric hexagonal lattice bond percolation.
Conditions leading to percolation on this lattice leads to the
existence of infinite collision free trajectories.



C. Directed Asymmetric Hexagonal Lattice Bond Percolation

Directed bond percolation in general is a much harder prob-
lem than undirected as described by Durrett [7]. Moreover,
it has been shown that finding the lower bound is much
simpler than the upper bound. For example, an upper bound
on the directed square lattice has been provided by Durrett [7]
and later improved by Balister et al. [1, 2]. However, these
results are difficult to apply to directed asymmetric hexagonal
lattice bond percolation due to the violation of symmetry. An
approach is required that can offer a tight upper bound, yet is
parameterized in terms of p

a

and p

b

.
Liggett [14] offered such a tool that can compute upper

bounds for the discrete percolation problem using a completely
different approach in comparison to percolation literature. He
linked the existence of an infinite open cluster to survival of
a discrete time Markov chain.
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1.4 Problem 1: Speed limit with unconstrained planning resolution

Given the dynamics of the vehicle described by Equation 1 and a forest-generating process F (⇢, r), find the speed

limit v at a specified actuator limit u
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such that there exists a trajectory y(t) which
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(b)

Fig. 4: (a) Illustration of the Markov chain defined in (3) as a
collection of subsets of integers on the number line. At time
slice n, the set A

n

is shown by elements in the rectangle. The
transition probabilities of elements with a neighbour in A

n

is
shown as q while elements with one neighbour is shown as p.
(b) The hexagonal lattice is represented as the Markov chain.
Each vertex is assigned an integer to map to the integer line.
A vertex is contained in A

n

if there exists an open path from
the origin to it.

The model Liggett examined was the discrete time Markov
chain A

n

on the collection of finite subsets of integers. This is
illustrated in Fig. 4a. The two parameters in the chain are 0 
p  q  1. Given A

n

, the events x 2 A

n+1

are conditionally
independent and

P (x 2 A

n+1

|A
n

) =

8

>

<

>

:

q if |A
n

\ {x, x + 1}| = 2

p if |A
n

\ {x, x + 1}| = 1

0 if |A
n

\ {x, x + 1}| = 0

(3)

Liggett then proved the following result.

Theorem 3. If the parameters p and q satisfy the inequalities

1

2

< p  1, 4p(1 � p)  q  1

then the Markov chain A

n

satisfies P(8n : A

n

6= ;) > 0

Proof: For brevity, we omit the proof in this paper and
refer the reader to a detailed discussion in [4] and [14] for the
original proof.

For intuition and references regarding the proof for the
above result, the reader is directed to the Appendix section.

The result can be applied to derive an upper bound for
the critical probability for the directed asymmetric hexagonal
lattice bond percolation. Fig. 4b illustrates the mapping of the
hexagonal lattice to a Markov chain. A

n

is the set of vertices
at time n that can be reached starting from the origin A

0

. To
structure the lattice as the Markov chain in (3), the vertices
are assigned an integer x. For columns A

2i

, the origin x = 0

is at the same y coordinate as the starting point. For columns
A

2i+1

, the origin is shifted up by one lattice resolution. The
corresponding transition probabilities are

p = p

a

p

b

q = 2p

a

p

b

� p

a

p

2

b

(4)

According to Theorem 3, the conditions on p

a

and p

b

for
percolation, C(p

a

, p

b

)  0, are as follows

0  p

a

 1

0  p

b

 1

1

2

< p

a

p

b

 1

p

a

p

b

(2 � p

b

)  1

p

b

� 4p

a

p

b

+ 2  0

(5)

As long as the inequalities C(p

a

, p

b

)  0 in (5) are true, the
lattice will almost surely have an infinite open cluster. In the
following section, we will show how parameters that dictate
the structure of the state lattice such as dynamics of the robot
and resolution of the lattice map into p

a

and p

b

.

IV. ANALYSIS

In this section, we use the set of constraints C(p

a

, p

b

)  0

stated in ( 5) to provide analytical expressions for the solutions
of Problem 1 and 2.

A. Problem 1: Speed limit with unconstrained planning reso-
lution

We will now show that a solution to Problem 1 can be
arrived at using the results in Section III. Note that finding
the true speed limit analytically lies beyond the scope of the
mathematical tools that have been referred to. Instead we will
aim to find a lower bound of the speed limit. We do this by
enforcing the solution to lie on a lattice satisfying Definition 2.

To obtain the maximum velocity for which an infinite
collision free trajectory exists, we wish to solve the following
optimization problem

max

p

a

,p

b

v s.t C(p

a

, p

b

)  0

= max

p

a

,p

b

Z

1

+ Z

2

s.t C(p

a

, p

b

)  0

= min

p

a

,p

b

p

a

s.t C(p

a

, p

b

)  0



(a) (b)

Fig. 5: State lattice at the speed limit (a) The speed limit is
achieved by the state lattice by forcing Z

3

= 0. This is intu-
itive because Z

3

is unconstrained and percolation probability
increases with decreasing Z

3

. (b) The minimum resolution of
the state lattice is such that edges not sharing a common vertex
have independent collision probability. Thus edges (V

1

, V

2

)

and (V

2

, V

4

) should be farther than r from the origin.

The solution to this is

p

a

=

3

4

, p

b

= 1

(6)

This corresponds to Z

3

= 0 as shown in Fig. 5a. It is
interesting to note that this is the percolation threshold for
directed site percolation on a square lattice which is what the
problem has reduced to.

Using (6) in (4)

e

�⇢(Z1+Z2) � 3

4

Z

1

+ Z

2

 1

⇢

log

4

3

(7)

In order to solve for the motion primitives of this lattice for
a particular velocity, it is required that Z

1

+Z

2

is minimized so
that p

a

is above the threshold computed in (6). To minimize the
area for a fixed velocity, a time optimal trajectory is required
to connect adjacent vertices of the state lattice.

However, the resolution of the lattice is still to be ascer-
tained. This is done by enforcing edges that do not share
a common vertex to have independent collision probability.
In Fig. 5b, (V

1

, V

2

) should be 2r distance from (V

3

, V

4

). By
symmetry, this implies

ky(t) � [ y

1

(t

f

) 0 ]

T k � r (8)

Also (V

1

, V

3

) should be 2r distance from (V

2

, V

4

). By using
symmetry, this is

ky(t) � [ 0 y

2

(t

f

) ]

T k � r (9)

Thus the time optimal control problem subject to the ve-
locity constraints, boundary constraints and edge separation

constraints (8) and (9) is as follows

minimize
x(t),u(t),y(t)

t

f

subject to ẋ(t) = f(x(t), u(t))

y(t) = g(x(t))

y(0) = [ 0 0 ]

T

x(0) 2 X

0,v

x(t

f

) 2 X

0,v

ky(t) � [ y

1

(t

f

) 0 ]

T k � r

ky(t) � [ 0 y

2

(t

f

) ]

T k � r

(10)

From Fig. 5a we can see that Z

1

+Z

2

is actually the swath
of the path.

Z

1

+ Z

2

=

�

�

�

�

�

�

[

s2[0,t

f

]

B(y(s), r)

�

�

�

�

�

�

(11)

Since the solution of the optimization y(t) is a function of
speed v, from (11) we have Z

1

+Z

2

= µ(v). Substituting this
in (7), we have

µ(v)  1

⇢

log

4

3

v  µ

�1

✓

1

⇢

log

4

3

◆ (12)

Thus (12) gives a bound on v

crit

, a speed limit at which
there exists an infinite collision free trajectory.

B. Problem 2: Planning resolution limit in sub-critical speed
regime

If the robot is operating in the sub-critical speed regime
v < v

crit

, and is required to plan at a resolution D, the zone
Z

3

6= 0. The objective then is to maximize the resolution D

subject to the constraint that an infinite collision free trajectory
exists. This can be formulated as the following optimization
problem.

max

p

a

,p

b

D s.t C(p

a

, p

b

)  0

The lattice edge is defined by time optimal trajectory that
connects the adjacent vertices. This is represented as follows

minimize
x(t),u(t),y(t)

t

f

subject to ẋ(t) = f

v

(x(t), u(t))

y(t) = g

v

(x(t))

y(0) = [

0 0

]

T

y(t

f

) = [ D D ]

T

x(0) 2 X

0,v

x(t

f

) 2 X

0,v

ky(t) � [

y

1

(t

f

) 0

]

T k � r

ky(t) � [

0 y

2

(t

f

)

]

T k � r

(13)



Having computed y(t), and denoting ỹ(t) as its reflection
about the x-axis, the zones can be computed as follows

Z

1

+ Z

2

=

�

�

�

�

�

�

[

s2[0,t

f

]

B(y(s), r) \ (B(ỹ(s), r)[

B([ 0 D ]

T

+ ỹ(s), r))

�

�

�

�

�

�

Z

3

=

�

�

�

�

�

�

[

s2[0,t

f

]

B(y(s), r) � (Z

1

+ Z

2

)

�

�

�

�

�

�

(14)
As the zones Z

1

(D), Z

2

(D), Z

3

(D) are a function of the
resolution D, substituting in (2) we have p

a

(D), p

b

(D). This
is substituted in (5) to get C(p

a

(D), p

b

(D)  0 in order to
obtain D

crit

. D

crit

corresponds to the resolution at which
infinite collision free path can be guaranteed. (10) and (13)
are generally non-convex optimization problems. The example
dynamics in this paper have analytic solutions, however in
general this has to be solved numerically by collocation
methods.

V. RESULTS

In this section we present results for both problems with dif-
ferent robot dynamics. Monte-Carlo simulations are performed
to compare experimental data with theoretical bounds. As the
bounds are for infinite open clusters, the simulations, which
are done for a large finite forest, reflect a lower bound of the
true collision probability. In all of these experiments, the size
of the forest is L = 500m.

A. Problem 1: Speed limit with unconstrained planning reso-
lution

1) Single Integrator Dynamics: We first consider the simple
linear dynamics used by Karaman and Frazzoli [11]. The
configuration space is X = [x, y]

T . The speed of the robot
is v and the control input is lateral speed. The dynamics of
the robot is

ẋ(t) =

✓

ẋ

1

ẋ

2

◆

=

✓

v

u(t)

◆

, y(t) = x(t) (15)

where | u(t) | u

max

.
Let this form a lattice of angle ↵ at speed v such that

tan

↵

2

=

u

max

v

. From (10), we have y(t

f

) =

r

cos

↵

2
as shown

in Fig. 7a. Thus Z

1

+ Z

2

from (11) is

Z

1

+ Z

2

= 2r

s

✓

r

sin

↵

2

◆

2

+

✓

r

cos

↵

2

◆

2

=

4r

2

sin↵

(16)
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Fig. 6: Phase transition diagrams for different experiments
obtained by Monte-Carlo simulations of Poisson forest of
density ⇢ and radius r. The experiments are performed on
the lattice described in the paper. The red line shows the
probability of collision against the parameter being varied.
The blue dashed line is the theoretical bound below which
probability of collision is 0. (a) Single integrator dynamics
with u

max

= 1

m

/s, forest parameters ⇢ = 0.03, r = 1m,
1000 trials and theoretical bound v

crit

= 4.58

m

/s (b) Cur-
vature constrained dynamics with !

max

= 0.52

rad

/s, forest
parameters ⇢ = 0.03, r = 1m, 1000 trials and theoretical
bound v

crit

= 2.94

m

/s (c) Single integrator dynamics with
u

max

= 1

m

/s, v = 1

m

/s, forest parameters ⇢ = 0.02, r = 1m,
500 trials and theoretical bound D

crit

= 6.67m (d) Curvature
constrained dynamics with !

max

= 0.52

rad

/s, v = 1.56

m

/s,
forest parameters ⇢ = 0.01, r = 1m, 500 trials and theoretical
bound D

crit

= 10.87m.

(a) (b)

Fig. 7: (a) The lattice for single integrator dynamics operating
at speed limit has angle ↵. (b) The bang-bang motion for
curvature constrained dynamics of radius R turning ✓ and �✓.

Using (16) in (7), we have

4r

2

sin↵

 1

⇢

log

4

3

↵ � sin

�1

4⇢r

2

log

4

3

v  u

max

tan

⇣

1

2

sin

�1

4⇢r

2

log

4
3

⌘

(17)

Solving (17) for u

max

= 1, ⇢ = 0.03, r = 1m we get



v

crit

= 4.58

m

/s which is shown in comparison with empirical
result in Fig. 6a. Note that Karaman and Frazzoli [11] reached
the same result through a different formulation.

2) Curvature Constrained Dynamics: To demonstrate re-
sults for non-linear dynamics, we consider a curvature con-
strained robot. The configuration space is X = [x, y, ]

T . The
speed of the robot is v and the control input is the angular
speed. Then the dynamics of the robot is

ẋ(t) =

0

@

ẋ

1

ẋ

2

ẋ

3

1

A

=

0

@

v cos(x

3

)

v sin(x

3

)

u(t)

1

A

, y(t) =

✓

x

1

x

2

◆

(18)

where | u(t) | !

max

.
Let R =

v

!

max

be the minimum radius of curvature. For the
derivation below, we assume that R > r. The time optimal
trajectory for this class of dynamics has been solved by Dubins
[6]. For this case, the curve reaches the end point by a bang-
bang motion

u(t) =

(

!

max

0  t  t

f

2

�!
max

t

f

2

< t  t

f

(19)

From (19), let ✓ =

!

max

t

f

2

be the change of angle as shown
in Fig. 7b. From (8) and (9), we have ✓ = cos

�1

�

1 � r

2R

�

.
From (11), Z

1

+ Z

2

is

Z

1

+ Z

2

= 4rR✓

= 4rR cos

�1

⇣

1 � r

2R

⌘ (20)

Substituting (20) in (7), we have

4rR cos

�1

⇣

1 � r

2R

⌘

 1

⇢

log

4

3

(21)

Solving (21) for r = 1m and ⇢ = 0.03, we have R =

5.66m. For !
max

= 0.52

rad

/s, we get a v

crit

= 2.94

m

/s which
is shown in comparison with empirical data in Fig. 6b. Note
that this is much smaller than the single integrator speed limit.

B. Problem 2: Planning resolution limit in sub-critical speed
regime

1) Single Integrator Dynamics: Let the robot have the
dynamics described in (15). Let v = 1

m

/s, u

max

= 1

m

/s.
From (14), we have

Z

1

+ Z

2

= 4r

2

Z

3

= 2r(2

p
2D) � 4r

2

(22)

Subject to constraints in (5), and maximizing D we get for
r = 1m and ⇢ = 0.02, a bound of D

crit

= 6.67m which is
compared to emprical results in Fig. 6c.

(a) (b)

Fig. 8: (a) Lattice of resolution D with angle ↵ =

⇡

2

for single
integrator dynamics. (b) Lattice of resolution D for curvature
constrained dynamics of radius R where the edge turns by
✓, travels l and turns back by �✓. ↵ is the angle at which
overlapping swaths become independent.

2) Curvature Constrained Dynamics: Let the robot have the
dynamics described in (18). For the purposes of this example,
we assume that the resolution D > 2R such that the optimal
path y(t) on solving (13) is

u(t) =

8

>

<

>

:

!

max

0  t  t

1

0 t

1

< t  t

f

� t

1

�!
max

t

f

� t

1

< t  t

f

(23)

Let ✓ = !

max

t

1

and l = v(t

f

� 2t

1

). Then the following
can be derived geometrically [6]

l =

p

2D(D � 2R)

✓ = 2 tan

�1

✓

l � D

D � 4R

◆ (24)

Fig. 8b shows the angle ↵ at which adjacent swaths de-
couple. We assume for this example ↵  ✓. Then ↵ =

cos

�1

(1 � r

R

). From (14) we have

Z

1

+ Z

2

= 2(R + r)

2
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↵� 1

2

sin(2↵)

◆

Z

3

= 2r(2R✓ + l) � Z

1

� Z

2

(25)

Subject to constraints in (5), and maximizing D we get for
v = 1.56

m

/s, !
max

= 0.52

rad

/s, r = 1m, ⇢ = 0.01, the critical
resolution D

crit

= 10.87m which is compared with empirical
results in Fig. 6d.

VI. CONCLUSION

In this paper, we analyzed two problems related to motion
planning for robots with nonlinear dynamics in homogeneous
Poisson forests. First, we provided a bound for the speed limit
of a robot as a function of its dynamics that ensures infinite
collision free flight. Secondly, we provided a bound for the
state lattice resolution as a function of the dynamics such that
an infinite collision free solution is contained in the lattice. We
proposed a novel way of drawing equivalence with a directed
asymmetric hexagonal lattice and obtained bounds by mapping
the lattice to a Markov chain and solving for its survivability.
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[2] Paul Balister, Béla Bollobás, and Alan Stacey. Improved
upper bounds for the critical probability of oriented
percolation in two dimensions. Random Structures &
Algorithms, 5(4):573–589, 1994.

[3] Bela Bollobas and Oliver Riordan. Percolation. Cam-
bridge University Press, 2006.

[4] Sanjiban Choudhury. Lower and upper bounds for the
survival of infinite absorbing Markov chains. Techni-
cal Report CMU-RI-TR-05-04, Robotics Institute, Pitts-
burgh, PA, January 2015.

[5] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,
and James Diebel. Path planning for autonomous ve-
hicles in unknown semi-structured environments. The
International Journal of Robotics Research, 29(5):485–
501, 2010.

[6] Lester E Dubins. On curves of minimal length with
a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of mathematics, pages 497–516, 1957.

[7] Richard Durrett. Oriented percolation in two dimensions.
The Annals of Probability, pages 999–1040, 1984.

[8] Geoffrey Grimmett. What is Percolation? Springer, 1999.
[9] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich

Fraundorfer, and Marc Pollefeys. Autonomous obstacle
avoidance and maneuvering on a vision-guided MAV
using on-board processing. In Robotics and automation
(ICRA), 2011 IEEE international conference on, pages
2472–2477. IEEE, 2011.

[10] Myung Hwangbo, James Kuffner, and Takeo Kanade.
Efficient two-phase 3d motion planning for small fixed-
wing uavs. In Robotics and Automation, 2007 IEEE
International Conference on, pages 1035–1041. IEEE,
2007.

[11] Sertac Karaman and Emilio Frazzoli. High-speed flight in
an ergodic forest. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 2899–
2906. IEEE, 2012.

[12] Sertac Karaman and Emilio Frazzoli. High-speed motion
with limited sensing range in a poisson forest. In CDC,
pages 3735–3740, 2012.

[13] Steven M LaValle. Planning algorithms. Cambridge
university press, 2006.

[14] Thomas M Liggett. Survival of discrete time growth
models, with applications to oriented percolation. The
Annals of Applied Probability, pages 613–636, 1995.

[15] Maxim Likhachev and Dave Ferguson. Planning long dy-
namically feasible maneuvers for autonomous vehicles.
The International Journal of Robotics Research, 28(8):
933–945, 2009.

[16] Stephen R Lindemann and Steven M LaValle. Multires-
olution approach for motion planning under differential
constraints. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference
on, pages 139–144. IEEE, 2006.

[17] Brian MacAllister, Jonathan Butzke, Alex Kushleyev,
Harsh Pandey, and Maxim Likhachev. Path planning
for non-circular micro aerial vehicles in constrained
environments. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 3933–3940.
IEEE, 2013.

[18] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly.
Differentially constrained mobile robot motion planning
in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009.

[19] M Sahini and M Sahimi. Applications of percolation
theory. CRC Press, 1994.

http://rspa.royalsocietypublishing.org/content/440/1908/201.short
http://rspa.royalsocietypublishing.org/content/440/1908/201.short
http://rspa.royalsocietypublishing.org/content/440/1908/201.short
http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240050407/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240050407/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240050407/abstract
http://www.ri.cmu.edu/pub_files/2015/2/infinite_mc.pdf
http://www.ri.cmu.edu/pub_files/2015/2/infinite_mc.pdf
http://ijr.sagepub.com/content/29/5/485.short
http://ijr.sagepub.com/content/29/5/485.short
http://www.jstor.org/stable/2372560?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2372560?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2372560?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2243349
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980095
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980095
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980095
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4209225
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4209225
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225235&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225235&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6426047
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6426047
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.1874&rep=rep1&type=pdf
http://www.jstor.org/stable/2245117?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2245117?seq=1#page_scan_tab_contents
http://ijr.sagepub.com/content/28/8/933.short
http://ijr.sagepub.com/content/28/8/933.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1641174
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1641174
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1641174
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6631131
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6631131
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6631131
http://www.fieldrobotics.org/users/alonzo/pubs/papers/JFR_09Final.pdf
http://www.fieldrobotics.org/users/alonzo/pubs/papers/JFR_09Final.pdf

	Introduction
	Problem Definition
	The Dynamics of the Robot
	The Stochastic Obstacle Field
	Goal-directed Lattice Planner
	Problem Formulation
	Key Assumptions

	Discrete Percolation on a Hexagonal Lattice
	Theory of Discrete Percolation
	Equivalence to a Hexagonal Lattice
	Directed Asymmetric Hexagonal Lattice Bond Percolation

	Analysis
	Problem 1: Speed limit with unconstrained planning resolution
	Problem 2: Planning resolution limit in sub-critical speed regime

	Results
	Problem 1: Speed limit with unconstrained planning resolution
	Single Integrator Dynamics
	Curvature Constrained Dynamics

	Problem 2: Planning resolution limit in sub-critical speed regime
	Single Integrator Dynamics
	Curvature Constrained Dynamics


	Conclusion

