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Abstract

We investigate the problem of using contact sensors to estimate the pose of an object during planar
pushing by a �xed-shape hand. Contact sensors are unique because they inherently discriminate between
\contact" and \no-contact" con�gurations. As a result, the set of object con�gurations that activates a
sensor constitutes a lower-dimensional contact manifold in the con�guration space of the object. This
causes conventional state estimation methods, such as the particle �lter, to perform poorly during periods
of contact due to particle starvation.

In this paper, we introduce the manifold particle �lter as a principled way of solving the state
estimation problem when the state moves between multiple manifolds of di�erent dimensionality. The
manifold particle �lter avoids particle starvation during contact by adaptively sampling particles that
reside on the contact manifold from the dual proposal distribution . We describe three techniques|one
analytical, and two sample-based|of sampling from the dual p roposal distribution and compare their
relative strengths and weaknesses. We present simulation results that show that all three techniques
outperform the conventional particle �lter in both speed an d accuracy. Additionally, we implement the
manifold particle �lter on a real robot and show that it succe ssfully tracks the pose of a pushed object
using commercially available tactile sensors.

1 Introduction

Humans e�ortlessly use their sense of touch to manipulate objects. Imagine groping around on a nightstand
for a glass of water, or feeling around a cluttered kitchen cabinet while searching for the salt shaker. Each
of these tasks involvescontact manipulation during which we makepersistent contact with the environment.
During contact, tactile feedback is critical to localize the object being manipulated.

Armed with real-time observations from tactile sensors (Odhner et al. 2013, Tenzer et al. 2014, Fishel & Loeb
2012), manipulators should also be able to estimate the pose of the manipulated object. Early work attempted
to solve this problem by deriving analytical state estimators to track and, in some cases, control the pose
of an object from contact positions based on simple models ofphysics (Jia & Erdmann 1999). However,
these models fail to accurately capture the reality of manipulation because there is a large amount of un-
certainty in both the object's motion and the robot's observations. Other work has employed a Bayesian
approach by using a particle �lter to estimate the pose (Corcoran & Platt 2010, Zhang & Trinkle 2012),
contact state (Gadeyne et al. 2005, Meeussen et al. 2007), and physical properties (Zhang et al. 2013) of
an object during manipulation. However, the conventional particle �lter (CPF, Section 4) su�ers from a
startling problem: the CPF systematically performs worse as the sensor resolution and update frequency
increases (Section 4.4).

This problem arises because contact sensing accuratelydiscriminates between contact and no-contact.
Topologically, the set of states that are consistent with a contact observation lies in the lower dimensional
contact manifold (Section 3.1) embedded in the con�guration space of the object. Particles sampled from
the state space have a low probability of being on the contactmanifold and, as a result, particle starva-
tion (Thrun et al. 2005, Thrun, Fox & Burgard 2000) occurs in the vicinity of the true state. In the limit,
when the sensor can perfectly localize contact along the hand, this region shrinks to a zero measure set
(Section 9.4) and the CPF is completely ine�ective.

In this paper, we consider the pose estimation for contact manipulation problem (Figure 1) as one of
Bayesian estimation (Section3) and introduce the manifold particle �lter (Koval, Dogar, Pollard & Srinivasa
2013, Koval, Pollard & Srinivasa 2013) (MPF, Section 5) as a principled way of solving the problem of particle
starvation during contact. We speci�cally apply the MPF to t he case of a �xed-shape hand equipped with
accurate contact sensors pushing an object in the plane. TheMPF addresses the state estimation problem
when the state moves between multiple manifolds of possiblydi�erent dimensions. In the case of contact
manipulation, this occurs when the object makes or breaks contact with a contact sensor.
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(a) Contact Manipulation Problem (b) Bayes Network

Figure 1: The contact manipulation problem. (a) HERB ( Srinivasa et al. 2012) pushing a rectangular box
across the table. The states 2 S is the pose of the box relative to the hand. An actiona 2 A is a relative
motion of the hand. After taking action a, HERB receives an observationo 2 O indicating where the object
touched the hand. (b) The Bayes �lter uses the Markov property to recursively compute b(st ) from b(st � 1)

The gist of our algorithm is quite simple: we factorize belief into the marginal probability of being on
a manifold and the probability of the state conditioned on that manifold. We �rst choose a manifold, then
sample a particle from that manifold. The key result of this factorization is that we can apply a di�er-
ent sampling technique to each manifold. In our case, we sample from free space using the conventional
proposal distribution ( Thrun et al. 2005) and from the contact manifold using the dual proposal distribu-
tion (Thrun, Fox & Burgard 2000).

The dual proposal distribution avoids particle starvation by sampling particles from the contact manifold
that are consistent with the most recent observation. When the object-hand geometry consists of polygons
in R2, an analytic representation (AM, Section 6.3.3) of the contact manifold can be computed using the
Minkowski sum (Lozano-P�erez 1983, Wein 2013). This provides a computationally e�cient way of sampling
from the contact manifold and, thus, implementing the dual proposal distribution. However, computing an
analytic representation of the contact manifold is not always possible.

It is possible to apply the MPF to arbitrary planar geometry b y approximating the contact manifold with
a set of weighted samples. We present two such representations. The rejection sampled representation(RS,
Section6.3.1) distributes samples uniformly in the ambient space near the manifold and, thus, is agnostic to
the policy followed during execution. The trajectory rollout representation (TR, Section 6.3.2) concentrates
samples on the regions of the manifold that we are most likelyto encounter during execution.

Our simulation results (Section7) con�rm that the MPF outperforms the CPF in terms of both esti mation
accuracy and computational e�ciency. We show that the MPF, i n contrast to the CPF, scales favorably with
increases in the robot's sensor resolution and update frequency (Section7.5). We also analyze the relative
performance of the RS, TR, and AM manifold representations. As expected, all three representations
outperform the CPF and the AM and TR representations both outperform RS (Section7.6). Surprisingly,
however, our experiments show that TR performs as well as AM.By focusing samples on likely regions, TR
saturates these regions at a resolution indistinguishablefrom the analytic solution.

We support these results with an implementation of the MPF on Andy Bagnell et al. (2012) (Section 8),
a bimanual manipulator equipped with the Barrett WAM arm ( Salisbury et al. 1988) and the i-HY end-
e�ector ( Odhner et al. 2013). Using the MPF, Andy successfully estimated the pose of several objects
while executing a pushing action using feedback from the i-HY hand's tactile sensors (Tenzer et al. 2014).
These experiments demonstrate that the MPF is able to successfully estimate the pose of an object using
commercially available sensors.

The contact manipulation problem exhibits unique structur e that makes it fundamentally di�erent from
most state estimation and planning problems. By exploitingthe structure of the contact manifold, we are able
to signi�cantly outperform standard state estimation tech niques. Furthermore, by exploiting the geometry
of the hand-object interaction, the trajectory rollout rep resentation achieved performance comparable to
that of the analytic solution.

However, the implementation of MPF discussed in this paper has several limitations: we only consider
planar manipulation with quasistatic physics (Section 9.5.1), assume that the hand has a �xed shape (Sec-
tion 9.5.2), and do not re�ne our estimate of the physical properties of the environment (Section 9.5.4)
during execution. We also assume that contact sensors are discriminative (Section 9.5.3), i.e. are capable of
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accurately di�erentiating between contact and no-contact. We are interested in addressing all four of these
limitations in future work. Finally, we are excited to use th e belief state estimated by the MPF as feedback
for closed-loop manipulation primitives (Section 9.5.5).

2 Related Work

This paper builds on a long history of research on planar manipulation (Section 2.1) and tactile sensing
(Section 2.2) as sensor feedback. Our choice of the particle �lter was inspired by recent work on object
pose estimation (Section2.3) and contact state estimation (Section2.4) for manipulation. Finally, we adapt
the dual and mixture proposal distributions (Section 2.5) used for mobile robot localization to the contact
manipulation problem.

2.1 Manipulation via Pushing

Our focus is on contact manipulation and, in particular, planar pushing actions. Pushing enables robots to
perform a wide variety of tasks that are not possible throughpick-and-place manipulation alone: pushing can
move objects that are too large or heavy to be grasped (Dogar & Srinivasa 2011), is e�ective at manipulating
objects under uncertainty (Brost 1988, Dogar & Srinivasa 2010), and can be used aspre-grasp manipulation
to bring objects to con�gurations where they can be easily grasped (Chang et al. 2010, Kappler et al. 2010,
King et al. 2013). Additionally, pushing can be used to simultaneously movemultiple objects (Dogar et al.
2012).

Since pushing o�ers such a dramatic expansion of manipulation skills, there has been extensive re-
search on the fundamental mechanics of pushing (Mason 1986, Lynch & Mason 1995, Howe & Cutkosky
1996, Lynch & Mason 1996) and on the planning of planar pushing operations (Lynch & Mason 1996,
Akella & Mason 1998). Recently, there has been interest in generating push trajectories using sampling
based planners (Lau et al. 2011, Cosgun et al. 2011), trajectory optimization ( King et al. 2013), and learn-
ing methods (Zito et al. 2012). We leverage this work by using the quasistatic physics model (Lynch et al.
1992, Howe & Cutkosky 1996), the same model used by much of this prior work (Dogar & Srinivasa 2010,
Dogar et al. 2012, Dogar & Srinivasa 2011), to estimate the motion of the object.

Most of these techniques, however, employ pushing as an open-loop operation and are sensitive to object
pose uncertainty. One notable exception is thepush-grasp (Dogar & Srinivasa 2010, Dogar et al. 2012),
which reasons about pose uncertainty during the planning process to generate a straight-line action that
funnels the object into the hand. This work is complementary to our own: tracking the pose of an object
during the execution of a push-grasp would allow the robot tocope with larger amounts of uncertainty and
detect success (or failure) more quickly. In the future, we plan to use the state estimate produced by the
MPF to adapt the robot's motion in real-time. We took a �rst st ep in this direction in Koval et al. (2014).

2.2 Tactile Sensing

Contact sensing is an attractive type of feedback during manipulation because it directly observes the robot's
interaction with the environment. Contact sensors come in many forms, including binary switches (Edin et al.
2006), pressure-sensitive pads (Tenzer et al. 2014), and complex �ngertips ( Fishel & Loeb 2012) with multi-
modal sensing capabilities. The MPF can accommodate any type of sensor that accurately discriminates
between contact and no-contact and can be characterized by aprobabilistic model.

One method of using tactile sensors during manipulation is to create a feedback controller that directly
maps sensor readings to actions. For example, a robot can usethe tactile Jacobian to servo its end-e�ector to
a desired contact state (Zhang & Chen 2000, Li et al. 2013). These controllers are e�ective for speci�c tasks,
such as following a contour (Zhang & Chen 2000) or locally re�ning the quality of a grasp ( Platt et al. 2010).
Another approach is to learn a task-speci�c policy (Pastor et al. 2011) from demonstration. Unfortunately,
it is di�cult to generalize these techniques to the full spectrum of manipulation tasks. Our method explicitly
estimates the state of the object, which can then be used by a higher-level planning algorithm to achieve an
arbitrary goal.

Another approach to using contact sensors is to �rst localize the object, then grasp it. This approach is
commonly implemented by executing a sequence of move-until-touch actions (Petrovskaya & Khatib 2011,
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Javdani et al. 2013, Hebert et al. 2013, Hsiao 2009) that localize the object within some tolerance, then
execute an open-loop trajectory to achieve a grasp. These techniques generally assume that the object does
not move (Javdani et al. 2013, Petrovskaya & Khatib 2011) or use a simple motion model that causes actions
to \bump" the object by a small amount ( Hsiao 2009). The MPF solves a fundamentally di�erent problem:
it estimates the pose of an object during manipulation and does not plan any actions. Additionally, the
MPF reasons about the motion of the object using an accurate physics model.

2.3 Object Pose Estimation

There is a rich history of using recursive estimators to track the pose of objects for manipulation (Harris
1992, Drummond & Cipolla 2002). Recently, there has been interest in integrating models of physics
into visual tracking algorithms to improve their performan ce. Du� et al. (2010) integrated the PhysX
simulator (NVIDIA Corporation 2014 ) into a RANSAC-based (Fischler & Bolles 1981) tracker and sig-
ni�cantly outperformed several physics-agnostic baseline algorithms. The same physics model was later
used for the transition model of a particle �lter ( Gordon et al. 1993) that uses edge likelihood measure-
ments (M•orwald et al. 2009) to track an object's three-dimensional pose (Du� et al. 2011 ). Similar to this
work, the MPF uses a physics model (Lynch et al. 1992) as the transition model in a particle �lter for object
pose estimation. However, the MPF uses observations from contact sensors|instead of vision|for feedback.

More recently, Zhang & Trinkle (2012) used a particle �lter to combine contact sensing, visual pose
estimates, and an NCP-based physics model (Ferris & Munson 1999) to track the pose of an object being
pushed by a manipulator in the plane. Their results demonstrate that contact sensing can signi�cantly
improve visual pose estimation accuracy, particularly during extended periods of visual occlusion. In later
work, the same authors used a Rao-Blackwellized (Blackwell 1947) particle �lter to simultaneously estimate
object pose and the value of spatio-temporally varying parameters (Zhang 2013); e.g. friction coe�cients.
Unfortunately, the experiments in Zhang & Trinkle (2012) show that this state estimator too slow to run
in real-time, even when applied to a simple hand with three contact sensors. The MPF does not estimate
physical parameters of the environment (see Section9.5.4 for future work), but is able to use a smaller set
of particles to achieve near real-time performance on complex sensor con�gurations.

The authors of both of these particle �lters (Zhang & Trinkle 2012, Du� et al. 2011 ) note that the
performance of the estimator heavily depends on the type of uncertainty introduced into the transition
model. Adding noise to the output of the physics model can produce inter-object penetration and physically-
infeasible motion. Instead, noise should be introduced to the input of the simulator by applying random
forces to the simulated object (Du� et al. 2011 , Du� 2011 ) or by adding noise to the model's parame-
ters (Zhang & Trinkle 2012). We adopt the latter technique in the MPF by sampling the hand-object
friction coe�cient and the radius of the object's pressure distribution|the parameters of our quasistatic
physics model|from probability distributions.

Modifying noise in the transition model does not, however, address the particle starvation problems
inherent to contact sensing. The problem of particle starvation when using contact sensors in a particle �lter
have been recognized several times in the literature (Gadeyne et al. 2005, Zhang & Trinkle 2012, Zhang
2013). This problem is commonly addressed by \smoothing" the observation model with arti�cial noise
that spreads contact observations over a non-in�nitesimal, full-dimensional region of the state space (Zhang
2013, Javdani et al. 2013, Zhang & Trinkle 2012, Corcoran & Platt 2010). This approach|while sometimes
e�ective|scales poorly to high-resolution sensors and discards the most important property of contact
sensors: the di�erence between contact and no-contact. Additionally, this assumption can lead to belief states
that drift arbitrarily far from those generated by true beli ef dynamics over time (Thrun, Fox & Burgard
2000). The MPF solves the particle starvation issue by sampling from the dual proposal distribution, which
is theoretically sound and su�ers neither of these issues.

2.4 Contact State Estimation

For some applications, e.g. learning a compliant controller (Schutter & Brussel 1988), estimating the contact
state between an object and the environment is equally as important as estimating its pose. The contact
state is typically represented as a contact formation (Xiao 1993), which is the set of elementary contacts (e.g.
face-vertex, face-edge, etc) between the robot and the environment. The contact manifold (Section 3.1) used
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Figure 2: (a) Workspace and (b) C-space geometry for a hand pushing a bottle. The contact manifold Sc

is the lower-dimensional boundary betweenSinvalid and Sfree . (c) In the case of the asymmetric object in
Figure 1, the contact manifold is a two-dimensional manifold embedded in SE(2). This �gure was generated
discretizing the object's orientation and computing analytic Minkowski sums as described in Section6.3.3.

by the MPF is equivalent to the projection of all possible contact formations into the con�guration space of
the object relative to the hand.

Gadeyne et al.(2005) used a particle �lter to track a hybrid discrete-continuou s probability distribution
over a small set of contact states (discrete) and object pose(continuous). The estimator was later scaled to
the full set of possible contact states by using a pre-computed contact state graph (Xiao 1993) to generate
a sparse transition model between discrete contact state (Meeussen et al. 2007). Constructing the contact
state graph o�ine mirrors the MPF's pre-computation of the c ontact manifold (Section 6.3).

The key di�erence between the algorithms is that the MPF tracks a single mixed-dimensional distribution
over object pose (Section9.4) that implicitly encodes contact state. In contrast, the al gorithm presented in
Meeussen et al.(2007) explicitly maintains a distribution over contact states. Tracking a single distribution
guarantees that MPF's pose estimate incorporates the contact state constraints imposed by contact observa-
tions. This allows the MPF to use a small number of particles to track the pose of the object, enabling us to
use a computationally expensive physics model in the transition model. This comes at the cost of assuming
that it is known whether the object lies on the observable contact manifold; e.g. by using discriminative
contact sensors (Section6.1).

2.5 Bayesian Estimation

The MPF, along with the other Bayesian state estimation algorithms described above, build on a rich history
of Bayesian estimation research. The Kalman �lter (Kalman 1960), extended Kalman �lter, and unscented
Kalman �lter ( Julier & Uhlmann 1997) have been shown to be e�ective on problems with Gaussian belief
states.1 Unfortunately, none of these techniques are directly applicable to the contact manipulation problem:
pushing and tactile sensing are both highly non-linear and frequently produce non-Gaussian and multi-modal
belief states.

Instead, similar to the prior work described in Sections2.3 and 2.4, we track the pose of the object using
a particle �lter ( Gordon et al. 1993). We borrow the concepts of thedual and mixture proposal distributions
from mobile robot localization literature ( Thrun, Fox & Burgard 2000, Montemerlo et al. 2003). Particle
�lters in this domain su�er from a similar particle starvati on problem on robots using very high-accuracy
depth range�nders or cameras. The dual proposal distribution solves this problem by sampling particles
directly from the observation model. This is possible because the vision and depth sensors used on mobile
robots provide high-accuracy readings independent of the true state. Conversely, contact sensors only provide
accurate readings when the object is in contact with the sensor. Therefore, the MPF must arbitrate between
particles sampled from the conventional and dual proposal distributions.

1The Kalman �lter requires the system to have a linear transition model w ith additive Gaussian noise and a linear observation
model corrupted by Gaussian white noise. The extended Kalman relaxes this requirement to arbitrary di�erentiable functions.
The unscented Kalman �lter further relaxes the requirement to arbitrary functions. However, all three algorithms assume that
posterior belief state can be approximated as Gaussian.
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3 Pose Estimation for Contact Manipulation

Let s 2 S be the state of a dynamical system which evolves over time under actions a 2 A and produces
observations o 2 O. The state estimation problem addresses the computation of thebelief state b(st ), the
probability distribution over the state st at time t

b(st ) = p(st ja1:t ; o1:t ) (1)

given the history of actions a1:t = ( a1; : : : ; at ) and observationso1:t = ( o1; : : : ; ot ) (Thrun et al. 2005).
We focus on the problem ofpose estimation for contact manipulation, where the goal is to estimate the

pose of an object relative to the hand. In this paper, we speci�cally consider the problem of planar contact
manipulation with quasistatic physics (Lynch et al. 1992) and a �xed hand shape. Thequasistatic assumption
states that an object will stop moving as soon as it leaves contact with the hand. Prior work has shown that
this is a good approximation for the planar manipulation of many household objects (Dogar & Srinivasa
2010, 2011, Dogar et al. 2012, Dogar & Srinivasa 2012).

As a result of this assumption, state s 2 S = SE(2) is the pose of the object relative to the hand
(Figure 1a-Left) and an action a = ( v; � t) 2 A is the relative velocity of the hand v 2 se(2) applied
for a duration � t 2 R+ (Figure 1a-Middle). During contact, the object moves according to a stochastic
transition model p(st jst � 1; at ) that encodes the motion of the object in response to pushingaction at . We
model uncertainty in the physics model by drawing the model's parameters from a known distribution.
Adding noise to the input|instead of the output|of a physics mo del has been shown to avoid inter-object
penetration and ensure that the object's motion remains physically feasible (Du� 2011 ).

After taking action at , contact sensors provide an observationot 2 O (Figure 1a-Right). This observation
is either a contact observation (ot 2 Oc) or a no-contact observation (ot 2 Onc = O n Oc). If ot 2 Oc, then
a contact sensor has �red and the observationot may provide additional information about the pose of the
object. Otherwise, if ot 2 Onc , the observation indicates that contact has not occurred. Both of these
properties are combined into the stochasticobservation model p(ot jst ; at ) as the probability of state st

generating observationot after executing action at .2

3.1 Contact Manifold

Contact manipulation poses a unique state estimation challenge because the state evolves on a lower-
dimensional manifold embedded inS. The state spaceS naturally partitions into: (1) penetrating contact
Sinvalid , (2) non-penetrating contact Sc, and (3) no contact Sfree . These three sets are de�ned by the interplay
between the geometry of the object and the geometry of the hand.

Let Ph � R2 be the geometry of the hand andPo(s) � R2 be the geometry of the object at con�gu-
ration s 2 S. The set of all object poses that are in collision with the hand form the con�guration space
obstacle(Lozano-P�erez 1983)

Sobs = CObstacle o(Ph ) = f s 2 S : Ph \ Po(s) 6= ;g

of the hand in the object's con�guration space.
Any con�guration in Sinvalid = int( Sobs) is invalid because the object penetrates the hand. Conversely,

any con�guration in Sfree = S n Sobs is in free spacewhere the object is out of contact with the hand.
Therefore, any valid object con�guration of the object that is in contact with the hand must lie on the
contact manifold Sc = Sobs n int( Sobs) that forms the boundary between Sinvalid and Sfree .

Figure 2 shows the geometry of the workspace (Figure2a) and con�guration space (Figure 2b) of a
BarrettHand manipulating a circular bottle. Since the object is radially symmetric, S is simply the set of
(x; y) positions of the object relative to the hand. If the object is not symmetric, such as the elongated box
shown in Figure 1, S is the set of of three-dimensional (x; y; � ) coordinates of the object relative to the hand,
and the contact manifold (Figure 2c) is a two-dimensional structure embedded inSE(2). The structure

2We de�ne the observation model as p(ot jst ; at ) instead of the more traditional p(ot jst ). We do so to recognize the fact
that|unlike in many applications of the Bayes �lter| ot is strongly inuenced by the most recent action at . This is equivalent
to constructing an augmented state space S0 = S � A and an augmented transition model that stores at in the successor state
st +1 .
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Figure 3: Observable contact manifoldSo for a two-dimensional BarrettHand pushing a rectangular box.
Each point corresponds to a con�guration of the object s 2 Sc that is in non-penetrating contact with the
hand and is uniquely colored by the active contact sensors. Con�gurations that are in contact with multiple
sensors are white. This �gure was generated using the analytic representation of the contact manifold
described in Section6.3.3.

shown in Figure 2c is the C-obstacleSobs of the hand in the object's con�guration space. Points inside the
obstacle are isSinvalid , points outside the obstacle isSfree , and the surface separatingSinvalid from Sfree is the
contact manifold Sc. In this case, Sc is repeated twice along the� -axis because the box exhibits rotational
symmetry.

3.2 Observable Contact Manifold

We know that s 2 Sc during periods of contact. However, our contact sensors maynot be able to sense
contact over the entire surface of the hand. We de�ne theobservable contact manifoldSo � Sc as the set of
object poses that are capable of generating contact observations o 2 Oc.

Let Ps � Ph n int( Ph ) denote the surface of the hand that is instrumented with contact sensors. The set
Ss of states that could generate a contact observation is givenby the con�guration space obstacle

Ss = CObstacle o(Ps) = f s 2 S : Ps \ Po(s) 6= ;g

of the sensors in the object's con�guration space. Theobservable contact manifoldSo = Ss \ Sc consists of
the set of valid object con�gurations that have high probability of generating a contact observation ot 2 Oc.
Intuitively, So is the set of object poses that are in non-penetrating contact with one or more contact sensors.

Figure 3 shows the contact manifold colored by which sensors are active at each point. For example, states
in the large, dark orange region of the manifold are in contact with|and, thus, are likely to activate|the
left distal contact sensor. The two disjoint, light orange patches on the top-right of the manifold contain the
two con�gurations of the box shown in Figure 4c. Similarly, states in the central tan region of the manifold
are in contact with the palm sensor. Regions of the contact manifold that are in simultaneous contact with
multiple sensors are drawn as white.

4 Conventional Particle Filter

In this section, we provide a brief introduction to Bayesian estimation (Section 4.1) and the conventional
particle �lter ( Thrun et al. 2005) (CPF, Section 4.2). We show how the CPF can be applied to the contact
manipulation problem. Unfortunately, we also demonstratethat the algorithm inherently su�ers from particle
starvation (Section 4.4) during periods of contact.
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(a) o1 2 Onc (b) o1 ; : : : ; on 2 Onc (c) o1 ; : : : ; on 2 Oc

Figure 4: The contact manipulation problem commonly produces non-Gaussian and multi-modal belief
states. (a) Receiving a single no-contact observation results in a non-Gaussian posterior belief state. (b) Con-
tinuing to receive no-contact observations results in a multi-modal distribution. ( c) Contact observations
can also result in a multi-modal distribution over the object's pose.

4.1 Bayes Filter

The Bayes �lter is the most general algorithm for recursively �ltering a belief state b(st ) (Thrun et al. 2005)
given an initial belief state b(s0) and the history of actions and observations. This �lter assumes that the
system satis�es the Markov property. This property, st ? (a1:t � 1; o1:t � 1)jst � 1, says that state is a su�cient
statistic for all previous actions and observations. The Markov property is drawn as a Bayes network in
Figure 1b.

We derive the Bayes �lter by considering our beliefb(s0:t ) = p(s0:t ja1:t ; o1:t ) over the trajectory of states
s0:t reached by starting in state s0 and executing the sequence of actionsa1:t . By applying Bayes rule and
the Markov property, we can derive the recursive update rule

b(s0:t ) = p(s0:t ja1:t ; o1:t )

= � p (ot js0:t ; a1:t ; o1:t � 1)p(s0:t ja1:t ; o1:t � 1) . Bayes rule

= � p (ot js0:t ; a1:t ; o1:t � 1)p(st js0:t � 1; a1:t ; o1:t � 1)p(s0:t � 1ja1:t ; o1:t � 1)

= � p (ot jst ; at )p(st jst � 1; at )p(s0:t � 1ja1:t � 1; o1:t � 1) . Markov property 3 (2)

where � = [ p(ot ja1:t ; o1:t � 1)] � 1 is a normalization factor (Thrun et al. 2005). This is equal to the probability
of receiving the sequence of observationso1:t given our history.

Equation (2) recursively de�nes the t-step joint belief b(s0:t ) in terms of the (t � 1)-step joint belief
b(s0:t � 1). Unfortunately, this means that representing b(s) requires memory that is exponential in the time
horizon t. We shrink the size of our belief to constant by computing themarginal

b(st ) = � p (ot jst ; at )
Z

S
p(st jst � 1; at )

Z
p(s0:t � 1ja1:t � 1; o1:t � 1)ds0:t � 2dst � 1

= � p (ot jst ; at )
Z

S
p(st jst � 1; at )b(st � 1)dst � 1; (3)

of the joint belief b(s0:t ) over the history s0:t � 1. This equation recursively constructsb(st ) from b(st � 1) and,
by doing so, forms the basis of dynamic Bayesian estimation.

There are several ways of implementing the Bayes update (Equation 3) depending upon the properties of
the system. The Kalman �lter ( Kalman 1960) is optimal when the b(s0) is Gaussian, the transition model is
linear, and observations are corrupted by additive Gaussian white noise. The extended (Kalman 1960) and
unscented (Julier & Uhlmann 1997) Kalman �lters relax the constraint that the system is linea r, but still
assume that the belief state is Gaussian.

However, none of these assumptions are valid for the contactmanipulation problem. Even in the simplest
quasistatic case the transition model is a function of the contact physics between the hand, object, and

3The Markov property, as stated in the text, does not directly imply th at p(s0: t � 1 ja1: t ; o1: t � 1 ) = p(s0: t � 1 ja1: t � 1 ; o1: t � 1 ).
We additionally assume that s0: t � 1 ? at j(a1: t � 1 ; o1: t � 1 ); i.e. action at does not a�ect states in the past. This is true if the
policy used to select at is a function of only the history a1: t � 1 and o1: t � 1 or, more commonly, the belief b(st � 1 ).
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Algorithm 1 Conventional Particle Filter
Input: action at 2 A and observationot 2 O
Input: particles St � 1 = fhs[i ]

t � 1; w[i ]
t � 1ign

i =1 from time t � 1 such that St � 1 � b(st � 1)

Output: particles St = fhs[i ]
t ; w[i ]

t ign
i =1 at time t such that St � b(st )

1: Ŝt  ;
2: for i = 1 ; : : : ; n do
3: s[i ]

t � p(s[i ]
t js[i ]

t � 1; at )

4: w[i ]
t  w[i ]

t � 1p(ot js
[i ]
t ; at )

5: Ŝt  fh s[i ]
t ; w[i ]

t ig [ Ŝt

6: end for
7: St  Resample(̂St )

support surface. This includes the hand-object geometry and discrete transitions between contact states. As
a result, the transition model is non-linear and lacks analytic derivatives Zhang & Trinkle (2012). Similarly,
the observation model is highly non-linear because the probability of an observation sharply changes between
Sfree and Sc.

Even worse, the belief state quickly becomes non-Gaussian even if b(s0) is Gaussian: a single no-contact
observation o1 2 Onc assignsb(s1) zero probability in the swept volume of the contact sensors(Figure 4a).
Furthermore, b(st ) becomes multi-modal (Figure 4b) if the hand continues to receive no-contact observa-
tions. The belief state can also become multi-model after receiving a contact observation that does not
unambiguously resolve the object's orientation. Figure4c shows one example where pushing straight causes
an object to settle into one of two stable con�gurations.

4.2 Particle Filter

The particle �lter (Gordon et al. 1993, Thrun et al. 2005), shown in Algorithm 1, is a non-parametric real-
ization of the Bayes �lter that represents the belief state b(st ) with a discrete set of samples. The samples
s[1]

t ; : : : ; s[n ]
t 2 S, along with their weights w[1]

t ; : : : ; w[n ]
t 2 R� 0, are called particles St = fhs[i ]

t ; w[i ]
t ign

i =1
and are distributed according to b(st ). The particle �lter implements the Bayesian update by recursively
constructing St from St � 1 using importance sampling (Smith & Gelfand 1992).

The key insight behind the particle �lter is that it is di�cul t to directly sample from the target distribution
(Equation 3), but we can instead sample from aproposal distribution (Thrun et al. 2005, Thrun, Fox & Burgard
2000)

s[i ]
t � q(st )

that we choose to be easy to sample from. We make no assumptionabout the distribution q(st ), except the
support of q is a superset of the support ofb(st ); i.e. b(st ) > 0 =) q(st ) > 0. Intuitively, q represents a
\guess" at the target distribution that is easier to sample from than the true target distribution.

Next, the particle �lter corrects for the mismatch between t he proposal distribution q(st ) and the target
distribution by computing importance weights. The importance weight w[i ]

t for sample s[i ]
t is

w[i ]
t =

b(s[i ]
t )

q(s[i ]
t )

;

the ratio of the target distribution to the proposal distrib ution. Intuitively, importance weights decrease the
inuence of particles that are over-represented (q(st ) > b(st )) and increase the inuence of particles that are
under-represented (q(st ) < b(st )) by the proposal distribution.

Given any function f : S ! R, we can useSt to approximate the expectation

Est � b(st ) [f (st )] �
nX

i =1

w[i ]
t f

�
s[i ]

t

�
(4)

9



under b(st ), assuming the weights are normalized such that
P n

i =1 w[i ]
t = 1. In the limit as n ! 1 , the right-

hand side of Equation4 converges toE [f (st )] for st � b(st ). This property allows us to treat the weighted set
of samplesSt as a �nite-dimensional approximation of the true belief b(st ). We use the notation St � b(st )
to denote that the set of particles St has this property.

This sampling strategy is known assequential importance sampling(SIS) because it sequentially con-
structs St � b(st ) from St � 1 � b(st � 1). Unfortunately, it has been shown (Thrun et al. 2005) that SIS
causes the variance of the weights to increase over time and,consequently, only one particle has non-zero
weight in the limit. This issue is solved by using sequential importance resampling(SIR) to periodically
resample (Algorithm 1, Line 7) St with replacement in proportion to their weights. In practic e, we use
low-variance resampling (Thrun et al. 2005) to implement the resampling step. After resampling, St is
distributed with respect to b(st ) with unit weights.

4.3 Conventional Particle Filter

Implementing the particle �lter requires choosing a proposal distribution that satis�es two properties. First,
it should be easy to samples[i ]

t � q(st ) from the proposal distribution. Second, it must be possible to
compute the importance weight w[i ]

t = b(st )=q(st ).
The most commonly used proposal distribution, which we refer to as the conventional proposal distribu-

tion, is

q(st ) =
Z

S
p(st jst � 1; at )b(st � 1)dst � 1; (5)

which is equal to the belief state after taking action at , but before receiving observationot . Sampling from
Equation 5 is implemented by forward simulating eachs[i ]

t � 1 2 St � 1 to time t using the transition model

s[i ]
t � p(s[i ]

t js[i ]
t � 1; at ) (Algorithm 1, Line 3). Since St � 1 � b(st � 1), the output of this operation is distributed

according to q(st ). We refer to any particle �lter that samples from q(st ) as a conventional particle �lter
(CPF).

Next, the CPF computes an importance weightw[i ]
t (Algorithm 1, Line 4) equal to the ratio of the target

distribution (Equation 3) to the proposal distribution (Equation 5)

w[i ]
t =

b(s[i ]
t )

q(s[i ]
t )

=
� p (ot js

[i ]
t ; at )

R
S p(s[i ]

t jst � 1; at )b(st � 1)dst � 1
R

S p(s[i ]
t jst � 1; at )b(st � 1)dst � 1

= � p (ot js
[i ]
t ; at ) (6)

to compensate for the mismatch between the proposal and target distributions. In the general case, where
St � 1 has non-uniform weights, the weight for particle s[i ]

t is given by w[i ]
t = � w [i ]

t � 1p(ot js
[i ]
t ; at ) where w[i ]

t � 1

is the weight of the particle s[i ]
t � 1 that was forward-simulated by the transition model. The re-weighting

step incorporates the observationot by assigning higher weights to particles that are consistent with the
observation.

4.4 Particle Starvation During Contact

The CPF is agnostic to the observation model and has been applied to a variety of domains (Montemerlo et al.
2003, Gadeyne et al. 2005, Zhang & Trinkle 2012). However, the contact manipulation problem is unique
because: (1) the state may become concentrated on the lower-dimensional contact manifold Sc and (2)
contact sensors accurately discriminate between contact and no-contact.

During periods of contact observations are discriminativeand the observation modelp(ot jst ; at ) is peaked
on So. SinceSo is a lower-dimensional manifold, the set of observations with non-trivial probability form a
zero measure set. As a result, the conventional proposal distribution (Equation 5) is a poor approximation
of the target distribution (Equation 3) during contact; i.e. no particles in St will agree with ot with high
probability.

In practice, the particle �lter is updated in discrete steps. Executing an action pushes all states that
occupy the swept volume of the hand onto the contact manifold. As a result, the hand's contact sensors gain
full dimensionality and the CPF is not completely ine�ectiv e. Unfortunately, as Figure 5a shows, the CPF
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(a) Swept Volume of the Hand (b) Spatio-Temporal Sensor Resolution

Figure 5: (a) Only the small number of particles (dark orange) that are in the swept volume of the sensors
generate contact observations. Most particles (light blue) generate no-contact observations. Therefore,
the conventional proposal distribution performs poorly during contact. The light orange circle shows the
geometry of the object for one particular particle. (b) Increasing the sensor's resolution or update rate
reduces the swept volume of the sensors. This exacerbates the problem of particle starvation.

requires a large number of particles to increase the probability that some fall into the small swept volume of
each sensor. As a result, the CPF su�ers fromparticle starvation during periods of contact: there are often
no particles in the vicinity of the true state.

Figure 6-Top shows the e�ect of particle starvation on the post-contact performance of the CPF. The
conventional particle �lter correctly �lters the belief st ate before contact in (a){(b). However, after contact
occurs, b(st ) is concentrated on So and importance sampling fails to accurately represent the distribution.
As a result, the CPF converges to the erroneous belief that the box has rolled o� the �nger tip instead of
settling into the palm.

Surprisingly, this e�ect causes the CPF to perform worse as sensor resolution or the update frequency
increases. We illustrate the reason for this unintuitive result in Fig ure 5b and demonstrate this e�ect occurs
in simulation experiments (Section 7.5). As sensor resolution increases (left-to-right), the swept volume of
each sensor becomes narrower. As the update frequency increases (top-to-bottom), the distance traveled by
the hand between updates decreases, and the swept volume becomes shorter. As a result, the particle �lter
requires a large number of particles to successfully track the state.

5 Manifold Particle Filter

Suppose the state spaceS is partitioned into m disjoint components M = f M j gm
j =1 such that

S m
j =1 M j = S

and M i \ M j = ; for i 6= j . In this situation, we can express the belief state as the weighted sum

b(st ) =
mX

j =1

b(st jM j )b(st 2 M j ) (7)

over the componentsj = 1 ; : : : ; m. The term b(st jM j ) is the conditional belief over M j and b(st 2 M j )
is the marginal belief that st is on componentM j .4 This factorization is motivated by the the case where
M 1; : : : ; M m � 1 are lower-dimensional manifolds andM m = S n

S m � 1
j =1 M j is the remaining ambient space.

The MPF, shown in Algorithm 2, representsb(st ) using a single set of particlesSt � b(st ). After taking
action at 2 A and receiving observationot 2 O, the MPF uses importance sampling to recursively construct
St from St � 1 � b(st � 1) (Algorithm 2, Lines 4 and 5) just like the CPF. The key insight behind the MPF
is to factor the belief state across manifolds, as shown in Equation 7, and perform a separate importance

4We use the notation b(st jM j ) to denote the probability distribution b(st ) restricted to M j . Formally, b(st jM j ) = � 0b(st ) for
st 2 M j and b(st jM j ) = 0 for st 62M j . The normalization factor � 0 = [

R
M j

b(st )dst ]� 1 is chosen such that
R

M j
b(st jM j )dst = 1.
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Algorithm 2 Manifold Particle Filter
Input: action at 2 A and observationot 2 O
Input: proposal distribution q(st jM j ) and number of samplesnj for j = 1 ; : : : ; m
Input: particles St � 1 = fhs[i ]

t � 1; w[i ]
t � 1ign

i =1 from time t � 1 such that St � 1 � b(st � 1)

Output: particles St = fhs[i ]
t ; w[i ]

t ign
i =1 at time t such that St � b(st )

1: for j = 1 ; : : : ; m do
2: SM j

t  ;
3: for i = 1 ; : : : ; nj do

4: sM j [i ]
t � q(st jM j )

5: wM j [i ]
t  b(st jM j )=q(st jM j )

6: SM j
t  

n
hsM j [i ]

t ; wM j [i ]
t i

o
[ SM j

t

7: end for
8: end for
9: Ŝt  

P m
j =1 b(st 2 M j )SM j

t

10: St  Resample(̂St )

sampling step for each manifoldM j 2 M . This factorization enables the MPF to use a di�erent sampling
technique to sample from each conditional beliefb(st jM j ), which may tailored to the particular structure
of M j . Finally, the MPF combines the sets of samples drawn from each manifold to form St (Algorithm 2,
Line 9).

Let SM j
t = fhsM j [i ]

t ; wM j [i ]
t ign j

i =1 be the set of nj particles that we sample from manifold M j 2 M .5

First, we sample the state of each particlesM j [i ]
t � q(st jM j ) from the manifold-dependent proposal distri-

bution q(st jM j ) (Algorithm 2, Line 4). Then, we compute the corresponding importance weightwM j [i ]
t =

b(st jM j )=q(st jM j ) as the ratio of the target distribution to the proposal dist ribution (Algorithm 2, Line 5).
Just as before, we make no assumption aboutq(st jM j ) except that b(st jM j ) > 0 =) q(st jM j ) > 0.

Finally, we construct a uni�ed set of particles St � b(st ) from the m individual sets of particles SM j
t �

b(st jM j ) (Algorithm 2, Line 9). We do so by computing the mixture

St =
mX

j =1

b(st 2 M j )SM j
t ;

where the sum aX + cY of the sets of particlesX = fhx [i ]; w[i ]
x ign x

i =1 and Y = fhy[i ]; w[i ]
y ign y

i =1 with non-
negative scale factorsa; c 2 R� 0 is de�ned to be aX + cY = fhx [i ]; aw[i ]

x =Wx ign x
i =0 [ fh y[i ]; cw[i ]

y =Wy ign y
i =0 . The

variables Wx =
P n x

i =1 w[i ]
x and Wy =

P n y
i =1 w[i ]

y denote the total weight of X and Y , respectively. Since each
set SM j

t � b(st jM j ) is individually distributed according to the conditional belief, the mixture St � b(st ) is
distributed according to the target distribution.

5.1 Marginal Belief Over Manifolds

In order to reconstruct the full belief b(st ) using Equation 7, we must also know the marginal beliefb(st 2 M j )
over manifolds. Ideally, we would compute

b(st 2 M j ) =
Z

M j

b(st )dst ;

by marginalizing the current belief state b(st ) over each manifold. Unfortunately, computing this marginal
requires knowledge ofb(st ): precisely the distribution that we are trying to estimate !

5 In this section we assume b(st 2 M j ) > 0 to insure that the conditional belief b(st jM j ) is de�ned. When b(st 2 M j ) = 0,

we simply do not sample from M j and assign S
M j
t = ; . See Section 9.4 for a uni�ed measure-theoretic treatment of this case.
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Figure 6: Snapshots of the CPF and MPF, using analytic representation of the contact manifold, dur-
ing execution. Unlike the CPF, the MPF avoids particle starvation by explicitly tracking the probability
distribution on the observable contact manifold So.

It may seem reasonable to approximateb(st 2 M j ) �
R

M j
b(st � 1)dst � 1 by computing the marginal over

the previous belief stateb(st � 1). This, however, is not the case: this approximation treatsb(st 2 M j ) as
a stationary distribution and performs poorly when probability mass transitions between manifolds: one of
the same situations that cause the CPF performs poorly.

Instead, we rely on domain-speci�c structure of the problemto estimate the marginal. In the case of
contact manipulation, we use the discriminative nature of contact sensors to estimate the marginal (Sec-
tion 6.1).

5.2 Number of Particles Per Manifold

Our above analysis made no assumption about the number of particles nj sampled from each manifold. It is
generally advisable choosenj � n � b(st 2 M j ) to avoid sampling too many particles in low-probability man-
ifolds. This strategy is equivalent to using systematic sampling to �rst sample a manifold M j � b(st 2 M j )
for each particle, then using importance sampling to samplethe particle from the corresponding conditional
belief b(st jM j ).

However, if domain-speci�c knowledge is available, it may be desirable to manually specify the number
of particles nj sampled fromM j . We demonstrate one example of this technique in Section6.5. In this case,
the set of particles produced by the MPF will be of sizejSt j =

P m
j =1 nj . If jSt j > jSt � 1j, then each update

of the particle �lter will require additional memory and com putation time to complete. To avoid this, we
enforce the invariant jSt j = jSt � 1j by resampling St with replacement (Algorithm 2, Line 10).
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6 Manifold Particle Filter for Contact Manipulation

In this section we apply the MPF to the contact manipulation p roblem by de�ning the observable contact
manifold M 1 = So and the ambient spaceM 2 = S n So as the relevant partition of S. We show that,
given this partition, it is possible to compute b(st 2 M j ) using the discriminative nature of contact sensors
(Section 6.1).

Given this partition, the MPF uses the conventional proposal distribution to sample from S n So and
the dual proposal distribution (Section 6.2) to sample from So. We propose three representations of the
observable contact manifold (Section6.3) that can be used to implement the dual proposal distribution. We
also present a technique that uses kernel density estimation for approximating the dual importance weights
(Section 6.4). Finally, we show how to e�ciently mix particles from the CP F and MPF to achieve better
performance than either the CPF or the MPF in isolation (Section 6.5).

Figure 6 shows the performance of the MPF and the CPF on the same streamof actions and observations.
Before contact (a){(b), b(st 2 So) � 0 and both �lters update using the conventional proposal distribution.
After contact (c){(d), b(st 2 So) � 1 and the manifold particle �lter samples from the dual proposal
distribution. Sampling from this distribution allows the M PF to accurately track the object's pose during
persistent contact.

6.1 Discriminative Observation Model

Contact sensors accurately discriminate between contact and no-contact. An observation model isdiscrim-
inative if it has a low probability � of generating false-positive or false-negative observations of contact.
Formally, we call an observation model discriminative if wecan partition the set of observationsO into sets
of contact Oc � O and no-contact Onc = O nOc observations such that Pr(o 2 Ocjst 2 So; at ) > 1� � during
contact and Pr(ot 2 Onc jst 62So; at ) > 1 � � during no-contact.

If a sensor is perfectly discriminative, i.e. � = 0, then the marginal

b(st 2 M j ) =
Z

M j

b(st )dst = �
Z

M j

p(ot jst ; at )
Z

S
p(st jst � 1; at )b(st � 1)dst � 1dst

is binary becausest 2 Onc =) p(ot jst ; at ) = 0 8st 2 So and st 2 Oc =) p(ot jst ; at ) = 0 8st 62So. As a
result, the MPF samples entirely from the dual proposal distribution during periods of contact. Otherwise,
the MPF samples from the conventional proposal distribution.

For small values of� > 0, we approximate the marginal by the probability b(st 2 So) /
R

So
p(ot jst ; at )dst

of the single most recent observationot . This approximation is equivalent to ignoring the history encoded
in b(st � 1) while computing b(st 2 So). This is a reasonable approximation of the true marginal for the �rst
few critical post-contact timesteps, but accumulates biasover time. We suggest two potential solutions to
this problem in Section 9.5.3.

We make no assumptions about the observation model during contact, i.e. p(ot jst ; at ) for st 2 So. This
distribution models the information provided by the sensors while contact is being observed. In the case of
binary sensors, such as those used in Sections7 and 8, p(ot jst ; at ) is uniform over the set of states that are
in non-penetrating contact with the active sensors. In the case of a more sophisticated sensor, like a six-axis
force/torque sensor, this distribution encodes a non-uniform probabilistic model of the sensor.

6.2 Dual Proposal Distribution

When st 2 So we know that the conventional proposal distribution is a poor approximation for the posterior
and particle starvation will occur. Instead, we sample fromthe dual proposal distribution (Thrun, Fox & Burgard
2000)

q(st ) =
p(ot jst ; at )

p(ot jat )
(8)
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(a) Rejection Sampling (RS) (b) Trajectory Rollouts (TR) (c) Analytic Representation (AM)

Figure 7: Three representations of the contact manifold. The (a) rejection-sampled and (b) trajectory rollout
representations approximateSc with discrete sets of samples. The (c) analytical representation explicitly
solves for exact orientation iso-contours of the manifold.

to generate a samples[i ]
t � q(st ) that is consistent with the latest observation ot .6 As in prior work ( Thrun, Fox, Burgard & Dellaert

2000), we assume thatp(ot jat ) is �nite. Sampling this proposal distribution is non-triv ial and may require
domain-speci�c knowledge (Thrun, Fox & Burgard 2000). In the case of contact manipulation, we build an
approximate representation of the observable contact manifold (Section 6.3) to facilitate this sampling.

Just as before, we can �nd the correspondingdual importance weights

w[i ]
t =

b(s[i ]
t )

q(s[i ]
t )

=
� p (ot js

[i ]
t ; at )

R
S p(s[i ]

t jst � 1; at )b(st � 1)dst � 1

p(ot js
[i ]
t ; at )=p(ot jat )

= � 0
Z

S
p(s[i ]

t jst � 1; at )b(st � 1)dst � 1; (9)

with normalization factor � 0 = � p (ot jat ). We obtained this equation by dividing the target distribu tion
(Equation 3) by the proposal distribution (Equation 8). We discuss how to approximate these weights using
kernel density estimation in the next section (Section6.4).

The conventional proposal distribution forward-predicts using the motion model and computes impor-
tance weights using the observation model. Conversely, thedual proposal distribution samples particles from
the observation model and weights them by how well they agreewith the motion model. Sampling from the
dual proposal distribution is e�ective when p(ot jst ; at ) is peaked around the true state (Thrun, Fox & Burgard
2000).

6.3 Representing the Contact Manifold

Sampling a particle s[i ]
t � q(st ) requires generating particles that lie on the observable contact manifold So.

To do so, we compute an approximate representation~So � So of the observable contact manifold as a pre-
computation step. Then, at runtime, we sample from a distribution over ~So weighted by p(ot jst ; at )=p(ot jat ).

We describe three possible representations of~So. Two of these, the rejection sampling (Section6.3.1) and
trajectory rollout (Section 6.3.2) representations, approximateSo with large set of discrete samples~So � So.
The third technique (Section 6.3.3) takes advantage of additional structure in object-hand geometry to solve
for a continuous, analytic representation ofSo.

6.3.1 Rejection Sampling

The most straightforward way of sampling from So � S is by rejection sampling from the ambient spaceS.
Rejection sampling iteratively samples candidate statess[i ] � uniform(S) until it �nds a sample s[i ] 2 So

in the desired set. Using this technique, we can generate a large set of samples~So = f s[i ]gn
i =1 � So that

densely coverSo in a pre-computation step. At runtime, we sample from the discrete set ~So weighted by
p(ot jst ; at )=p(ot jat ).

6Since we are only using the dual proposal distribution to sample fr om So , the proposal distribution needs to be restricted
to So . We intentionally omit the conditioning notation adopted in Sect ion 5 for the remainder of this section for simplicity.
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Unfortunately, rejection sampling fails for the same reason as the conventional particle �lter: So is a
measure-zero set and there is zero probability of successfully sampling an s[i ] 2 So. Instead, we rejection
sample the set

~So =
�

s 2 S : min
ps2 Ps ;po 2 Po (s)

jjps � pojj � �
�

of object con�gurations that are within distance � 2 R+ of the hand. The set ~So is a reasonable approximation
for So when � is on the same order of magnitude as the numerical inaccuracies of the motion and observation
models.

Figure 7a showsSo covered by a set of 10,000 rejection-sampled con�gurations~So of the BarrettHand
in contact with the rectangular box shown in Figure 3. The samples ~So are not exactly on So and are
distributed uniformly over the ambient space S, instead of uniformly across the surface of the manifold.
This is, in most cases, an acceptable approximation for a true uniform distribution over So.

Sampling from the dual proposal distribution is implemented by importance sampling from the set ~So

using the weights given in Section6.4. In the worst case, generating these samples requires evaluating
the importance weight of all j ~Soj particles. Our experimental results (Sections7 and 9.2) suggest that the
computational cost of evaluating the dual importance weights is insigni�cant compared to other parts of the
algorithm. This can be further reduced to sub-linear complexity using a spatial index, e.g. k-d tree (Bentley
1975), if the kernel used to compute importance weights has �nitesupport.

6.3.2 Trajectory Rollouts

Rejection sampling attempts to densely cover all ofSo with samples that are independent of the prior belief
b(s0). As a result, many of the samples generated by rejection sampling will be found in regions of So that
remain low (or, in the extreme case, zero) probability during execution. We can exploit this structure by
concentrating more samples in the regions ofSo that we are likely to encounter during execution.

We can generate samples~So that are biased towards these regions by performing trajectory rollouts from
the initial belief b(s0). We begin by sampling a particle from the prior s[i ]

0 � b(s0). Next, we forward-simulate
the particle for T steps using the motion models[i ]

t � p(st jst � 1; at ) with at � � (b(st )) chosen according to
the same policy � that will be run during execution. 7 Finally, we add any s[i ]

t 2 So to ~So. This process
repeats until j ~Soj reaches the desired size.

Figure 7b shows 10,000 samples taken from 2000 trajectory rollouts with a �xed \move straight" action
and b(s0) roughly centered in front of the hand. The trajectory rollo ut technique achieves dense coverage of
the reachable area of the state space|which consists of the front of the hand with orientations consistent
with b(s0)|at the cost of little-to-no coverage of the rest of the manif old.

Unfortunately, the non-uniformity of our samples means that ~So is biased towards absorbing regions
of the state space; e.g. the con�gurations where the object rests stably against the hand in Figure 4c.
We compensate for this bias through importance sampling: weassign eachs[i ] 2 ~So an importance weight
p(ojs; a)=[p(oja)~p(s)] where ~p(s) is the density of ~So at s. We estimate ~p(s) using a standard kernel density
estimation technique (Rosenblatt 1956) on ~So.8 Once these weights have been computed, we use the same
technique as described in Section6.3.1 to sample from the dual proposal distribution.

6.3.3 Analytic Representation

In some special cases of hand-object geometry we can computean analytic representation of So. This is
possible, for example, in the common case wherePh and Po are polygons in R2 (Lozano-P�erez 1983) or
polyhedra in R3 (LaValle 2006).

7 If the initial belief b(s0 ) is not known, then we may substitute an alternative belief ~b(s0 ) where b(s0 ) > 0 ) ~b(s0 ) > 0.
Similarly, if � is not known, we may substitute an alternative policy ~ � where � (b) > 0 ) ~� (b) > 0. These conditions guarantee
that the policy used for constructing ~So will eventually visit all states that can be encountered at runtime.

8Note that w [i ]
t is unde�ned if ~p(s) = 0. This cannot happen if we choose a kernel with su�ciently broad supp ort.
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Without loss of generality, we consider polygonal objects in SE(2). In this case, we can geometrically
compute the C-obstacleSobs(� ) for a �xed orientation � of the object as

Sobs(� ) = Ph � � Po ([0; 0; � ])

where A � B = f a + b : a 2 A; b 2 B g denotes the Minkowski sum of setsA and B .
SincePh and Po([0; 0; � ]) are polygonal, Sobs(� ) is also polygonal and can be computed in closed form via

a convolution of Ph and Po([0; 0; � ]) (Wein 2013). The contact manifold Sc(� ) at orientation � simply consists
of the line-string boundary of the polygon Sobs(� ). Figure 7c shows several� -isocontours ofSc superimposed
over a high-resolution polyhedral approximation of the contact manifold. The same process can be repeated
with Ph and Ps to construct an analytic representation of So(� ).

Finally, we approximate the observable contact manifold asa union ~So =
S

� 2 � So(� ) over a large,
discrete set of orientations �. 9 Discretizing � approximates So with a polyhedron ~So that shares the same
iso-contours asSo at all � 2 �.

Sampling an s[i ] � ~So is possible by �rst sampling a � 2 �, then uniformly sampling an s[i ] from
our analytical representation of So(� ). Alternatively, one could sample from an approximate, polyhedral
representation of So by interpolating between iso-contours. In both cases, the samples are correctly drawn
uniformly with respect to a measure de�ned over the lower-dimensionalSo.

6.4 Dual Importance Weights

Regardless of the method we use to sample from the dual proposal distribution, we must weight each sample
s[i ]

t with its corresponding importance weight w[i ]
t =

R
S p(st jst � 1; at )b(st � 1)dst � 1. Intuitively, the importance

weight integrates our prior belief b(st � 1) and the e�ect of taking action at into b(st ) (Thrun, Fox & Burgard
2000). This is the logical dual of the conventional importance weights, which serve to integrate the observa-
tion ot into the posterior (Section 4.3).

We evaluate w[i ] by forward propagating each particle s[i ]
t � 1 2 St � 1 from time t � 1 to time t using

the transition model s[i ]
t � p(s[i ]

t js[i ]
t � 1; at ). This set of samples, which we denote byS+

t � 1, is distributed
according to our belief state after taking action at , but before receiving the next observationot . Then, we
useS+

t � 1 to approximate the importance weight w[i ] =
R

S p(st jst � 1; at )b(st � 1)dst � 1 using a density estimation
technique (Thrun, Fox & Burgard 2000).

Ideally, we would compute a density estimate over the manifold So. Unfortunately, while there has been
some work on density estimation on Riemannian manifolds (Pelletier 2005), it is di�cult to apply these
techniques to the approximate and sample-based representations of So described above. This is exacerbated
by the fact that many of our forward-simulated particles wil l not lie precisely on So.

Instead, we use kernel density estimation (Rosenblatt 1956) to promote S+
t � 1 into a full-dimensional

distribution over S and evaluatew[i ]
t using the density estimate over the full space. The belief given by our

forward propagated particles S+
t � 1 = hs[i ]

t � 1;+ ; w[i ]
t � 1;+ i n

i =1 is

b(st � 1;+ ) �
nX

i =1

w[i ]
t � 1;+ K

�
st � 1;+ � s[i ]

t � 1;+

�
;

where K = � (�) is the Dirac delta function. This distribution has discret e support becauseb(st ) = 0 for all
st 62S+

t � 1. Applying kernel density estimation to S+
t � 1 replaces� (�) with a kernel function K (�) with broad

support; e.g. an Epanechnikov (Epanechnikov 1969) or Gaussian kernel. This allows us to evaluateb(st � 1;+ )
for the particles St that we sampled from the dual proposal distribution.

In practice, we chooseK (�) to be a Gaussian kernel and select the bandwidth matrix using a multivariate
generalization of Silverman's rule of thumb (Silverman 1981). Our estimate is e�ectively restricted to So

because it is only evaluated on the samples drawn from the dual proposal distribution. Figure 6 shows an
example of the resulting density estimate overSfree (Figure 6-Middle) and So (Figure 6-Bottom) computed
using this technique.

9Uniformly discretizing � may miss critical events where the object �rst comes into or leaves contact wit h the hand. If
these events are important, it is possible to analytically solve for t he critical values of � through careful analysis of the
geometry ( Farahat et al. 1995 ).
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6.5 Mixture Proposal Distribution

Just as how the conventional proposal distribution performs poorly with accurate sensors, the dual proposal
distribution performs poorly when there is observation noise (Thrun, Fox & Burgard 2000). The MPF uses
the dual proposal distribution to sample from So and, as a result, shares the same weakness.

We use amixture proposal distribution (Thrun, Fox & Burgard 2000) to mitigate this e�ect by combining
both sampling techniques. Instead of sampling all of the particles from the MPF, we sample some particles
jScpf j = n from the CPF and the remaining particles jSmpf j = d from the MPF. The mixture proposal
distribution combines the two sets of particles with the weighted sum (1� � )Scpf + �S mpf with 0 � � � 1
before resampling.10

We seamlessly combine the mixture proposal distribution and the MPF's manifold mixing step (Algo-
rithm 2, Line 9) into a single update. To do so, we rewrite the mixture proposal distribution as

St = (1 � � )Scpf + �
h
b(st 2 M 1)SM 1

t + b(st 2 M 2)SM 2
t

i

= (1 � � )Scpf + �
h
b(st 2 M 1)SM 1

t + b(st 2 M 2)(Scpf \ M 2)
i

= (1 � � )(Scpf \ M 1) + [1 � � + � b (st 2 M 2)] (Scpf \ M 2) + � b (st 2 M 1)SM 1
t

by partitioning Scpf into the particles Scpf \ M 1 on the observable contact manifoldM 1 = So and those
Scpf \ M 2 in free space. This factorization is possible because bothScpf \ M 2 and SM 2

t are both generated
by sampling from the conventional proposal distribution. This combined update rule can be interpreted as
assigning additional weight to the particles Scpf \ M 2 in the ambient space to avoid biasingSt towards So.

The parameters n and d can be interpreted as the minimum number of samples necessary to cover the
high-probability regions of, respectively, the ambient spaceM 2 = SnSo and the observable contact manifold
So. The mixing rate 0 � � � 1 parameter allows the algorithm to smoothly transition between the CPF
(� = 0) to the MPF ( � = 1). Increasing � provides better performance when transitioning between manifolds,
but only at the cost of becoming more sensitive to erroneous observations (Thrun, Fox & Burgard 2000).

The output of the mixture is a set of jSt j = n + d particles distributed according to the target distributio n
(Equation 3). Then, as described in Section5, we resampleSt with replacement to enforce the invariant
that jSt j = jSt � 1j = n. This invariant is critical to ensure the MPF, just like the C PF, can be recursively
updated without increasing in computational complexity.

Due to this resampling, the MPF fundamentally di�ers from re lated particle �ltering techniques ( Gadeyne et al.
2005, Meeussen et al. 2007) that track a distribution over contact formations ( Xiao 1993). In the general
case, estimating the distribution b(st 2 M j ) over manifolds is as hard as solving the �ltering problem itself
(Section 5.1). In this paper we speci�cally consider the case where contact sensors are discriminative (Sec-
tion 6.1) and b(st 2 M j ) is binary. In future work, we are interested in using these complementary techniques
to estimate to estimate b(st 2 M j ) for non-discriminative sensors.

The MPF uses this estimate ofb(st 2 M j ) to maintain a single set of particles that span all manifolds.
It is not meaningful to identify whether a particular partic le was sampled from the \conventional" or \dual"
proposal distribution since they are seamlessly mixed as part of the same posterior distribution.

7 Simulation Experiments

We designed a set of simulation experiments to compare the MPF with the CPF for the state estimation
for contact manipulation problem (Sections 7.4 and 7.5). We also ran experiments to explore the di�erences
between the three representations of the contact manifold (Section 7.6) and the e�ect of the mixing rate
parameter (Section7.7).

7.1 Hypotheses

Based on the particle starvation problem described in Section 4.4, we hypothesize that:

H1. The MPF will outperform the CPF after contact.

10 We use the notation de�ned in Section 5 to represent the mixing of multiple sets of particles.
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Increasing the sensor resolution or update rate should makethis di�erence more pronounced because it
reduces the swept volume of the sensors. As this happens, theCPF will begin to su�er from particle
starvation. Therefore, we hypothesize:

H2. The CPF will perform worse as sensor resolution increases; the MPF will not.

H3. The CPF will perform worse as the sensor update rate increases; the MPF will not.

All of the above hypotheses (H1{H3) should be true regardless of which representation of the contact manifold
is used by the MPF. Since AM faithfully represents the continuous manifold, we hypothesize:

H4. The analytic representation of the contact manifold will perform best.

Surprisingly, our results suggest that H4 is false: TR outperforms AM despite the fact that it is a sample-
based approximation of the true contact manifold. We discuss a possible explaination of this result in
Section 7.6.

Between the sample-based representations, we expect TR to outperform RS. RS attempts to represent
the contact manifold at a uniform resolution. In contrast, T R focuses samples on regions of the contact
manifold that we are likely to encounter during execution. Therefore, we hypothesize:

H5. The trajectory rollout representation will outperform the rejection sampled representation.

7.2 Experimental Design

We implemented the CPF and MPF in a custom two-dimensional kinematic simulation environment with
polygonal geometry. Each experiment consisted of a simulated BarrettHand pushing a rectangular box in
a straight line at a speed of 1 cm/s for 50 cm. The initial belief state was set to b(s0) = N (�s0; �) with
covariance � 1=2 = diag[5 cm; 5 cm; 20� ]. The mean �s0 = (�x0; �y0; �� 0) was placed a �xed distance �x0 = 20 cm
from the hand and was assigned a random lateral o�set �y0 � uniform[� 10 cm; 10 cm] and orientation �� 0 �
uniform[0� ; 360� ] for each trial.

We simulated the motion of the object using a penetration-based quasistatic physics model (Lynch et al.
1992) with a 1 mm step size. Before each step, the �nger-object coe�cient of friction � f and the radius
of the object's pressure distribution c were sampled from the Gaussian distributions� f � N (0:5; 0:22) and
c � N (0:05; 0:012) truncated to enforce � f ; c > 0. Binary observations were simulated for each of the hand's
sensors, which were uniformly distributed across the frontsurface of the hand, by computing the intersection
of each sensor with the object. Observations were assumed tobe perfectly discriminative, but the observation
model had a 10% chance of generating an incorrect observation during contact; i.e. an incorrect sensor would
�re. These observations were simulated by applying the sameobservation model to a special \ground truth"
particle s�

t sampled from s�
0 � b(s0).

7.3 Dependent Measures

We evaluate the performance of an estimator by computing theroot mean square error

RMSE(St ; s�
t ) =

vu
u
t

P n
i =1 (s[i ]

t � s�
t )2w[i ]

t
P n

i =1 w[i ]
t

of the particles St = fhs[i ]
t ; w[i ]

t ign
i =1 with respect to the true state s�

t at time t. Instead of combining the
position error (measured in centimeters) with the orientation error (measured in degrees), we report separate
RMSE values for position and orientation.

7.4 Conventional vs. Manifold Particle Filter (H1)

We ran the CPF with n = 100 particles and the MPF with n = 100 conventional, d = 25 dual particles, and a
mixing rate of � = 0 :1. We intentionally chose the same value ofn for both algorithms|despite the addition
of d dual particles for the MPF|because the dual sampling step adds negligible overhead to the runtime of
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Figure 8: Comparison between the CPF and the MPF-AM in simulation. ( a) The CPF and MPF perform
identically before contact, but the MPF signi�cantly outpe rforms the CPF post-contact. (b) The MPF
improves as spatial sensor resolution increases, whereas the CPF declines in performance. (c) Similarly,
the MPF improves and the CPF declines when faced with a fasterupdate frequency. Note that resolution
improves when moving from left-to-right in ( b) and (c). In all cases, error bars indicate a 95% con�dence
interval.

the algorithm (Section 9.2). This means that both the CPF and MPF are tuned to run at appro ximately
the same update rate. The MPF sampled from an analytic representation of the contact manifold that was
pre-computed with 1 mm linear and 1:15� angular resolution.

Figure 8a shows the performance of both �lters averaged over 900 trials. These results show that|as
expected|both �lters behave similarly before contact ( t � 0) and there was not a signi�cant di�erence in
RMSE. After contact ( t > 0), the MPF quickly achieves 4.4 cm less RMSE than the CPF. Figure 6 shows one
example where the MPF achieved a signi�cantly better pose estimate than the CPF. These results support
hypothesis H1: the MPF achieves lower post-contact error than the CPF.

7.5 Spatio-Temporal Sensor Resolution (H2{H3)

We evaluated the e�ect of sensor resolution on estimation accuracy by varying the resolution of binary contact
sensors. In all cases, the sensors are distributed uniformly over the front surface of the hand. Figure8b shows
the relative performance of the CPF and MPF for three di�erent resolutions averaged over 95 trials. As
expected, the CPF performs worse as the spatial sensor resolution increases. In contrast, the MPF performs
better. This con�rms hypothesis H2.

Additionally, we measured the performance of the �lters as we varied the distance traveled between
sensor updates from 5 mm to 4 cm. Since the hand was moving at a constant velocity, this corresponds to
changing the sensor's update frequency. Figure8c shows the performance of the CPF and MPF averaged
over 95 trials. As expected, the CPF performs worse as the update frequency increases. In contrast, the
MPF performs better and con�rms hypothesis H3.

7.6 Contact Manifold Representation (H4{H5)

We also compared the performance of the MPF using the RS, TR, and AM representations of the observable
contact manifold. The RS representation consisted of 10,000 samples that were held constant throughout
all of the experiments. The TR representation generated a di�erent set 10,000 samples for each experiment
by collecting �ve samples each from 2000 trajectory rollouts using the same physics model as used during
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Figure 9: (a) Performance of MPF using the rejection-sampled (RS), trajectory-rollout (TR), and analytical
(AM) manifold representations. In both cases, the data is aligned such that contact occurs at t = 0.
(b) Percent of the time that the MPF succeeded at sampling from the dual proposal distribution during
contact. (c) Performance of the MPF-AM as a function of the mixing rate 0 � � � 1. In all three �gures
the performance of CPF is plotted as a dotted line and error bars denote a 95% con�dence interval.

execution. The AM was built using the parameters described in Section 7.2.
Figure 9a shows the performance of the three representations averaged over 900 trials. The MPF outper-

formed the CPF with all three representations. As expected,the data supports hypothesis H5: MPF-AM
and MPF-TR both outperform MPF-RS. This occurs because the RS representation attempts to cover the
entire surfaceSo with a coarse set of samples. In contrast, the TR representation focuses the same number
of samples on the smaller region ofSo that is encountered during execution.

Surprisingly, however, hypothesis H4 was not supported by the data: MPF-AM did not achieve lower error
than MPF-TR representation. This is partially explained by same reasoning as above: the TR representation
was able to densely cover the reachable subset ofSo at a resolution indistinguishable from that of the
AM representation. Additionally, we know that every sample drawn from the TR representation must be
reachable from the initial belief b(s0). This means that MPF-TR does not waste samples from the dual
proposal distribution in regions of So that are known to be unreachable fromb(s0).

Our intuition is that the relatively poor performance of the MPF-RS is a result of it frequently failing
to sample from the dual proposal distribution. Sampling from the dual proposal distribution fails when all
particles sampled from ~So have low probability p(ot jst ; at ) of generating ot . This occurs when the high-
probability regions of p(ot jst ; at ) are not represented by our approximation ~So. In the case of binary contact
sensors, a sampling failure typically occurs when several sensors are simultaneously active at runtime that
were never observed to be simultaneously active while pre-computing ~So.

Figure 9b shows the rate of sampling failures for the MPF-AM, MPF-RS, and MPF-TR computed over
900 trials. We formally de�ne a sampling failure as an updatewhere p(ot jst ; at ) < 0:1 for all st 2 ~So. Since
there is a 10% chance of receiving an erroneous observation during contact (Section 7.2), this corresponds
to ~So containing no states that are consistent with ot . Under this metric, the TR and AM representations
fail to sample from the dual proposal distribution for < 30% of updates. Conversely, the RS representation
fails to sample> 70% of updates. When sampling fails the MPF behaves identically to the CPF and su�ers
from the same problem of particle starvation. As a result, MPF-RS performs poorly compared to MPF-AM
and MPF-TR.

7.7 Mixing Rate

In addition to the manifold representation selected, the mixing rate parameter � also has a strong impact
on the performance of the MPF. We repeated the experiments described in Section7.4 while varying the
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Figure 10: Andy pushing a box (a){(d) and cylinder (e){(i) ac ross the table. The top row shows a video
of the experiment from an overhead camera. The bottom two rows show the belief state estimated by the
CPF (middle, dark blue) and MPF (bottom, light orange) as a cl oud of particles. Ground truth is shown
as a thick green outline. In both cases, the belief state estimated by the MPF is more accurate than that
estimated by the CPF.

MPF-AM's mixing rate over the set � = f 0:025; 0:05; 0:1; 0:3; 0:5; 0:7; 0:9; 1:0g. Note that � = 1 corresponds
to the pure MPF. Figure 9c shows the post-contact performance of the MPF averaged over150 trials and
plotted as a function of � . The performance of the CPF (� = 0) is plotted as a horizontal dotted line.

As expected, the MPF outperforms the CPF for all � > 0. Surprisingly, however, the optimal value of�
falls into the lowest range of � values 0:025 � � � 0:1 that we tested. Increasing� out of this range leads
to a predictable, linear increase in error. This occurs for two reasons. First, the dual proposal distribution
performs poorly when there is observation noise (Thrun, Fox & Burgard 2000). Second, the MPF samples
from an approximation of the dual proposal distribution tha t has higher variance than the true posterior
belief. Reducing the mixing rate decreases the rate at whichthis variance grows. See Section9.3 for more
discussion of this phenomenon.

8 Real-Robot Experiments

We evaluated the CPF and MPF on Andy (Bagnell et al. 2012), a bimanual manipulator developed for
the DARPA ARM-S competition. Andy used a Barrett WAM arm ( Salisbury et al. 1988) equipped with
the i-HY ( Odhner et al. 2013) end-e�ector to push an object across a table. The i-HY's palm (48 tactels),
interior of the proximal links (12 tactels each), interior of the distal links (6 tactels each), and �ngertips (2
tactels each) were equipped with an array of tactile sensors(Tenzer et al. 2014) based on MEMS barometer
technology. The tactels were grouped into 39 vertical stripes to compensate for dead tactels and to simplify
the observation model.

Figure 10 shows two representative runs of the state estimator on Andy. The ground-truth pose of the
object was tracked by an overhead camera using a visual �ducial. Both �lters were run with 250 particles,
with n = 250 for the CPF and n = 225, d = 25, � = 0 :1 for the MPF, and were updated after each 5 mm
of end-e�ector motion. With the speed of the arm, this corresponded to an update rate of approximately
5{15 Hz.

In Experiment 1, Andy pushed a metal box that made initial contact with the right proximal link (b) and
rolled into the palm (c). The CPF did not have any particles in the small observation space and, thus, failed
to track the box as it rolled into the palm (d). The MPF successfully tracked the box by sampling particles
that agree with the observation. Note that the MPF was able to exploit the observation of simultaneous
contact on the palm and distal link to correctly infer the ori entation of the box.

In Experiment 2, Andy pushed a cylindrical container that made initial contact with its left �ngertip (e).
The cylinder rolled down the distal (f) and proximal (h) link s to �nally settle in the palm (i). Both the CPF
and MPF made use of the initial contact observation to localize the container near the robot's left �ngertip.
However, the CPF's few remaining particles incorrectly rolled o� of the �ngertip and outside the hand. The
MPF avoided particle starvation near the true state and was able to successfully track the container for the
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duration of contact.

9 Discussion

In this section, we discuss the MPF in greater detail, discuss its limitations, and outline several directions for
future work. In particular, we analyze the computational complexity of the MPF (Section 9.2) and formally
ground the MPF using measure theory (Section9.4).

9.1 Observability of Contact

Contact sensors frequently do not cover the entire surface of a hand. For example, the proximal links of
the BarrettHand are not covered with tactile sensors and theSynTouch BioTac (Fishel & Loeb 2012) sensor
only provides tactile sensing on the interior of the �ngertip. Even the iHY hand (Odhner et al. 2013),
which tightly integrates TakkTile sensors (Tenzer et al. 2014) into its mechanical design, does not cover the
outside surface of the hand with sensors. As a result, it is important to consider the e�ect that observability
of contact has on our state estimation ability.

The di�erence between \contact" and \observed contact" is captured in our de�nitions of the contact
manifold Sc and the observable contact manifoldSo � Sc. The geometry of the non-observable region of
the contact manifold Sc nSo impacts the di�culty of the state estimation for contact man ipulation problem.
Any stable states in that are not in contact with a sensor, e.g. those that come to rest against a at surface,
will accumulate belief when receiving a series of no-contact observations. The only way to sense an object in
one of these poses is to perform an action that moves the object out of Snc by pushing it into contact with
a sensor.

9.2 Computational Complexity

One practical advantage of the MPF over the CPF becomes apparent when pro�ling the operations performed
by the two algorithms. We will express the complexity of the two algorithms in terms of several basic
operations: (1) the number of samples drawn from the transition model, (2) the number of times the
observation model was evaluated, (3) number of samples drawn from the contact manifold, and (4) other
operations.

Each update of the CPF begins by drawingn samples from the transition model (Table 1a). Then, we
compute an importance weight (Table 1b) for each of the n samples by evaluating the observation model.
Finally, we must perform O(n) operations to re-sample the particles with unit weight.

Given a �xed number of particles, the MPF both achieves better performance and has higher complexity
than the CPF. The MPF samples from the conventional proposaldistribution and still requires drawing n
samples from the transition model and evaluating the observation model n times. Additionally, the MPF
samplesd from the contact manifold (Table 1c). Computing the importance weights for these particles
(Table 1d) involves evaluating an O(n) kernel density estimate for each of thed particles, resulting in O(nd)
total complexity. Mixing and resampling the resulting part icles requires an additionalO(n + d) time.

In practice, we have found that the large increase in performance provided by the MPF dramatically out-
weighs the small increase in computational complexity. This occurs because, as shown in Table1, the four
operations described above take dramatically di�erent amounts of time. Sampling from the transition model
dominates the majority (79:35%) of the runtime because each sample involves running a computationally-
expensive physics simulation. Evaluating the observationmodel consumes much (17:82%) of the remain-
ing runtime because of the large number of collision checks required to simulate an observation. All re-
maining operations|including the overhead incurred by the M PF when sampling from the dual proposal
distribution|is negligible (1 :38%) compared to these two operations.

Note that the time required to evaluate the transition and observation models depends largely on the
composition of b(st ). When b(st 2 Sfree ) is high, then few particles are likely to be touching the hand and
the transition and observations models can be sped up through intelligent use of conservative, broad-phase
checks (e.g. bounding box intersection queries). This suggests that particles onSc are \more expensive" than
those in the ambient spaceSfree . It may be possible to leverage this insight by modifying theresampling step
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No Contact Contact

Operation Complexity Time (ms) Percent Time (ms) Percent

(a) Conventional Proposal O(n) 20.36 65.85% 130.37 79.35%
(b) Conventional Weights O(n) 8.77 28.36% 29.28 17.82%
(c) Dual Proposal O(n + d) { { 0.02 0.01%
(d) Dual Weights O(nd) { { 2.25 1.37%
(e) Other { 1.80 5.79% 2.37 1.45%

Total 30.92 100% 164.29 100%

Table 1: Time required to perform the sampling stages of the (a){(b) CPF and (a){(d) MPF. Nearly all time
is spent evaluating the (a){(b) transition and observation models necessary to implement the conventional
proposal distribution. In comparison, the time required to sample from the (c){(d) dual proposal distribution
is negligible. Timing information was collected on one coreof a 3.4 GHz Intel i7 processor.

to keep more particles in Sfree . Those particles would be down-weighted to avoid biasing the distribution
towards no-contact.

In addition to the runtime performance described above, theMPF incurs a one-time cost to build a
representation of the contact manifold. Building the contact manifold is only required once per hand-object
pair and is done as an o�ine pre-computation step that does not a�ect the speed of the algorithm at
runtime. For the parameters described in Section7, constructing the contact manifold took 51.96 s for the
analytic representation, 451.45 s for the rejection-sampled representation, and 429.49 s for the trajectory
rollout representation. In all three cases, the resolutionparameters were intentionally tuned to maximize
the estimator's runtime performance with no regard for pre-computation time. Reducing the resolution of
the manifold could dramatically reduce pre-computation time, while having a relatively small e�ect on the
MPF's accuracy.

9.3 Mixing Rate Parameter

Our experimental results (Section 7) show that, surprisingly, the the optimal choice of mixing rate � is
much closer to � = 0 than � = 1. This may seem counter-intuitive: the MPF outperforms th e CPF, so one
would expect increasing� to improve performance. Two competing forces partially mitigate this e�ect: (1)
the susceptibility of the dual proposal distribution to observation noise and (2) the tendency for the dual
proposal distribution to increase the variance of the posterior distribution.

First, the dual proposal distribution performs poorly when confronted with sensing errors (Thrun, Fox & Burgard
2000). Receiving an erroneous observation can cause the majority of the particles sampled from the dual
proposal distribution to lie in the wrong region of the state space. This stems from the same underlying
problem described in Section4.4: when an observation error occurs, the proposal distribution is a poor
approximation of the target distribution. As a result, it wo uld take a prohibitively large number of samples
to to faithfully represent the posterior. Using the mixture proposal distribution (Section 6.5) leverages the
complementary nature of the conventional and dual proposaldistributions to avoid the worst-case behavior
of either distribution ( Thrun, Fox & Burgard 2000).

Second, the belief state tracked by the pure MPF tends to increase in variance over time. This occurs
because we use kernel density estimation to compute the importance weights for particles sampled from the
dual proposal distribution. Kernel density estimation, as described in Section6.4, replaces the Dirac delta
function in the �ltering distribution with a kernel that has broad support. As a result, particles sampled from
the dual proposal distribution generally have higher variance than those sampled from the true posterior
distribution. This variance increases over time as the estimator is recursively updated. Assigning a low
weight to the particles sampled from the MPF|by choosing a low value of � |reduces the rate at which the
variance grows.

These results suggest that the mixing rate should vary between update steps. The mixture rate should
be high when sampling from conventional proposal distribution performs poorly; e.g. when transitioning
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from no-contact to contact or moving between contact sensors. Otherwise, � should kept near � = 0 to
avoid introducing variance into the posterior. We are interested in exploring this idea in future work. For
example, we could vary� as a function of the number of e�ective particles (Liu 2008) in the CPF posterior.

9.4 Measure-Theoretic Considerations

Regardless of whether the observation model is discriminative, our derivation of the MPF in Section 5 relied
on our ability to factor the belief state b(st ) =

P m
j =1 b(st jM j )b(st 2 M j ) into a m separate conditional

probability distributions and a marginal distribution b(st 2 M j ) over the manifolds. However, this de�nition
introduces an apparent inconsistency: How canb(st 2 M j ) possibly be non-zero whenM j is a lower-
dimensional manifold?

We can answer this question using measure theory. Formally,our probability space (S; F; � ) consists
of the sample spaceS, the � -algebra of eventsF � 2S , and a probability measure � : F ! R. Most
applications assume that� is isomorphic to the Lebesgue measure� : F ! R over the unit interval ( Rokhlin
1962). Any measure that satis�es this property would assign � (M j ) = 0 for the lower-dimensional manifolds
i < m . Unfortunately, this not the case for the MPF because non-zero probability is concentrated on the
lower-dimensional manifoldsM 1; : : : ; M m � 1 � S. Since the n-dimensional Lebesgue measure assigns zero
measure to any set with dimension less thann, there does not exist a measurable map between� and � . For
example, it is possible that � (M j ) > 0 and � (M j ) = 0 for j < m .

However, we can express the probability measure� =
P m

j =1 � j as the sum of them measures� 1; : : : ; � m

where each� j : 2M j \ F ! R is a measure overM j . If the measures� 1; : : : ; � m are partial probability
measures11 and satisfy

P m
j =1 � i (M j ) = 1, then � is a probability measure overS. Any probability distribution

� 0 over M 1; : : : ; M m can be de�ned in terms of aprobability density function p(s) with respect to � . In this
case, the probability density function is the Radon{Nikodym derivative of � 0 and

R
A p(s)d� (s) is the Lebesgue

integral of p(s) over A � S, both taken with respect to measure� (Resnick 1999). The derivation of the
MPF in Section 5 implicitly assumes that all densities and integrals are de�ned in this way.

We intuitively arrived at the same understanding by factori ng the belief state asb(st ) =
P m

j =1 b(st jM j ).
The marginal b(st 2 M j ) =

R
M j

b(st )d� (st ) is the total probability contributed by the partial probab ility
measure� i . This value represents the probability ofst residing onM j . Each conditional distribution b(st jM j )
is simply the measure of the corresponding partial probability measure normalized such that it sums to one.12

9.5 Limitations and Future Work

We made several simplifying assumptions when applying the MPF to contact manipulation. We focused
on the problem of planar manipulation in a quasistatic environment (Section 9.5.1), assumed the shape of
the hand is �xed (Section 9.5.2), and only consider discriminative contact sensors (Section 9.5.3). We are
interested in relaxing all three of these assumptions in future work.

We are also interested in extending the MPF to estimate uncertain physical properties of the environment
(Section 9.5.4) during execution. Finally|and most importantly|we are exci ted by the prospect of using
the MPF's state estimate for real-time feedback (Section9.5.5).

9.5.1 Manipulation in Higher Dimensions

The MPF, as described in this paper, assumes that the robot isperforming planar manipulation in a qua-
sistatic (Lynch et al. 1992) environment. Applying the MPF to a three-dimensional environment would
require �ltering in S = SE(3). Relaxing the quasistatic assumption again doubles thedimensionality of the
problem by expanding the state space to the full tangent bundle S = SE(3) � se(3).

Increasing the dimensionality of the state space causes an exponential increase in the number of samples
required by the the rejection-sampled representation to approximate So. Similarly, building an analytic

11 A measure � j is a partial probability measure if � j (; ) = 0, � j (M j ) � 1, and � j is � -additive.
12 Technically, the conditional belief b(st jM j ) is unde�ned if b(st 2 M j ) = 0. This is why we de�ned � as the sum of partial

probability measures instead of as the convex combination of full pro bability measures. However, this is not a practical concern
because the MPF will never sample from b(st jM j ) if b(st 2 M j ) = 0.
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representation ofSo is not computationally tractable because it would entail computing polygonal Minkowski
sums over a large number of discretized orientation parameters (Varadhan & Manocha 2006).

It may, however, be possible to extend the trajectory rollout representation (Section 6.3.2) to higher
dimensions. This representation, unlike the RS and AM representations, scales only with the size of the
region of the state space that we encounter with non-trivial probability during execution. Furthermore, it
may be possible to avoid samplingSo during a pre-computation step and, instead, dynamically generate
samples fromSo online. Generating these samples is potentially much less expensive than running the MPF
with more particles. Unlike particles, which must always be distributed according to b(st ), these samples
only are required to uniformly cover So. This may allow us to bypass additional evaluations of the expensive
transition model (Section 9.2) in favor of a more e�cient sampling technique.

9.5.2 Manipulation with an Articulated Hand

Sampling from the dual proposal distribution requires using one of the contact manifold representations
described in Section6.3. All three of these implementations assume that the hand is arigid body. This
means that applying the MPF to an articulated hand requires pre-computing a separate contact manifold for
all possible hand con�gurations that may be encountered during execution. The timing information shown
in Section 9.2 shows that this is only tractable for a small, discrete set ofhand shapes.

We are interested in applying the MPF to articulated hands by building a representation of the contact
manifold that can e�ciently adapted to multiple hand shapes . This may be possible by pre-computing
multiple contact manifolds|one for each rigid component of t he hand|and combining them at runtime.
The key challenge with this approach is to e�ciently generate the lower-dimensional events that occur when
an object settles into multi-point contact with the hand. Solving this problem would allow the MPF to be
applied during the full grasping process, instead of only toplanar pushing.

9.5.3 Non-Discriminative Contact Sensors

One major limitation of our current implementation of the MP F is that it relies on having a discriminative
observation model. This is a valid assumption in many cases,but fails when manipulating light objects or
using unreliable sensors. When this is the case, we can no longer approximate the marginal distribution
b(st 2 So) using the latest observation and must �nd some other methodof approximating the marginal.

In theory, we could approximate the marginal using the set ofparticles St = fhs[i ]
t ; w[i ]

t ign
i =1 sampled

from the conventional proposal distribution as

b(st 2 So) �
P n

i =1 w[i ]
t I (s[i ]

t 2 So)
P n

i =1 w[i ]
t

where I (�) is the indicator function. In practice, however, our results with the CPF shows that St is a
poor approximation for b(st ): we simply do not have enough samples to accurately estimate this probability.
However, we may be able to crudely estimateb(st 2 So) with su�cient regularization ( Liu & West 2001).

Alternatively, it may be possible to approximate b(st 2 So) directly in terms of b(st � 1) by backwards-
propagating ~s[i ]

t � 1 � p(st � 1js[i ]
t ; at ) each samples[i ]

t to the the previous timestep. The corresponding impor-

tance weights are proportional tob(~s[i ]
t � 1), which can be approximated using the density estimation techniques

described in Section6.4. Thrun, Fox & Burgard (2000) show that this technique performs well on mobile
robot localization. Unfortunately, this algorithm may be d i�cult to implement because it is challenging to
sample from the inverse transition modelp(st � 1jst ; at ) in the case of contact manipulation.

9.5.4 Parameter Estimation

Much of the noise in the transition model p(st jst � 1; at ) may actually result from unknown|but static|
properties  2 � of system. This is equivalent to writing the transition mod el as the marginalp(st jst � 1; at ) =R

� p(st jst � 1; at ;  )p( )d of an underlying transition model p(st jst � 1; at ;  ) over the unknown parameters .
In the case of the quasistatic motion model, is the �nger-object coe�cient of friction and the radius of
the object's pressure distribution (Lynch et al. 1992, Dogar & Srinivasa 2010). Prior work has shown that
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it is possible to estimate static (Zhang & Trinkle 2012) and spatio-temporally varying (Zhang et al. 2013)
friction coe�cients using visual and tactile data. Adding t his capability to the MPF would require a method
of assigning parameters to particles sampled from the dual proposal distribution.

Another important case is when  includes the hand-object geometry and the goal is shape estima-
tion ( Allen 1984, Bjorkman et al. 2013, Ilonen et al. 2014) or object identi�cation ( Xu et al. 2013, Schneider et al.
2009, Chitta et al. 2011). This case is particularly important when using compliant end-e�ectors (e.g. i-HY
hand (Odhner et al. 2013)) or manipulating unmodeled objects. Small variations of the object-hand geom-
etry can cause large changes in the shape and topology of the contact manifold. We hope to address this
additional source of uncertainty in future work by considering distributions over object and hand geometry.
This would create a \fuzzy" contact manifold that consists of the union of several hypothesized contact
manifolds.

The MPF, as presented in this paper, assumes that the hand-object geometry is known with certainty
and that p( ) is a known, stationary distribution. Instead of estimatin g b(st ), we could estimate the joint
belief b(st ;  ) over the state st 2 S and the parameter  2 � values. In principle, this could be accomplished
by �ltering in the augmented state space (S; �) with a trivial transition model for  . In future work, we
are interested in extending the dual sampling step in the MPFto support these types of parameters. This
may be challenging because it is di�cult to implement the Bayes update with continuous without su�ering
from particle starvation ( Liu & West 2001).

9.5.5 Real-Time Feedback

Finally, we would like to use the belief state estimated by the MPF for real-time feedback. This problem can
be naturally formulated as a partially observable Markov decision process(POMDP) ( Kaelbling et al. 1998)
with the transition and observation models de�ned in Section 3 and a reward function that assigns positive
reward to achieving the problem-speci�c goal.

Optimally solving a general POMDP is PSPACE-complete (Littman 1996). However, we are optimistic
that the structure of the contact manipulation problem will enable us to e�ciently �nd approximate so-
lutions. Contact sensors provide little information before contact and, as a result, the problem is nearly
deterministic. Once contact occurs, the discriminative nature of contact sensors means that the belief state
exhibits sparse support (Lee et al. 2007) that is constrained to the contact manifold. It may be possible to
leverage this knowledge in a special-purpose POMDP solver.We are encouraged by recent work|including
our own (Koval et al. 2014)|that has achieved promising results in grasping ( Hsiao 2009, Platt et al. 2011)
and non-prehensile manipulation (Horowitz & Burdick 2013) using a POMDP formulation of the problem.

10 Conclusion

In this paper, we investigated the problem of using contact sensors to estimate the pose of an object during
planar manipulation (Section 3). We showed that the conventional particle �lter (Section 4) performs poorly
on this problem because the state lies on the lower-dimensional contact manifold during periods of contact.

We introduced the manifold particle �lter (Section 5) as a solution to this problem and showed how it
can be applied to the contact manipulation problem (Section6) using three di�erent representations of the
contact manifold. Our simulation results (Section 7) show that the CPF signi�cantly outperforms the MPF
and that the gap widens further as sensor resolution and update step size decreases. Finally, we implemented
the MPF on a real robot (Section 8) and showed that the MPF is able to successfully track an object using
commercially available tactile sensors.
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