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Abstract

We investigate the problem of using contact sensors to estimate the pose of an object during planar
pushing by a xed-shape hand. Contact sensors are unique becawse they inherently discriminate between
\contact" and \no-contact" con gurations. As a result, the  set of object con gurations that activates a
sensor constitutes a lower-dimensional contact manifold in the con guration space of the object. This
causes conventional state estimation methods, such as the particle lIter, to perform poorly during periods
of contact due to particle starvation.

In this paper, we introduce the manifold particle lter as a principled way of solving the state
estimation problem when the state moves between multiple manifolds of di erent dimensionality. The
manifold particle Iter avoids particle starvation during contact by adaptively sampling particles that
reside on the contact manifold from the dual proposal distribution. We describe three techniques|one
analytical, and two sample-based|of sampling from the dual p roposal distribution and compare their
relative strengths and weaknesses. We present simulation results that show that all three techniques
outperform the conventional particle lter in both speed an d accuracy. Additionally, we implement the
manifold particle lter on a real robot and show that it succe ssfully tracks the pose of a pushed object
using commercially available tactile sensors.

1 Introduction

Humans e ortlessly use their sense of touch to manipulate ofects. Imagine groping around on a nightstand
for a glass of water, or feeling around a cluttered kitchen chinet while searching for the salt shaker. Each
of these tasks involvescontact manipulation during which we make persistent contact with the environment.
During contact, tactile feedback is critical to localize the object being manipulated.

Armed with real-time observations from tactile sensors (

), manipulators should also be able to estimate the pose of tdelmanlpulated object. Early Work attempted
to solve this problem by deriving analytical state estimators to track and, in some cases, control the pose
of an object from contact positions based on simple models gbhysics ( ). However,
these models fail to accurately capture the reality of maniplation because there is a large amount of un-
certainty in both the object's motion and the robot's observations. Other work has employed a Bayesian
approach by using a particle Iter to estimate the pose ( ),
contact state ( ){ and physical propertles ( ) of
an object during manipulation. However the conventional particle Iter (CPF, Section 4) suers from a
startling problem: the CPF systematically performs worse as the sensor resolah and update frequency
increases (Section 4.4).

This problem arises because contact sensing accuratetjiscriminates between contact and no-contact.
Topologically, the set of states that are consistent with a ©ntact observation lies in the lower dimensional
contact manifold (Section 3.1) embedded in the con guration space of the object. Particles sampled from
the state space have a low probability of being on the contactmanifold and, as a result, particle starva-
tion ( ) occurs in the vicinity of the true state. In the limit,
when the sensor can perfectly localize contact along the hah this region shrinks to a zero measure set
(Section 9.4) and the CPF is completely ine ective.

In this paper, we consider the pose estimation for contact maipulation problem (Figure 1) as one of
Bayesian estimation (Section3) and introduce the manifold particle Iter (

) (MPF, Section 5) as a principled way of solving the problem of particle
starvatlon during contact. We speci cally apply the MPF to t he case of a xed-shape hand equipped with
accurate contact sensors pushing an object in the plane. Th&PF addresses the state estimation problem
when the state moves between multiple manifolds of possiblyi erent dimensions. In the case of contact
manipulation, this occurs when the object makes or breaks a@act with a contact sensor.
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(a) Contact Manipulation Problem (b) Bayes Network

Figure 1: The contact manipulation problem. (a) HERB ( ) pushing a rectangular box
across the table. The states 2 S is the pose of the box relative to the hand. An actiona 2 A is a relative
motion of the hand. After taking action a, HERB receives an observationo 2 O indicating where the object
touched the hand. (b) The Bayes Iter uses the Markov property to recursively compute b(s;) from b(s; 1)

The gist of our algorithm is quite simple: we factorize belid into the marginal probability of being on
a manifold and the probability of the state conditioned on that manifold. We rst choose a manifold, then
sample a particle from that manifold. The key result of this factorization is that we can apply a di er-
ent sampling technique to each manifold. In our case, we sant@ from free space using the conventional
proposal distribution ( ) and from the contact manifold using the dual proposal distribu-
tion ( ).

The dual proposal distribution avoids particle starvation by sampling particles from the contact manifold
that are consistent with the most recent observation. When he object-hand geometry consists of polygons
in R?, an analytic representation (AM, Section 6.3.3 of the contact manifold can be computed using the
Minkowski sum ( ). This provides a computationally e cient way of sampling
from the contact manifold and, thus implementing the dual proposal distribution. However, computing an
analytic representation of the contact manifold is not always possible.

It is possible to apply the MPF to arbitrary planar geometry b y approximating the contact manifold with
a set of weighted samples. We present two such representatis. The rejection sampled representation(RS,
Section 6.3.1) distributes samples uniformly in the ambient space near tle manifold and, thus, is agnostic to
the policy followed during execution. The trajectory rollout representation (TR, Section 6.3.2) concentrates
samples on the regions of the manifold that we are most likelffo encounter during execution.

Our simulation results (Section 7) con rm that the MPF outperforms the CPF in terms of both esti mation
accuracy and computational e ciency. We show that the MPF, i n contrast to the CPF, scales favorably with
increases in the robot's sensor resolution and update freguncy (Section7.5). We also analyze the relative
performance of the RS, TR, and AM manifold representations. As expected, all three representations
outperform the CPF and the AM and TR representations both outperform RS (Section7.6). Surprisingly,
however, our experiments show that TR performs as well as AMBY focusing samples on likely regions, TR
saturates these regions at a resolution indistinguishablérom the analytic solution.

We support these results with an implementation of the MPF on Andy ( ) (Section 8),
a bimanual manipulator equipped with the Barrett WAM arm ( ) and the i-HY end-
e ector ( ). Using the MPF, Andy successfully estimated the pose of seral objects
while executing a pushing action using feedback from the i-M hand's tactile sensors ( ).
These experiments demonstrate that the MPF is able to succedully estimate the pose of an object using
commercially available sensors.

The contact manipulation problem exhibits unique structur e that makes it fundamentally di erent from
most state estimation and planning problems. By exploitingthe structure of the contact manifold, we are able
to signi cantly outperform standard state estimation tech niques. Furthermore, by exploiting the geometry
of the hand-object interaction, the trajectory rollout rep resentation achieved performance comparable to
that of the analytic solution.

However, the implementation of MPF discussed in this paper las several limitations: we only consider
planar manipulation with quasistatic physics (Section 9.5.1), assume that the hand has a xed shape (Sec-
tion 9.5.2), and do not re ne our estimate of the physical properties of the environment (Section 9.5.4)
during execution. We also assume that contact sensors are gliriminative (Section 9.5.3), i.e. are capable of



accurately di erentiating between contact and no-contact. We are interested in addressing all four of these
limitations in future work. Finally, we are excited to use th e belief state estimated by the MPF as feedback
for closed-loop manipulation primitives (Section 9.5.5).

2 Related Work

This paper builds on a long history of research on planar mamulation (Section 2.1) and tactile sensing
(Section 2.2) as sensor feedback. Our choice of the particle Iter was ingsired by recent work on object
pose estimation (Section2.3) and contact state estimation (Section 2.4) for manipulation. Finally, we adapt
the dual and mixture proposal distributions (Section 2.5) used for mobile robot localization to the contact
manipulation problem.

2.1 Manipulation via Pushing

Our focus is on contact manipulation and, in particular, planar pushing actions. Pushing enables robots to
perform a wide variety of tasks that are not possible throughpick-and-place manipulation alone: pushing can
move objects that are too large or heavy to be grasped{ ), is e ective at manipulating
objects under uncertainty ( ), and can be used agpre-grasp manipulation
to bring objects to con gurations where they can be easily gasped ( )
). Additionally, pushing can be used to simultaneously movemultiple obJects (
).

Since pushing o ers such a dramatic expansion of manipulatin skills, there has been extensive re-

search on the fundamental mechanics of pushing\{ ; )
) ) and on the planning of planar pushing operations ( )
). Recently, there has been interest in generating push tregctories using sampling
based planners ( ), trajectory optimization ( ), and learn-
ing methods (. ). We leverage this work by using the quasistatic physics modl (
) ), the same model used by much of this prior work [ )
), to estimate the motion of the object.

Most of these techniques, however, employ pushing as an opémop operation and are sensitive to object
pose uncertainty. One notable exception is thepush-grasp ( ),
which reasons about pose uncertainty during the planning pocess to generate a stralght line action that
funnels the object into the hand. This work is complementaryto our own: tracking the pose of an object
during the execution of a push-grasp would allow the robot tocope with larger amounts of uncertainty and
detect success (or failure) more quickly. In the future, we fan to use the state estimate produced by the
MPF to adapt the robot's motion in real-time. We took a rst st ep in this direction in ( ).

2.2 Tactile Sensing

Contact sensing is an attractive type of feedback during maipulation because it directly observes the robot's
interaction with the environment. Contact sensors come in many forms, including binary switches (

), pressure-sensitive pads | ), and complex ngertips ( ) with multi-
modal sensing capabilities. The MPF can accommodate any typ of sensor that accurately discriminates
between contact and no-contact and can be characterized by probabilistic model.

One method of using tactile sensors during manipulation is ¢ create a feedback controller that directly
maps sensor readings to actions. For example, a robot can u#iee tactile Jacobian to servo its end-e ector to

a desired contact state ( ) ). These controllers are e ective for speci c tasks,
such as following a contour ¢ ) or locally re ning the quality of a grasp ( ).
Another approach is to learn a task-speci c policy ( ) from demonstration. Unfortunately,

it is di cult to generalize these techniques to the full spectrum of manipulation tasks. Our method explicitly
estimates the state of the object, which can then be used by aigher-level planning algorithm to achieve an
arbitrary goal.

Another approach to using contact sensors is to rst locali2 the object, then grasp it. This approach is
commonly implemented by executing a sequence of move-urdibuch actions ( ,



) that localize the object within some tolerance, then
execute an open- Ioop trajectory to achleve a grasp. These ¢hniques generally assume that the object does
not move ( ! ) or use a simple motion model that causes actions
to \bump" the object by a small amount ( ). The MPF solves a fundamentally di erent problem:
it estimates the pose of an object during manipulation and des not plan any actions. Additionally, the
MPF reasons about the motion of the object using an accurate pysics model.

2.3 Object Pose Estimation

There is a rich history of using recursive estimators to trak the pose of objects for manipulation (

). Recently, there has been interest in integrating models b physics
into V|sual tracking algorithms to improve their performan ce. ( ) integrated the PhysX
simulator ( ) into a RANSAC-based ( ) tracker and sig-
ni cantly outperformed several physics-agnostic baselie algorithms. The same physics model was later
used for the transition model of a particle Iter ( ) that uses edge likelihood measure-
ments ( ) to track an object's three-dimensional pose [ ). Similar to this
work, the MPF uses a physics model [( ) as the transition model in a particle Iter for object
pose estimation. However, the MPF uses observations from atact sensors|instead of vision|for feedback.

More recently, ( ) used a particle Iter to combine contact sensing, visual pse
estimates, and an NCP-based physics model~ ) to track the pose of an object being
pushed by a manipulator in the plane. Their results demonstate that contact sensing can signi cantly
improve visual pose estimation accuracy, particularly duing extended periods of visual occlusion. In later

work, the same authors used a Rao-BlackwellizedX ) particle lter to simultaneously estimate
object pose and the value of spatio-temporally varying paraneters ( ); e.g. friction coe cients.
Unfortunately, the experiments in ( ) show that this state estimator too slow to run

in real-time, even when applied to a simple hand with three catact sensors. The MPF does not estimate
physical parameters of the environment (see Sectiof.5.4 for future work), but is able to use a smaller set
of particles to achieve near real-time performance on compk sensor con gurations.

The authors of both of these particle lters ( ) note that the
performance of the estimator heavily depends on the type of rmcertalnty introduced into the transition
model. Adding noise to the output of the physics model can prduce inter-object penetration and physically-
infeasible motion. Instead, noise should be introduced to hie input of the simulator by applying random
forces to the simulated object ( ) or by adding noise to the model's parame-
ters ( ). We adopt the Iatter technique in the MPF by sampling the hand-object
friction coe cient and the radius of the object's pressure distribution|the parameters of our quasistatic
physics model|from probability distributions.

Modifying noise in the transition model does not, however, ddress the particle starvation problems
inherent to contact sensing. The problem of particle starvdion when using contact sensors in a particle Iter
have been recognized several times in the literature ; ,

). This problem is commonly addressed by \smoothing" the obgrvation model with arti cial noise
that spreads contact observations over a non-in nitesimal full-dimensional region of the state space {

). This approach|while sometimes
eectlvelscales poorly to high-resolution sensors and discards the most important property of contact
sensors: the di erence between contact and no-contact. Aditionally, this assumption can lead to belief states
that drift arbitrarily far from those generated by true beli ef dynamics over time (

). The MPF solves the particle starvation issue by sampling fom the dual proposal distribution, which
is theoretically sound and su ers neither of these issues.

2.4 Contact State Estimation

For some applications, e.g. learning a compliant controlle ( ), estimating the contact
state between an object and the environment is equally as imgrtant as estimating its pose. The contact
state is typically represented as a contact formation { ), which is the set of elementary contacts (e.g.

face-vertex, face-edge, etc) between the robot and the emanment. The contact manifold (Section 3.1) used
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Figure 2: (a) Workspace and () C-space geometry for a hand pushing a bottle. The contact maifold S,
is the lower-dimensional boundary betweenSinqig and Siee. (C) In the case of the asymmetric object in
Figure 1, the contact manifold is a two-dimensional manifold embed@d in SE(2). This gure was generated
discretizing the object's orientation and computing analytic Minkowski sums as described in Sectior6.3.3

by the MPF is equivalent to the projection of all possible cortact formations into the con guration space of
the object relative to the hand.

Gadeyne et al.(2009 used a particle Iter to track a hybrid discrete-continuou s probability distribution
over a small set of contact states (discrete) and object poséontinuous). The estimator was later scaled to
the full set of possible contact states by using a pre-compwd contact state graph (<iao 1993 to generate
a sparse transition model between discrete contact state\(eeussen et al. 200)/ Constructing the contact
state graph o ine mirrors the MPF's pre-computation of the ¢ ontact manifold (Section 6.3).

The key di erence between the algorithms is that the MPF tracks a single mixed-dimensional distribution
over object pose (Sectiord.4) that implicitly encodes contact state. In contrast, the algorithm presented in
Meeussen et al(2007) explicitly maintains a distribution over contact states. Tracking a single distribution
guarantees that MPF's pose estimate incorporates the contet state constraints imposed by contact observa-
tions. This allows the MPF to use a small humber of particles b track the pose of the object, enabling us to
use a computationally expensive physics model in the transion model. This comes at the cost of assuming
that it is known whether the object lies on the observable cotact manifold; e.g. by using discriminative
contact sensors (Sectior6.1).

2.5 Bayesian Estimation

The MPF, along with the other Bayesian state estimation algaithms described above, build on a rich history
of Bayesian estimation research. The Kalman lter (Kalman 1960), extended Kalman Iter, and unscented
Kalman lter ( Julier & Uhlmann 1997) have been shown to be e ective on problems with Gaussian bdf
states® Unfortunately, none of these techniques are directly appliable to the contact manipulation problem:
pushing and tactile sensing are both highly non-linear andifequently produce non-Gaussian and multi-modal
belief states.

Instead, similar to the prior work described in Sections2.3 and 2.4, we track the pose of the object using
a particle lter ( Gordon et al. 1993. We borrow the concepts of thedual and mixture proposal distributions
from mobile robot localization literature ( Thrun, Fox & Burgard 2000, Montemerlo et al. 2003. Particle
Iters in this domain su er from a similar particle starvati on problem on robots using very high-accuracy
depth range nders or cameras. The dual proposal distributbn solves this problem by sampling particles
directly from the observation model. This is possible becase the vision and depth sensors used on mobile
robots provide high-accuracy readings independent of thertie state. Conversely, contact sensors only provide
accurate readings when the object is in contact with the sersr. Therefore, the MPF must arbitrate between
particles sampled from the conventional and dual proposal tributions.

1The Kalman lter requires the system to have a linear transition modelw  ith additive Gaussian noise and a linear observation
model corrupted by Gaussian white noise. The extended Kalman relaxes this requirement to arbitrary di erentiable functions.
The unscented Kalman lter further relaxes the requirement to arbitrary functions. However, all three algorithms assume that
posterior belief state can be approximated as Gaussian.



3 Pose Estimation for Contact Manipulation

Let s 2 S be the state of a dynamical system which evolves over time urgt actionsa 2 A and produces
observationso 2 O. The state estimation problem addresses the computation of thebelief state (s;), the
probability distribution over the state s; at time t

b(st) = p(stjas:t; O1:t) 1)

given the history of actionsa;.1 = (az;:::;a;) and observationso;.t = (01;:::;0) ( ).

We focus on the problem ofpose estimation for contact manipulation where the goal is to estimate the
pose of an object relative to the hand. In this paper, we spedaially consider the problem of planar contact
manipulation with quasistatic physics ( ) and a xed hand shape. Thequasistatic assumption
states that an object will stop moving as soon as it leaves cdact with the hand. Prior work has shown that
this is a good approximation for the planar manipulation of many household objects [

) : 4 )-

As a result of this assumption, states 2 S = SE(2) is the pose of the object relative to the hand
(Figure la-Left) and an action a = (v; t) 2 A is the relative velocity of the hand v 2 se(2) applied
for a duration t 2 R* (Figure la-Middle). During contact, the object moves according to a sbchastic
transition model p(stjs; 1;a:) that encodes the motion of the object in response to pushingction a;. We
model uncertainty in the physics model by drawing the models parameters from a known distribution.
Adding noise to the input|instead of the output|of a physics mo del has been shown to avoid inter-object
penetration and ensure that the object's motion remains phyically feasible ( ).

After taking action a;, contact sensors provide an observatiom; 2 O (Figure 1la-Right). This observation
is either a contact observation @ 2 O.) or a no-contact observation © 2 Opc = ONnOy). If o 2 O, then
a contact sensor has red and the observationo, may provide additional information about the pose of the
object. Otherwise, if o 2 Oy, the observation indicates that contact has not occurred. Bth of these
properties are combined into the stochasticobservation model p(ojs;; a;) as the probability of state s
generating observationo, after executing action a;.?

3.1 Contact Manifold

Contact manipulation poses a unigue state estimation chaknge because the state evolves on a lower-
dimensional manifold embedded inS. The state spaceS naturally partitions into: (1) penetrating contact
Sinvalid » (2) non-penetrating contact S¢, and (3) no contact Spee. These three sets are de ned by the interplay
between the geometry of the object and the geometry of the hash

Let P, R? be the geometry of the hand andP,(s) R? be the geometry of the object at con gu-
ration s 2 S. The set of all object poses that are in collision with the ham form the con guration space
obstacle( )

Sobs = CObstacle o(Pn) = fs2 S: P\ Py(s) 6 ;g

of the hand in the object's con guration space.

Any con guration in  Sipvaig = iNt( Seps) IS invalid because the object penetrates the hand. Convesly,
any con guration in Spee = S h Sgps IS in free spacewhere the object is out of contact with the hand.
Therefore, any valid object con guration of the object that is in contact with the hand must lie on the
contact manifold S; = Sgps Nint( Sgps) that forms the boundary between Sivaig  and Syree -

Figure 2 shows the geometry of the workspace (Figure2a) and con guration space (Figure 2b) of a
BarrettHand manipulating a circular bottle. Since the object is radially symmetric, S is simply the set of
(x;y) positions of the object relative to the hand. If the object is not symmetric, such as the elongated box
shown in Figure 1, S is the set of of three-dimensional X;y; ) coordinates of the object relative to the hand,
and the contact manifold (Figure 2¢) is a two-dimensional structure embedded iInSE(2). The structure

2We de ne the observation model as p(otjst;at) instead of the more traditional p(otjsi). We do so to recognize the fact
that|unlike in many applications of the Bayes lter| ot is strongly in uenced by the most recent action  a;. This is equivalent
to constructing an augmented state space S°= S A and an augmented transition model that stores a; in the successor state
St+1 -



Figure 3: Observable contact manifoldS, for a two-dimensional BarrettHand pushing a rectangular b.
Each point corresponds to a con guration of the objects 2 S; that is in non-penetrating contact with the
hand and is uniquely colored by the active contact sensors. @n gurations that are in contact with multiple
sensors are white. This gure was generated using the analit representation of the contact manifold
described in Section6.3.3

shown in Figure 2c is the C-obstacleSyps Of the hand in the object's con guration space. Points insice the
obstacle are isSinaig , points outside the obstacle isSgee, and the surface separatin@Sinyaia  from Sgee IS the
contact manifold Sc. In this case, S; is repeated twice along the -axis because the box exhibits rotational
symmetry.

3.2 Observable Contact Manifold

We know that s 2 S, during periods of contact. However, our contact sensors mayot be able to sense
contact over the entire surface of the hand. We de ne theobservable contact manifoldS, S as the set of
object poses that are capable of generating contact obsertians 02 Oc.

Let Ps Pp nint( P,) denote the surface of the hand that is instrumented with conact sensors. The set
Ss of states that could generate a contact observation is giverby the con guration space obstacle

Ss = CObstacle 4(Ps) = fs2 S:Ps\ Py(s) 6 ;g

of the sensors in the object's con guration space. Theobservable contact manifoldS, = Sg\ S¢ consists of
the set of valid object con gurations that have high probability of generating a contact observationo; 2 O.
Intuitively, S, is the set of object poses that are in non-penetrating contacwith one or more contact sensors.
Figure 3 shows the contact manifold colored by which sensors are aet at each point. For example, states
in the large, dark orange region of the manifold are in contatwith|and, thus, are likely to activate|the
left distal contact sensor. The two disjoint, light orange patches on the top-right of the manifold contain the
two con gurations of the box shown in Figure 4c. Similarly, states in the central tan region of the manifold
are in contact with the palm sensor. Regions of the contact maifold that are in simultaneous contact with
multiple sensors are drawn as white.

4 Conventional Particle Filter

In this section, we provide a brief introduction to Bayesian estimation (Section 4.1) and the conventional
particle lter ( Thrun et al. 2005) (CPF, Section 4.2). We show how the CPF can be applied to the contact
manipulation problem. Unfortunately, we also demonstratethat the algorithm inherently su ers from particle
starvation (Section 4.4) during periods of contact.
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Figure 4: The contact manipulation problem commonly produees non-Gaussian and multi-modal belief
states. (a) Receiving a single no-contact observation results in a notGaussian posterior belief state. ) Con-

tinuing to receive no-contact observations results in a muii-modal distribution. ( c) Contact observations

can also result in a multi-modal distribution over the object's pose.

4.1 Bayes Filter

The Bayes lter is the most general algorithm for recursively ltering a belief state b(s;) ( )
given an initial belief state b(sy) and the history of actions and observations. This Iter assumes that the
system satis es the Markov property. This property, s; ? (az:¢ 1:01:t 1)jSt 1, says that state is a su cient
statistic for all previous actions and observations. The Makov property is drawn as a Bayes network in
Figure 1hb.

We derive the Bayes Iter by considering our beliefb(so.t) = p(So:tjas:t; 01:t) over the trajectory of states
So:t reached by starting in state s, and executing the sequence of actiona;.;. By applying Bayes rule and
the Markov property, we can derive the recursive update rule

b(so:t) = p(So:tjas:t; Ov:t)

= p(othO:t;alzt;ol:t 1)p(30:tjal:t;01:t 1) . Bayes rule

= p(0tjSo:t;art;Ont 1)P(StjSo:t 1;@1:t;01:t 1)P(Soit 1jart; Ot 1)

= p(ojst;a)p(siist 1;a)p(Sot 1jast 1;01:t 1) . Markov property®  (2)
where =[p(ojayt; 01t 1)] ! is a normalization factor ( ). This is equal to the probability

of receiving the sequence of observationg;.; given our history.

Equation (2) recursively de nes the t-step joint belief b(sp.1) in terms of the (t 1)-step joint belief
b(so:t 1). Unfortunately, this means that representing b(s) requires memory that is exponential in the time
horizon t. We shrink the size of our belief to constant by computing themarginal

VA Z
b(st) = p(ajst;a)  p(stist 1;a)  P(Sot 1jawt 1,01t 1)dSoe 2dst 1
ZS
= p(ajsi;a)  p(sist 1;a)b(s 1)dst 1 ®3)
S
of the joint belief b(sy:t) over the history sp.; 1. This equation recursively constructsh(s;) from b(s; 1) and,

by doing so, forms the basis of dynamic Bayesian estimation.
There are several ways of implementing the Bayes update (Eation 3) depending upon the properties of

the system. The Kalman Iter ( ) is optimal when the b(sp) is Gaussian, the transition model is
linear, and observations are corrupted by additive Gaussia white noise. The extended { ) and
unscented ( ) Kalman lIters relax the constraint that the system is linea r, but still

assume that the belief state is Gaussian.
However, none of these assumptions are valid for the contachanipulation problem. Even in the simplest
guasistatic case the transition model is a function of the catact physics between the hand, object, and

3The Markov property, as stated in the text, does not directly imply th at p(So:t 1jart;0n:t 1) = P(So:t 1jant 1;01:t 1)-
We additionally assume that so:t 1 ? atj(a:t 1;01:t 1); i.e. action a: does not a ect states in the past. This is true if the
policy used to select a; is a function of only the history aj:.t 1 and o1:t 1 or, more commonly, the belief b(s; 1).



Algorithm 1 Conventional Particle Filter
Input: action a; 2 A and observationq 20
Input: particles S; 1 = fhst 1,wt[']llgI L, fromtimet 1suchthatS; 1 b(s; 1)

Output particles S; = fhsI ; [']lg, L, attime t suchthatS; b(s)

tlp(OtJS ;ar)
S thosihwligl &

end for
S Resample®)

Noa s wNe
=2

support surface. This includes the hand-object geometry ad discrete transitions between contact states. As
a result, the transition model is non-linear and lacks analyic derivatives ( ). Similarly,
the observation model is highly non-linear because the pradibility of an observation sharply changes between
Stree and Se.

Even worse, the belief state quickly becomes non-Gaussiatven if b(sp) is Gaussian: a single no-contact
observation 0; 2 O, assignsh(s;) zero probability in the swept volume of the contact sensors(Figure 4a).
Furthermore, b(s;) becomes multi-modal (Figure 4b) if the hand continues to receive no-contact observa-
tions. The belief state can also become multi-model after reeiving a contact observation that does not
unambiguously resolve the object's orientation. Figure4c shows one example where pushing straight causes
an object to settle into one of two stable con gurations.

4.2 Particle Filter

The particle lter ( ), shown in Algorithm 1, is a non-parametric real-
ization of the Bayes lIter that represents the belief state b(s;) with a discrete set of samples. The samples
st::i:6l" 2 s, along with their weights wi';:::;wi™ 2 R 0, are called particles S; = fhsl');wiligh
and are distributed according to b(s;). The particle lter implements the Bayesian update by recursively

constructing S; from S; ; using importance sampling ( ).
The key insight behind the particle lteris that itis di cul tto directly sample from the target distribution
(Equation 3), but we can instead sample from goroposal distribution ( ,

)
s qs)

that we choose to be easy to sample from. We make no assumpti@bout the distribution q(s;), except the
support of q is a superset of the support ofs;); i.e. b(sy) > 0 =) q(s;) > 0. Intuitively, q represents a
\guess" at the target distribution that is easier to sample from than the true target distribution.

Next, the particle Iter corrects for the mismatch between t he proposal distribution g(s;) and the target

distribution by computing importance weights The importance weight Wt[i] for sample s{'] is

i st
a(st)
the ratio of the target distribution to the proposal distrib ution. Intuitively, importance weights decrease the
in uence of particles that are over-represented €(s;) > b(s;)) and increase the in uence of particles that are

under-represented (|(s;) < b(s;)) by the proposal distribution.
Given any function f : S! R, we can useS; to approximate the expectation

X wii] [i]
Eo wa[f(s)] w5 (4)



under b(s;), assuming the weights are normalized such that ! - wt'] =1. Inthelimitas n!1 , the right-

hand side of Equation4 converges toE [f (s¢)] for s¢  b(st). ThIS property allows us to treat the weighted set
of samplesS; as a nite-dimensional approximation of the true belief b(s;). We use the notation S;  b(st)
to denote that the set of particles S; has this property.

This sampling strategy is known assequential importance sampling(SIS) because it sequentially con-
structs S b(s;) from S; 3 b(s: 1). Unfortunately, it has been shown ( ) that SIS
causes the variance of the weights to increase over time and@pnsequently, only one particle has non-zero
weight in the limit. This issue is solved by using sequential importance resampling(SIR) to periodically
resample (Algorithm 1, Line 7) S; with replacement in proportion to their weights. In practic e, we use
low-variance resampling ( ) to implement the resampling step. After resampling, S; is
distributed with respect to b(s;) with unit weights.

4.3 Conventional Particle Filter

Implementing the particle Iter requires choosing a proposl distribution that satis es two properties. First,
it should be easy to samples['] q(st) from the proposal distribution. Second, it must be possibe to
compute the importance WEIgh'[W[] = b(st)=q(st).
The most commonly used proposal distribution, which we refe to as the conventional proposal distribu-
tion, is
z
q(s) = s p(stjst 1;a)b(st 1)dst 1; (5)

which is equal to the belief state after taking actiona;, but before receiving observationo;. Sampling from
Equation 5 is implemented by forward simulating each s{'] 1 2 S 1 to time t using the transition model
s{i] p(st Jst l,at) (Algorithm 1, Line 3). SinceS; 1 b(s; 1), the output of this operation is distributed
according to q(st). We refer to any particle lter that samples from q(s;) as a conventional particle Iter
(CPF).

Next, the CPF computes an importance Welghtw['] (Algorithm 1, Line 4) equal to the ratio of the target
distribution (Equation 3) to the proposal distribution (Equation 5)

| R
fi] _ (st _ p(OtJSrE];at) s P(slljse 1;a)b(s: 1)ds; 1

_ eli].
i R—m = plajs;a) (6)
a(si) < psllis a)b(s 1)ds: 1

to compensate for the mismatch between the proposal and tamg distributions. In the general case, where

St 1 has non-uniform weights, the weight for particle s{i is given by w['] = Wt 1p(0tht ;at) where Wt]l

is the weight of the particle s{i] , that was forward-simulated by the transition model. The re-weighting
step incorporates the observationo; by assigning higher weights to particles that are consistenwith the
observation.

4.4 Particle Starvation During Contact

The CPF is agnostic to the observation model and has been apjgld to a variety of domains (
). However, the contact manipulation problem is unique

because (1) the state may become concentrated on the lowelimensional contact manifold S; and (2)
contact sensors accurately discriminate between contactrad no-contact.

During periods of contact observations are discriminativeand the observation modelp(ojs;; a;) is peaked
on S,. SinceS, is a lower-dimensional manifold, the set of observations wi non-trivial probability form a
zero measure set. As a result, the conventional proposal dribution (Equation 5) is a poor approximation
of the target distribution (Equation 3) during contact; i.e. no particles in S; will agree with o, with high
probability.

In practice, the particle Iter is updated in discrete steps. Executing an action pushes all states that
occupy the swept volume of the hand onto the contact manifold As a result, the hand's contact sensors gain
full dimensionality and the CPF is not completely ine ectiv e. Unfortunately, as Figure 5a shows, the CPF
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(a) Swept Volume of the Hand (b) Spatio-Temporal Sensor Resolution

Figure 5: (a) Only the small number of particles (dark orange) that are in the swept volume of the sensors
generate contact observations. Most particles (light blu¢@ generate no-contact observations. Therefore,
the conventional proposal distribution performs poorly during contact. The light orange circle shows the
geometry of the object for one particular particle. (b) Increasing the sensor's resolution or update rate
reduces the swept volume of the sensors. This exacerbatesetiproblem of particle starvation.

requires a large number of particles to increase the probabiy that some fall into the small swept volume of
each sensor. As a result, the CPF su ers fromparticle starvation during periods of contact: there are often
no particles in the vicinity of the true state.

Figure 6-Top shows the e ect of particle starvation on the post-contact performance of the CPF. The
conventional particle Iter correctly lters the belief st ate before contact in (a){(b). However, after contact
occurs, b(st) is concentrated onS, and importance sampling fails to accurately represent the dtribution.
As a result, the CPF converges to the erroneous belief that tB box has rolled o the nger tip instead of
settling into the palm.

Surprisingly, this e ect causes the CPF to perform worse as sensor resolution or the update frequency
increases We illustrate the reason for this unintuitive result in Fig ure 5b and demonstrate this e ect occurs
in simulation experiments (Section 7.5). As sensor resolution increases (left-to-right), the swpt volume of
each sensor becomes narrower. As the update frequency ineses (top-to-bottom), the distance traveled by
the hand between updates decreases, and the swept volume loates shorter. As a result, the particle Iter
requires a large number of particles to successfully trackhe state.

5 Manifold Particle Filter

S
Suppose the state spac& is partitioned into m disjoint componentsM = fM; g, such that jm:l M; =S
and M;\ M; = ; fori 6 j. In this situation, we can express the belief state as the wghted sum

X
b(st) = b(sijMj)b(st 2 M) (@)

i=1

is the marginal belief that s; is on componentM;.* This factog'zation is motivated by the the case where
My;:::; My 1 are lower-dimensional manifolds andM,, = Sn jm:11 M; is the remaining ambient space.
The MPF, shown in Algorithm 2, representsh(s;) using a single set of particlesS;  b(s;). After taking
action a; 2 A and receiving observationo; 2 O, the MPF uses importance sampling to recursively construct
St fromS 1 b(s; 1) (Algorithm 2, Lines 4 and 5) just like the CPF. The key insight behind the MPF
is to factor the belief state across manifolds, as shown in Heption 7, and perform a separate importance

4We use the notation b(stjM;) to denote the probability distribution pb(s;) restricted to M; . Formally, kgsijM;) = O(st ) for
st 2 Mj and b(stjM;j) =0for st 62M;j. The normalization factor 0= M| b(st)dst] ! is chosen such that M b(stjMj)dst = 1.
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Algorithm 2 Manifold Particle Filter
Input: action a; 2 A and observationo; 2 O

Input: proposal distribution q(sIJM ) and number of samplesn; forj =1;:::;m
Input: particles S; 1 = fhst l,wt 1|gI L, fromtimet 1suchthatS; ; b(st 1)
Output:  particles S; = fhsl: wi'ligh., at time t such that S,  b(s;)

1. for j =1;:::;mdo

2: SM’ ;

3: for i=1;:::;n; do

4 s/t A(siM))

5: w1 b(s My )=a(sy)

6: sMi b DM 00 [ M)

7. end for

8: end f

J qj,-“ll bst 2 M;)S;"

10: Sy  Resample&)

sampling step for each manifoldM; 2 M. This factorization enables the MPF to use a di erent sampling
technique to sample from each conditional belief(s;jM;), which may tailored to the particular structure
of M. Finally, the MPF combines the sets of samples drawn from edt manifold to form S; (Algorithm 2,
Line 9). .

Let StMJ = fhs{v"[']; M igil, be the set ofn; particles that we sample from manifold M; 2 M.°
First, we sample the state of each particles{\"" [ q(stjM;) from the manifold-dependent proposal distri-
bution g(stjM;) (Algorithm 2, Line 4). Then, we compute the corresponding importance weightw, Mill -
(st jM; )= C(SIJM ) as the ratio of the target distribution to the proposal dist ribution (Algorithm 2, Line 5).
Just as before, we make no assumption aboui(s;jM;) except that b(s;jM;) > 0 =) q(s;jM;) > O.

Finally, we construct a uni ed set of particles S;  b(s;) from the m individual sets of particles SI'VIj
b(stjM;) (Algorithm 2, Line 9). We do so by computing the mixture

X "
St= b(st 2 Mj)S7;

j=1

where the sumaX + cY of the sets of particlesX = fhxll;w{lign and Y = fhyll;wiligl, with non-
negative scale chtorsa 02 R Cis denedto be ax +cY = fhxll; awd!=w,ig [fh yil; cwd!=wigl, . The
variables Wy = ) wX and Wy = ”yl wy denote the total weight of X and Y, respectively. Since each

set StM" b(stjMJ) is individually distributed according to the conditional belief, the mixture S;  b(s¢) is
distributed according to the target distribution.

5.1 Marginal Belief Over Manifolds

In order to reconstruct the full belief b(s;) using Equation 7, we must also know the marginal beliefo(s; 2 M;)
over manifolds. Ideally, we would compute
z
b(s; 2 Mj) = b(st)dst;
M;
by marginalizing the current belief state b(s;) over each manifold. Unfortunately, computing this marginal
requires knowledge of(s;): precisely the distribution that we are trying to estimate !

5|n this section we assume b(st 2 Mj) > 0 to insure that the conditional belief b(stjM;) is de ned. When b(s; 2 Mj) =0,
we simply do not sample from M; and assign Sth = ;. See Section 9.4 for a uni ed measure-theoretic treatment of this case.
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MPF b(s;) CPF b(s;)

MPF b(stjSo)

(a) Prior Belief (b) Pre-Contact (c) Post-Contact (d) Final Belief

Figure 6: Snapshots of the CPF and MPF, using analytic represntation of the contact manifold, dur-
ing execution. Unlike the CPF, the MPF avoids particle starvation by explicitly tracking the probability
distribution on the observable contact manifold S,.

It may seem reasonable to approximated(s; 2 Mj) RMJ_ b(s: 1)ds; 1 by computing the marginal over
the previous belief stateb(s; 1). This, however, is not the case: this approximation treatsb(s; 2 M;) as
a stationary distribution and performs poorly when probability mass transitions between manifolds: one of
the same situations that cause the CPF performs poorly.

Instead, we rely on domain-speci c structure of the problemto estimate the marginal. In the case of
contact manipulation, we use the discriminative nature of @ntact sensors to estimate the marginal (Sec-
tion 6.1).

5.2 Number of Particles Per Manifold

Our above analysis made no assumption about the number of pticles n; sampled from each manifold. It is
generally advisable choos&; n b(s; 2 Mj) to avoid sampling too many particles in low-probability man-
ifolds. This strategy is equivalent to using systematic sarpling to rst sample a manifold M;  b(s; 2 Mj)
for each patrticle, then using importance sampling to samplehe particle from the corresponding conditional
belief b(sjM; ).

However, if domain-speci ¢ knowledge is available, it may k& desirable to manually specify the number
of particles n; sampled fromM;. We demonstrate one examplepf this technique in Sectiof.5. In this case,
the set of particles produced by the MPF will be of sizejS;j = jm:l nj. If jSj > jSt 1j, then each update
of the particle lter will require additional memory and com putation time to complete. To avoid this, we
enforce the invariant jS;j = |S; 1j by resampling S; with replacement (Algorithm 2, Line 10).

13



6 Manifold Particle Filter for Contact Manipulation

In this section we apply the MPF to the contact manipulation problem by de ning the observable contact
manifold M; = S, and the ambient spaceM, = S nS, as the relevant partition of S. We show that,
given this partition, it is possible to compute b(s; 2 M;) using the discriminative nature of contact sensors
(Section 6.1).

Given this partition, the MPF uses the conventional proposd distribution to sample from S nS, and
the dual proposal distribution (Section 6.2) to sample from S,. We propose three representations of the
observable contact manifold (Section6.3) that can be used to implement the dual proposal distribution. We
also present a technique that uses kernel density estimatiofor approximating the dual importance weights
(Section 6.4). Finally, we show how to e ciently mix particles from the CP F and MPF to achieve better
performance than either the CPF or the MPF in isolation (Section 6.5).

Figure 6 shows the performance of the MPF and the CPF on the same strearof actions and observations.
Before contact (a){(b), b(st 2 S,;) 0 and both lters update using the conventional proposal digribution.
After contact (c){(d), b(si 2 So) 1 and the manifold particle Iter samples from the dual proposal
distribution. Sampling from this distribution allows the M PF to accurately track the object's pose during
persistent contact.

6.1 Discriminative Observation Model

Contact sensors accurately discriminate between contactrad no-contact. An observation model isdiscrim-
inative if it has a low probability  of generating false-positive or false-negative observaths of contact.
Formally, we call an observation model discriminative if wecan partition the set of observationsO into sets
of contact O O and no-contact O, = O nO. observations such that Pr© 2 Ocjs; 2 Sg;a) > 1  during
contact and Pr(o; 2 Oncjst 625q; ;) > 1 during no-contact.
If a sensor is perfectly discriminative, i.e. =0, then the marginal
z z z
b(s; 2 Mj) = b(s;)ds; = p(oxjst; a) . p(stjst 1;a)b(st 1)ds; 1ds

Mj Mj

is binary becauses; 2 Onc =) p(oijst;a) =0 8s; 2 Sgands; 2 O =) p(ogjst;a) =0 8s; 62S,. As a
result, the MPF samples entirely from the dual proposal distibution during periods of contact. Otherwise,
the MPF samples from the conventional proposal distribution. R

For small values of > 0, we approximate the marginal by the probability b(s; 2 S,) / s, p(ojst; ar)ds,
of the single most recent observationo;,. This approximation is equivalent to ignoring the history encoded
in b(s; 1) while computing b(s; 2 Sy). This is a reasonable approximation of the true marginal fo the rst
few critical post-contact timesteps, but accumulates biasover time. We suggest two potential solutions to
this problem in Section 9.5.3

We make no assumptions about the observation model during cuact, i.e. p(oijst;a;) for st 2 Sy. This
distribution models the information provided by the sensors while contact is being observed. In the case of
binary sensors, such as those used in Sectiodsand 8, p(o;jst; a;) is uniform over the set of states that are
in non-penetrating contact with the active sensors. In the @se of a more sophisticated sensor, like a six-axis
force/torque sensor, this distribution encodes a non-unibrm probabilistic model of the sensor.

6.2 Dual Proposal Distribution

When s; 2 S, we know that the conventional proposal distribution is a poa approximation for the posterior
and particle starvation will occur. Instead, we sample fromthe dual proposal distribution (

)

p(0tjSt; a)

p(otjay) (®)

q(st) =
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(a) Rejection Sampling (RS) (b) Trajectory Rollouts (TR) (c) Analytic Representation (AM)

Figure 7: Three representations of the contact manifold. Tre (a) rejection-sampled and () trajectory rollout
representations approximate S, with discrete sets of samples. The ¢) analytical representation explicitly
solves for exact orientation iso-contours of the manifold.

to generate a samples{'] q(st) that is consistent with the latest observation o;.° As in prior work ( Thrun, Fox, Burgard & Del
2000, we assume thatp(o:ja;) is nite. Sampling this proposal distribution is non-triv ial and may require
domain-speci ¢ knowledge (Thrun, Fox & Burgard 2000). In the case of contact manipulation, we build an
approximate representation of the observable contact mariold (Section 6.3) to facilitate this sampling.
Just as before, we can nd the correspondinglual importance weights

[ 0 RO z
i1 _ b(st) _ P(ajsiia) gp(siise ssa)b(st 1)dst 1 _

oy p(ajst’; a)=p(aja) )

Sp(s%”jst sadh(s 1)ds 1 (9)

with normalization factor °= p(oja;). We obtained this equation by dividing the target distribu tion
(Equation 3) by the proposal distribution (Equation 8). We discuss how to approximate these weights using
kernel density estimation in the next section (Section6.4).

The conventional proposal distribution forward-predicts using the motion model and computes impor-
tance weights using the observation model. Conversely, thdual proposal distribution samples particles from
the observation model and weights them by how well they agreevith the motion model. Sampling from the
dual proposal distribution is e ective when p(o;js;; a;) is peaked around the true state (Thrun, Fox & Burgard
2000.

6.3 Representing the Contact Manifold

Sampling a particle s{'] d(st) requires generating particles that lie on the observable entact manifold S,.
To do so, we compute an approximate representatior, S, of the observable contact manifold as a pre-
computation step. Then, at runtime, we sample from a distribution over S, weighted by p(o;js;; a;)=p(otjat).

We describe three possible representations &,. Two of these, the rejection sampling (Sectior6.3.1) and
trajectory rollout (Section 6.3.2) representations, approximateS, with large set of discrete samplesS, S,.
The third technique (Section 6.3.3) takes advantage of additional structure in object-hand gemetry to solve
for a continuous, analytic representation ofS,.

6.3.1 Rejection Sampling

The most straightforward way of sampling from S, S is by rejection sampling from the ambient spaceS.
Rejection sampling iteratively samples candidate statessll  uniform(S) until it nds a sample sl 2 S,
in the desired set. Using this technique, we can generate arige set of samplesS, = fslilgl,, S, that
densely coverS, in a pre-computation step. At runtime, we sample from the disccrete setS, weighted by
p(ojst; ar)=p(otjar).

6Since we are only using the dual proposal distribution to sample fr om S, the proposal distribution needs to be restricted
to So. We intentionally omit the conditioning notation adopted in Sect ion 5 for the remainder of this section for simplicity.
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Unfortunately, rejection sampling fails for the same reasa as the conventional particle lter: S, is a
measure-zero set and there is zero probability of succes#ffusampling an sfil 2 S,. Instead, we rejection
sample the set

_ 5 g- ; " .
So s2S pszpsr;rr}:gpo(s)”ps Pol)

of object con gurations that are within distance 2 R* of the hand. The setS, is a reasonable approximation
for S, when is on the same order of magnitude as the numerical inaccuraes of the motion and observation
models.

Figure 7a shows S, covered by a set of 10,000 rejection-sampled con guration§, of the BarrettHand
in contact with the rectangular box shown in Figure 3. The samplesS, are not exactly on S, and are
distributed uniformly over the ambient space S, instead of uniformly across the surface of the manifold.
This is, in most cases, an acceptable approximation for a tra uniform distribution over S,.

Sampling from the dual proposal distribution is implemented by importance sampling from the setS,
using the weights given in Section6.4. In the worst case, generating these samples requires evaling
the importance weight of all jSyj particles. Our experimental results (Sections7 and 9.2) suggest that the
computational cost of evaluating the dual importance weighs is insigni cant compared to other parts of the
algorithm. This can be further reduced to sub-linear compleity using a spatial index, e.g. k-d tree (

), if the kernel used to compute importance weights has nite support.

6.3.2 Trajectory Rollouts

Rejection sampling attempts to densely cover all ofS, with samples that are independent of the prior belief
b(sp). As a result, many of the samples generated by rejection sapting will be found in regions of S, that
remain low (or, in the extreme case, zero) probability during execution. We can exploit this structure by
concentrating more samples in the regions 0§, that we are likely to encounter during execution.

We can generate sample§, that are biased towards these regions by performing trajeatry rollouts from
the initial belief b(sp). We begin by sampling a particle from the prior s([)'] b(sp). Next, we forward-simulate
the particle for T steps using the motion models{'] p(stjst 1;a;) with a; (b(st)) chosen according to
the same policy that will be run during execution.’ Finally, we add any st'] 2 S, to S,. This process
repeats until jS,j reaches the desired size.

Figure 7b shows 10,000 samples taken from 2000 trajectory rollouts Wi a xed \move straight" action
and b(sp) roughly centered in front of the hand. The trajectory rollo ut technique achieves dense coverage of
the reachable area of the state space|which consists of the font of the hand with orientations consistent
with b(sp)|at the cost of little-to-no coverage of the rest of the manif old.

Unfortunately, the non-uniformity of our samples means tha S, is biased towards absorbing regions
of the state space; e.g. the con gurations where the object ests stably against the hand in Figure4c.
We compensate for this bias through importance sampling: weassign eachsl'! 2 S, an importance weight
p(ojs; a)=[p(oja)p(s)] where pfs) is the density of S, at s. We estimate pfs) using a standard kernel density
estimation technique ( ) on S,.2 Once these weights have been computed, we use the same
technique as described in Sectior®.3.1to sample from the dual proposal distribution.

6.3.3 Analytic Representation

In some special cases of hand-object geometry we can compuae analytic representation of S,. This is
possible, for example, in the common case wherB;, and P, are polygons inR? ( ) or
polyhedra in R® ( ).

71f the initial belief b(s) is not known, then we may substitute an alternative belief  B(sp) where b(sp) > 0) B(sg) > O.
Similarly, if is not known, we may substitute an alternative policy ~ where (b) > 0) ~(b) > 0. These conditions guarantee
that the policy used for constructing S, will eventually visit all states that can be encountered at runtime.

8Note that Wt[i] is unde ned if p(s) = 0. This cannot happen if we choose a kernel with su ciently broad supp  ort.
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Without loss of generality, we consider polygonal objectsn SE(2). In this case, we can geometrically
compute the C-obstacleSyps( ) for a xed orientation  of the object as

Sobs( ) = Pn Po ([0;0; ])

whereA B =fa+ b:a2 A;b2 Bg denotes the Minkowski sum of setsA and B.

SincePy, and Py ([0; 0; ]) are polygonal, Seps( ) is also polygonal and can be computed in closed form via
a convolution of P, and Py ([0; 0; 1) ( ). The contact manifold Sc( ) at orientation  simply consists
of the line-string boundary of the polygon Spps( ). Figure 7c shows several -isocontours of S, superimposed
over a high-resolution polyhedral approximation of the cortact manifold. The same process can be repeated
with Py, and Ps to construct an analytic representation of Sy( ). S

Finally, we approximate the observable contact manifold asa union S, = 5 So( ) over a large,
discrete set of orientations .° Discretizing approximates S, with a polyhedron S, that shares the same
iso-contours asS, at all 2 .

Sampling an sl S, is possible by rst sampling a 2 , then uniformly sampling an sl from
our analytical representation of Sy( ). Alternatively, one could sample from an approximate, polhedral
representation of S, by interpolating between iso-contours. In both cases, the amples are correctly drawn
uniformly with respect to a measure de ned over the lower-dmensional S,.

6.4 Dual Importance Weights

Regardless of the method we use to sample from tﬁe dual propalsdistribution, we must weight each sample
s{'] with its corresponding importance weightwt'] = gPp(stjst 1;a)b(st 1)ds: 1. Intuitively, the importance
weight integrates our prior belief b(s; 1) and the e ect of taking action a; into b(s;) (

). This is the logical dual of the conventional importance wéghts, which serve to integrate the observa-
tion o into the posterior (Section 4.3).

We evaluate wlil by forward propagating each particle si!, 2 S; ; from time t 1 to time t using
the transition model sl p(s)jsl? :a;). This set of samples, which we denote byS; ,, is distributed
according to our belief state after taking action a;, bgt before receiving the next observationo;. Then, we
useS,” , to approximate the importance weight wl'l = s P(stjst 1;a)b(st 1)ds; 1 using a density estimation
technique ( ).

Ideally, we would compute a density estimate over the maniftd S,. Unfortunately, while there has been
some work on density estimation on Riemannian manifolds ¥ ), it is dicult to apply these
techniques to the approximate and sample-based represeriians of S, described above. This is exacerbated
by the fact that many of our forward-simulated particles wil | not lie precisely on S,.

Instead, we use kernel density estimation [ ) to promote S/ ; into a full-dimensional
distribution over S and evaluatewt['] using the density estimate over the full space. The belief gen by our

forward propagated particlesS;" ; = hs{i] 1+ ;wt[i]1;+ i, is

X [i] [i] .
b(St 1:+) Wi 1;+K St 1+ St o+

i=1

where K = () is the Dirac delta function. This distribution has discret e support becausdxs;) = 0 for all
st 625 ;. Applying kernel density estimation to S/ ; replaces () with a kernel function K () with broad
support; e.g. an Epanechnikov ¢ ) or Gaussian kernel. This allows us to evaluatdxs; 1.+)
for the particles S; that we sampled from the dual proposal distribution.

In practice, we chooseK () to be a Gaussian kernel and select the bandwidth matrix usig a multivariate
generalization of Silverman's rule of thumb ( ). Our estimate is e ectively restricted to S,
because it is only evaluated on the samples drawn from the dugroposal distribution. Figure 6 shows an
example of the resulting density estimate overSqee (Figure 6-Middle) and S, (Figure 6-Bottom) computed
using this technique.

9Uniformly discretizing may miss critical events where the object rst comes into or leaves contact wit h the hand. If
these events are important, it is possible to analytically solve for t he critical values of through careful analysis of the
geometry ( ).
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6.5 Mixture Proposal Distribution

Just as how the conventional proposal distribution perforns poorly with accurate sensors, the dual proposal

distribution performs poorly when there is observation nose ( ). The MPF uses
the dual proposal distribution to sample from S, and, as a result, shares the same weakness.
We use amixture proposal distribution ( ) to mitigate this e ect by combining

both sampling techniques. Instead of sampling all of the patcles from the MPF, we sample some particles
jScptj = n from the CPF and the remaining particles jSyprj = d from the MPF. The mixture proposal
distribution combines the two sets of particles with the wegghted sum (1 )Scpr + S mpr With O 1
before resampling'®
We seamlessly combine the mixture proposal distribution ad the MPF's manifold mixing step (Algo-
rithm 2, Line 9) into a single update. To do so, we rewrite the mixture proposi distribution as
h [
S=@ ISt Hs 2 M1)S" + b(s 2 M2)Si'?

=(1 )Sepr+  b(st 2 M1)SM"* + b(st 2 M2)(Sepr \ M2)
=1 )Sepr\ M1)+[1  + b(st2M)I(Sepr\ M2)+ b(s 2 My)SM!

by partitioning Scpr into the particles Sepr \ My on the observable contact manifoldM; = S, and those
Scpr \ M2 in free space. This factorization is possible because botfq,;s \ M, and St'\"2 are both generated
by sampling from the conventional proposal distribution. This combined update rule can be interpreted as
assigning additional weight to the particles Spr \ M in the ambient space to avoid biasingS; towards S,.

The parametersn and d can be interpreted as the minimum number of samples necessato cover the
high-probability regions of, respectively, the ambient smceM, = SnS, and the observable contact manifold
So. The mixing rate 0 1 parameter allows the algorithm to smoothly transition between the CPF
( =0)tothe MPF( =1). Increasing provides better performance when transitioning between maifolds,
but only at the cost of becoming more sensitive to erroneouslaservations ( ).

The output of the mixture is a set of jS;j = n+ d particles distributed according to the target distributio n
(Equation 3). Then, as described in Section5, we resampleS; with replacement to enforce the invariant
that jS;j = St 1 = n. This invariant is critical to ensure the MPF, just like the C PF, can be recursively
updated without increasing in computational complexity.

Due to this resampling, the MPF fundamentally di ers from re lated particle ltering techniques (

) )/that track a distribution over contact formations ( ). In the general
case, estimating the distribution b(s; 2 M;) over manifolds is as hard as solving the ltering problem itself
(Section 5.1). In this paper we speci cally consider the case where contet sensors are discriminative (Sec-
tion 6.1) and b(s; 2 M;) is binary. In future work, we are interested in using these omplementary techniques
to estimate to estimate b(s; 2 M;) for non-discriminative sensors.

The MPF uses this estimate ofb(s; 2 M;) to maintain a single set of particles that span all manifolds.
It is not meaningful to identify whether a particular partic le was sampled from the \conventional" or \dual”
proposal distribution since they are seamlessly mixed as paof the same posterior distribution.

7 Simulation Experiments

We designed a set of simulation experiments to compare the MP with the CPF for the state estimation
for contact manipulation problem (Sections 7.4 and 7.5). We also ran experiments to explore the di erences
between the three representations of the contact manifold $ection 7.6) and the e ect of the mixing rate
parameter (Section7.7).

7.1 Hypotheses
Based on the particle starvation problem described in Sectin 4.4, we hypothesize that:

H1. The MPF will outperform the CPF after contact.

10\We use the notation de ned in Section 5 to represent the mixing of multiple sets of particles.
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Increasing the sensor resolution or update rate should makehis di erence more pronounced because it
reduces the swept volume of the sensors. As this happens, théPF will begin to suer from particle
starvation. Therefore, we hypothesize:

H2. The CPF will perform worse as sensor resolution increases;hie MPF will not.
H3. The CPF will perform worse as the sensor update rate increase the MPF will not.

All of the above hypotheses (H1{H3) should be true regardles of which representation of the contact manifold
is used by the MPF. Since AM faithfully represents the contiruous manifold, we hypothesize:

H4. The analytic representation of the contact manifold will peform best.

Surprisingly, our results suggest that H4 is false: TR outpeforms AM despite the fact that it is a sample-
based approximation of the true contact manifold. We discus a possible explaination of this result in
Section 7.6.

Between the sample-based representations, we expect TR tautperform RS. RS attempts to represent
the contact manifold at a uniform resolution. In contrast, TR focuses samples on regions of the contact
manifold that we are likely to encounter during execution. Therefore, we hypothesize:

H5. The trajectory rollout representation will outperform the rejection sampled representation.

7.2 Experimental Design

We implemented the CPF and MPF in a custom two-dimensional khematic simulation environment with
polygonal geometry. Each experiment consisted of a simulad BarrettHand pushing a rectangular box in
a straight line at a speed of 1 cm/s for 50 cm. The initial belid state was set tob(sp) = N (Sp; ) with
covariance 172 = diag[5 cm;5 cm; 20 ]. The meansy = ( Xo;Yo; o) Was placed a xed distancexy = 20 cm
from the hand and was assigned a random lateral o sety,  uniform[ 10 cnt 10 cm] and orientation ¢
uniform[0 ;360 ] for each trial.
We simulated the motion of the object using a penetration-ba&ed quasistatic physics modell(

) with a 1 mm step size. Before each step, the nger-object coeient of friction  ; and the radius
of the object's pressure distribution ¢ were sampled from the Gaussian distributions ; N (0:5; 0:2%) and
¢ N(0:05;0:01%) truncated to enforce ¢;c > 0. Binary observations were simulated for each of the hand's
sensors, which were uniformly distributed across the fronsurface of the hand, by computing the intersection
of each sensor with the object. Observations were assumed be perfectly discriminative, but the observation
model had a 10% chance of generating an incorrect observatiaduring contact; i.e. an incorrect sensor would
re. These observations were simulated by applying the sam@bservation model to a special \ground truth"
particle s, sampled froms;  b(sp).

7.3 Dependent Measures

We evaluate the performance of an estimator by computing theroot mean square error

RMSE(S;s;) = F T

of the particles S; = fhs;{i];wt[i]igi”:l with respect to the true state s; at time t. Instead of combining the
position error (measured in centimeters) with the orientation error (measured in degrees), we report separate
RMSE values for position and orientation.

7.4 Conventional vs. Manifold Particle Filter (H1)

We ran the CPF with n = 100 particles and the MPF with n = 100 conventional, d = 25 dual particles, and a
mixing rate of = 0:1. We intentionally chose the same value ofi for both algorithms|despite the addition
of d dual particles for the MPF|because the dual sampling step adds negligible overhead to the runtime of
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Figure 8: Comparison between the CPF and the MPF-AM in simuldion. (a) The CPF and MPF perform
identically before contact, but the MPF signi cantly outpe rforms the CPF post-contact. (b) The MPF
improves as spatial sensor resolution increases, whereaset CPF declines in performance. ¢ Similarly,
the MPF improves and the CPF declines when faced with a fasteupdate frequency. Note that resolution
improves when moving from left-to-right in (b) and (c). In all cases, error bars indicate a 95% con dence
interval.

the algorithm (Section 9.2). This means that both the CPF and MPF are tuned to run at approximately
the same update rate. The MPF sampled from an analytic represntation of the contact manifold that was
pre-computed with 1 mm linear and 115 angular resolution.

Figure 8a shows the performance of both lIters averaged over 900 triad. These results show that|as
expected|both Iters behave similarly before contact ( t 0) and there was not a signi cant di erence in
RMSE. After contact (t > 0), the MPF quickly achieves 4.4 cm less RMSE than the CPF. Figre 6 shows one
example where the MPF achieved a signi cantly better pose esmate than the CPF. These results support
hypothesis H1: the MPF achieves lower post-contact error tlan the CPF.

7.5 Spatio-Temporal Sensor Resolution (H2{H3)

We evaluated the e ect of sensor resolution on estimation acuracy by varying the resolution of binary contact
sensors. In all cases, the sensors are distributed uniforgnbver the front surface of the hand. Figure8b shows
the relative performance of the CPF and MPF for three di erent resolutions averaged over 95 trials. As
expected, the CPF performs worse as the spatial sensor resdion increases. In contrast, the MPF performs
better. This con rms hypothesis H2.

Additionally, we measured the performance of the lters as we varied the distance traveled between
sensor updates from 5 mm to 4 cm. Since the hand was moving at anstant velocity, this corresponds to
changing the sensor's update frequency. Figur&c shows the performance of the CPF and MPF averaged
over 95 trials. As expected, the CPF performs worse as the upe frequency increases. In contrast, the
MPF performs better and con rms hypothesis H3.

7.6 Contact Manifold Representation (H4{H5)

We also compared the performance of the MPF using the RS, TR, 1ad AM representations of the observable
contact manifold. The RS representation consisted of 10,0D samples that were held constant throughout
all of the experiments. The TR representation generated a derent set 10,000 samples for each experiment
by collecting ve samples each from 2000 trajectory rollous using the same physics model as used during
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Figure 9: (a) Performance of MPF using the rejection-sampled (RS), tragctory-rollout (TR), and analytical
(AM) manifold representations. In both cases, the data is ailgned such that contact occurs att = O.
(b) Percent of the time that the MPF succeeded at sampling from he dual proposal distribution during
contact. (c) Performance of the MPF-AM as a function of the mixing rate O 1. In all three gures
the performance of CPF is plotted as a dotted line and error bas denote a 95% con dence interval.

execution. The AM was built using the parameters describedn Section 7.2.

Figure 9a shows the performance of the three representations averag®ver 900 trials. The MPF outper-
formed the CPF with all three representations. As expected,the data supports hypothesis H5: MPF-AM
and MPF-TR both outperform MPF-RS. This occurs because the RS representation attempts to cover the
entire surfaceS, with a coarse set of samples. In contrast, the TR representadn focuses the same number
of samples on the smaller region o8, that is encountered during execution.

Surprisingly, however, hypothesis H4 was not supported byhe data: MPF-AM did not achieve lower error
than MPF-TR representation. This is partially explained by same reasoning as above: the TR representation
was able to densely cover the reachable subset &, at a resolution indistinguishable from that of the
AM representation. Additionally, we know that every sample drawn from the TR representation must be
reachable from the initial belief b(sp). This means that MPF-TR does not waste samples from the dual
proposal distribution in regions of S, that are known to be unreachable fromb(sp).

Our intuition is that the relatively poor performance of the MPF-RS is a result of it frequently failing
to sample from the dual proposal distribution. Sampling from the dual proposal distribution fails when all
particles sampled from S, have low probability p(ojst;a;) of generating o;. This occurs when the high-
probability regions of p(ojs;; a;) are not represented by our approximationS,. In the case of binary contact
sensors, a sampling failure typically occurs when severakgasors are simultaneously active at runtime that
were never observed to be simultaneously active while presmputing S,.

Figure 9b shows the rate of sampling failures for the MPF-AM, MPF-RS, and MPF-TR computed over
900 trials. We formally de ne a sampling failure as an updatewhere p(o;jsi;a;) < 0:1 for all s; 2 S,. Since
there is a 10% chance of receiving an erroneous observatiomrihg contact (Section 7.2), this corresponds
to S, containing no states that are consistent with o;. Under this metric, the TR and AM representations
fail to sample from the dual proposal distribution for < 30% of updates. Conversely, the RS representation
fails to sample> 70% of updates. When sampling fails the MPF behaves identidly to the CPF and su ers
from the same problem of particle starvation. As a result, MPF-RS performs poorly compared to MPF-AM
and MPF-TR.

7.7 Mixing Rate

In addition to the manifold representation selected, the miking rate parameter also has a strong impact
on the performance of the MPF. We repeated the experiments dgribed in Section7.4 while varying the
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Figure 10: Andy pushing a box (a){(d) and cylinder (e){(i) ac ross the table. The top row shows a video
of the experiment from an overhead camera. The bottom two row show the belief state estimated by the
CPF (middle, dark blue) and MPF (bottom, light orange) as a cloud of particles. Ground truth is shown
as a thick green outline. In both cases, the belief state estiated by the MPF is more accurate than that
estimated by the CPF.

MPF-AM's mixing rate over the set = f0:025 0:05; 0:1; 0:3; 0:5; 0:7; 0:9; 1.0g. Note that =1 corresponds
to the pure MPF. Figure 9c shows the post-contact performance of the MPF averaged ovet50 trials and
plotted as a function of . The performance of the CPF ( = 0) is plotted as a horizontal dotted line.

As expected, the MPF outperforms the CPF for all > 0. Surprisingly, however, the optimal value of

falls into the lowest range of values Q025 0:1 that we tested. Increasing out of this range leads
to a predictable, linear increase in error. This occurs for wo reasons. First, the dual proposal distribution
performs poorly when there is observation noise ). Second, the MPF samples

from an approximation of the dual proposal distribution that has higher variance than the true posterior
belief. Reducing the mixing rate decreases the rate at whichhis variance grows. See Sectio®.3 for more
discussion of this phenomenon.

8 Real-Robot Experiments

We evaluated the CPF and MPF on Andy ( ), a bimanual manipulator developed for
the DARPA ARM-S competition. Andy used a Barrett WAM arm ( ) equipped with
the i-HY ( ) end-e ector to push an object across a table. The i-HY's pain (48 tactels),
interior of the proximal links (12 tactels each), interior of the distal links (6 tactels each), and ngertips (2
tactels each) were equipped with an array of tactile sensor§ ) based on MEMS barometer
technology. The tactels were grouped into 39 vertical stries to compensate for dead tactels and to simplify
the observation model.

Figure 10 shows two representative runs of the state estimator on Andy The ground-truth pose of the
object was tracked by an overhead camera using a visual dueil. Both Iters were run with 250 particles,
with n = 250 for the CPF and n = 225, d =25, =0:1 for the MPF, and were updated after each 5 mm
of end-e ector motion. With the speed of the arm, this correponded to an update rate of approximately
5{15 Hz.

In Experiment 1, Andy pushed a metal box that made initial contact with the right proximal link (b) and
rolled into the palm (c). The CPF did not have any particles in the small observation space and, thus, failed
to track the box as it rolled into the palm (d). The MPF successfully tracked the box by sampling particles
that agree with the observation. Note that the MPF was able to exploit the observation of simultaneous
contact on the palm and distal link to correctly infer the ori entation of the box.

In Experiment 2, Andy pushed a cylindrical container that made initial contact with its left ngertip (e).
The cylinder rolled down the distal (f) and proximal (h) link s to nally settle in the palm (i). Both the CPF
and MPF made use of the initial contact observation to localize the container near the robot's left ngertip.
However, the CPF's few remaining particles incorrectly roled o of the ngertip and outside the hand. The
MPF avoided particle starvation near the true state and was a&le to successfully track the container for the
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duration of contact.

9 Discussion

In this section, we discuss the MPF in greater detail, discus its limitations, and outline several directions for
future work. In particular, we analyze the computational complexity of the MPF (Section 9.2) and formally
ground the MPF using measure theory (Section9.4).

9.1 Observability of Contact

Contact sensors frequently do not cover the entire surfacefoa hand. For example, the proximal links of

the BarrettHand are not covered with tactile sensors and theSynTouch BioTac ( ) sensor
only provides tactile sensing on the interior of the ngertip. Even the iHY hand ( ),
which tightly integrates TakkTile sensors ( ) into its mechanical design, does not cover th

outside surface of the hand with sensors. As a result, it is ipportant to consider the e ect that observability
of contact has on our state estimation ability.

The di erence between \contact" and \observed contact" is captured in our de nitions of the contact
manifold S. and the observable contact manifoldS, S.. The geometry of the non-observable region of
the contact manifold S; nS, impacts the di culty of the state estimation for contact man ipulation problem.
Any stable states in that are not in contact with a sensor, e.g those that come to rest against a at surface,
will accumulate belief when receiving a series of no-contaobservations. The only way to sense an object in
one of these poses is to perform an action that moves the objeout of S,c by pushing it into contact with
a sensor.

9.2 Computational Complexity

One practical advantage of the MPF over the CPF becomes appamnt when pro ling the operations performed
by the two algorithms. We will express the complexity of the two algorithms in terms of several basic
operations: (1) the number of samples drawn from the transiton model, (2) the number of times the
observation model was evaluated, (3) number of samples drawfrom the contact manifold, and (4) other
operations.

Each update of the CPF begins by drawingn samples from the transition model (Table 1a). Then, we
compute an importance weight (Table 1b) for each of the n samples by evaluating the observation model.
Finally, we must perform O(n) operations to re-sample the particles with unit weight.

Given a xed number of particles, the MPF both achieves better performance and has higher complexity
than the CPF. The MPF samples from the conventional proposaldistribution and still requires drawing n
samples from the transition model and evaluating the obseration model n times. Additionally, the MPF
samplesd from the contact manifold (Table 1c). Computing the importance weights for these particles
(Table 1d) involves evaluating an O(n) kernel density estimate for each of thed particles, resulting in O(nd)
total complexity. Mixing and resampling the resulting part icles requires an additionalO(n + d) time.

In practice, we have found that the large increase in perforrance provided by the MPF dramatically out-
weighs the small increase in computational complexity. Thé occurs because, as shown in Tablg the four
operations described above take dramatically di erent amaunts of time. Sampling from the transition model
dominates the majority (79:35%) of the runtime because each sample involves running a ggutationally-
expensive physics simulation. Evaluating the observationmodel consumes much (1B2%) of the remain-
ing runtime because of the large number of collision checksequired to simulate an observation. All re-
maining operationslincluding the overhead incurred by the M PF when sampling from the dual proposal
distribution|is negligible (1 :38%) compared to these two operations.

Note that the time required to evaluate the transition and observation models depends largely on the
composition of b(s;). When b(s; 2 Sgee) is high, then few particles are likely to be touching the hard and
the transition and observations models can be sped up througintelligent use of conservative, broad-phase
checks (e.g. bounding box intersection queries). This suggts that particles onS; are \more expensive" than
those in the ambient spaceSyqee. It may be possible to leverage this insight by modifying theresampling step
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No Contact Contact

Operation Complexity Time (ms) Percent Time (ms) Percent
(@) Conventional Proposal o(n) 20.36  65.85% 130.37 79.35%
(b) Conventional Weights o(n) 8.77 28.36% 29.28 17.82%
(c) Dual Proposal O(n + d) { { 0.02 0.01%
(d) Dual Weights O(nd) { { 2.25 1.37%
(e) Other { 1.80 5.79% 2.37 1.45%

Total 30.92 100% 164.29 100%

Table 1: Time required to perform the sampling stages of the ){(b) CPF and (a){(d) MPF. Nearly all time

is spent evaluating the (a){(b) transition and observation models necessary to implement the conventional
proposal distribution. In comparison, the time required to sample from the (c){(d) dual proposal distribution
is negligible. Timing information was collected on one coreof a 3.4 GHz Intel i7 processor.

to keep more particles inSgee. Those particles would be down-weighted to avoid biasing tlk distribution
towards no-contact.

In addition to the runtime performance described above, theMPF incurs a one-time cost to build a
representation of the contact manifold. Building the contact manifold is only required once per hand-object
pair and is done as an oine pre-computation step that does nd aect the speed of the algorithm at
runtime. For the parameters described in Section7, constructing the contact manifold took 51.96 s for the
analytic representation, 451.45 s for the rejection-sampd representation, and 429.49 s for the trajectory
rollout representation. In all three cases, the resolutionparameters were intentionally tuned to maximize
the estimator's runtime performance with no regard for precomputation time. Reducing the resolution of
the manifold could dramatically reduce pre-computation time, while having a relatively small e ect on the
MPF's accuracy.

9.3 Mixing Rate Parameter

Our experimental results (Section 7) show that, surprisingly, the the optimal choice of mixing rate is
much closer to =0than = 1. This may seem counter-intuitive: the MPF outperforms th e CPF, so one
would expect increasing to improve performance. Two competing forces partially mitigate this e ect: (1)
the susceptibility of the dual proposal distribution to observation noise and (2) the tendency for the dual
proposal distribution to increase the variance of the posteor distribution.

First, the dual proposal distribution performs poorly when confronted with sensing errors

). Receiving an erroneous observation can cause the majoyitof the particles sampled from the dual
proposal distribution to lie in the wrong region of the state space. This stems from the same underlying
problem described in Section4.4: when an observation error occurs, the proposal distributbn is a poor
approximation of the target distribution. As a result, it wo uld take a prohibitively large number of samples
to to faithfully represent the posterior. Using the mixture proposal distribution (Section 6.5) leverages the
complementary nature of the conventional and dual proposadistributions to avoid the worst-case behavior
of either distribution ( ).

Second, the belief state tracked by the pure MPF tends to incease in variance over time. This occurs
because we use kernel density estimation to compute the imptance weights for particles sampled from the
dual proposal distribution. Kernel density estimation, as described in Section6.4, replaces the Dirac delta
function in the ltering distribution with a kernel that has broad support. As a result, particles sampled from
the dual proposal distribution generally have higher variance than those sampled from the true posterior
distribution. This variance increases over time as the estnator is recursively updated. Assigning a low
weight to the particles sampled from the MPF|by choosing a low value of |reduces the rate at which the
variance grows.

These results suggest that the mixing rate should vary betwen update steps. The mixture rate should
be high when sampling from conventional proposal distributon performs poorly; e.g. when transitioning
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from no-contact to contact or moving between contact sens®. Otherwise, should kept near = 0 to
avoid introducing variance into the posterior. We are interested in exploring this idea in future work. For
example, we could vary as a function of the number of e ective particles ( ) in the CPF posterior.

9.4 Measure-Theoretic Considerations

Regardless of whether the observation model is qi,scriminate, our derivation of the MPF in Section 5 relied
on our ability to factor the belief state b(s;) = jm:1 b(stjMj)b(st 2 M;) into a m separate conditional
probability distributions and a marginal distribution b(s; 2 M;) over the manifolds. However, this de nition
introduces an apparent inconsistency: How canb(s; 2 M;) possibly be non-zero whenM; is a lower-
dimensional manifold?

We can answer this question using measure theory. Formallypur probability space (S;F; ) consists
of the sample spaceS, the -algebra of eventsF 25, and a probability measure : F ! R. Most
applications assume that is isomorphic to the Lebesgue measure : F ! R over the unit interval (

). Any measure that satis es this property would assign (M;) = 0 for the lower-dimensional manifolds
i < m . Unfortunately, this not the case for the MPF because non-zeo probability is concentrated on the
lower-dimensional manifoldsMq;:::;My, 1 S. Since the n-dimensional Lebesgue measure assigns zero
measure to any set with dimension less tham, there does not exist a measurable map between and . For
example, it is possible that (M;) > 0Oand (Mj)=0 forF; <m.

However, we can express the probability measure = jm:l i as the sum of them measures 1;:::; m
where each ; : 2Yi \,F | R is a measure overM;. If the measures i;:::; n are partial probability
measures' and satisfy J-m:l i(Mj) =1,then is a probability measure overS. Any probability distribution

Oover Mi;:::;My, can be de ned in terms of aprobability density function p(g with respect to . In this
case, the probability density function is the Radon{Nikodym derivative of °and A P(s)d (s)isthe Lebesgue
integral of p(s) over A S, both taken with respect to measure ( ). The derivation of the
MPF in Section 5 implicitly assumes that all densities and integrals are dened in this way.

We intuitively arrived at tl]s same understanding by factoring the belief state ash(s;) = jm:l b(stjM; ).
The marginal b(s; 2 M;) = M, b(s;)d (st) is the total probability contributed by the partial probab ility
measure ;. This value represents the probability ofs; residing onM; . Each conditional distribution b(s;jM;)
is simply the measure of the corresponding partial probabity measure normalized such that it sums to one*?

9.5 Limitations and Future Work

We made several simplifying assumptions when applying the MF to contact manipulation. We focused
on the problem of planar manipulation in a quasistatic environment (Section 9.5.1), assumed the shape of
the hand is xed (Section 9.5.2), and only consider discriminative contact sensors (Sectin 9.5.3). We are
interested in relaxing all three of these assumptions in futire work.

We are also interested in extending the MPF to estimate uncetain physical properties of the environment
(Section 9.5.4) during execution. Finallyland most importantlyjwe are exci  ted by the prospect of using
the MPF's state estimate for real-time feedback (Section9.5.5).

9.5.1 Manipulation in Higher Dimensions

The MPF, as described in this paper, assumes that the robot igperforming planar manipulation in a qua-
sistatic ( ) environment. Applying the MPF to a three-dimensional environment would
require ltering in S = SE(3). Relaxing the quasistatic assumption again doubles thalimensionality of the
problem by expanding the state space to the full tangent bunde S = SE(3) se(3).

Increasing the dimensionality of the state space causes arxjgonential increase in the number of samples
required by the the rejection-sampled representation to aproximate S,. Similarly, building an analytic

11 A measure j is a partial probability measure if  j(;)=0, ;(Mj) 1,and ; is -additive.

12 Technically, the conditional belief b(stjM;j) is unde ned if b(st 2 Mj) = 0. This is why we de ned as the sum of partial
probability measures instead of as the convex combination of full pro  bability measures. However, this is not a practical concern
because the MPF will never sample from b(stjM;) if b(st 2 M) =0.
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representation ofS, is not computationally tractable because it would entail canputing polygonal Minkowski
sums over a large number of discretized orientation parametrs ( ).

It may, however, be possible to extend the trajectory rollou representation (Section 6.3.2) to higher
dimensions. This representation, unlike the RS and AM reprsentations, scales only with the size of the
region of the state space that we encounter with non-trivial probability during execution. Furthermore, it
may be possible to avoid samplingS, during a pre-computation step and, instead, dynamically gaerate
samples fromS, online. Generating these samples is potentially much lessxpensive than running the MPF
with more particles. Unlike particles, which must always bedistributed according to b(s;), these samples
only are required to uniformly cover S,. This may allow us to bypass additional evaluations of the epensive
transition model (Section 9.2) in favor of a more e cient sampling technique.

9.5.2 Manipulation with an Articulated Hand

Sampling from the dual proposal distribution requires usirg one of the contact manifold representations
described in Section6.3. All three of these implementations assume that the hand is arigid body. This
means that applying the MPF to an articulated hand requires pre-computing a separate contact manifold for
all possible hand con gurations that may be encountered duing execution. The timing information shown
in Section 9.2 shows that this is only tractable for a small, discrete set ofhand shapes.

We are interested in applying the MPF to articulated hands by building a representation of the contact
manifold that can e ciently adapted to multiple hand shapes. This may be possible by pre-computing
multiple contact manifolds|one for each rigid component of t he hand|and combining them at runtime.
The key challenge with this approach is to e ciently generate the lower-dimensional events that occur when
an object settles into multi-point contact with the hand. Solving this problem would allow the MPF to be
applied during the full grasping process, instead of only toplanar pushing.

9.5.3 Non-Discriminative Contact Sensors

One major limitation of our current implementation of the MP F is that it relies on having a discriminative
observation model. This is a valid assumption in many casesput fails when manipulating light objects or
using unreliable sensors. When this is the case, we can no lger approximate the marginal distribution
b(s; 2 Sp) using the latest observation and must nd some other methodof approximating the marginal.

In theory, we could approximate the marginal using the set ofparticles S; = fhs{'], [']lgl ", sampled
from the conventional proposal distribution as

(st 2 So) =

where | () is the indicator function. In practice, however, our results with the CPF shows that S; is a

poor approximation for b(s;): we simply do not have enough samples to accurately estimatthis probability.

However, we may be able to crudely estimatdxs; 2 S,) with su cient regularization ( ).
Alternatively, it may be pOSSIb|e to approximate b(s; 2 S,) directly in terms of b(s; 1) by backwards-

propagating s{ ] 1 p(st 1JsI ,at) each samplest'] to the the previous timestep. The corresponding impor-

tance weights are proportional tob(é'] 1), which can be approximated using the density estimation tehniques
described in Section6.4. ( ) show that this technique performs well on mobile
robot localization. Unfortunately, this algorithm may be di cult to implement because it is challenging to
sample from the inverse transition modelp(s; 1jst; @) in the case of contact manipulation.

9.5.4 Parameter Estimation

Much of the noise in the transition model p(sijs; 1;a;) may actually result from unknown|but static|
properties 2 of system. This is equivalent to writing the transition mod el as the marginalp(stjs: 1;a) =
p(stjst 1;a:; )p( )d of an underlying transition model p(sijs; 1;a:; ) over the unknown parameters .
In the case of the quasistatic motion model, is the nger-object coe cient of friction and the radius of
the object's pressure distribution ( \ ). Prior work has shown that
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it is possible to estimate static (. ) and spatio-temporally varying ( )
friction coe cients using visual and tactile data. Addingt his capability to the MPF would require a method
of assigning parameters to particles sampled from the dual pposal distribution.

Another important case is when includes the hand-object geometry and the goal is shape estia-
tion ( . ! ) or object identi cation ( !

) ). This case is particularly important when using compliant end-e ectors (e.g. i-HY

hand ( )) or manipulating unmodeled objects. Small variations of the object-hand geom-
etry can cause large changes in the shape and topology of themtact manifold. We hope to address this
additional source of uncertainty in future work by considering distributions over object and hand geometry.

This would create a \fuzzy" contact manifold that consists of the union of several hypothesized contact
manifolds.

The MPF, as presented in this paper, assumes that the hand-glect geometry is known with certainty
and that p( ) is a known, stationary distribution. Instead of estimatin g b(s;), we could estimate the joint
belief b(s;; ) over the state s; 2 S and the parameter 2 values. In principle, this could be accomplished
by Itering in the augmented state space (S; ) with a trivial transition model for . In future work, we
are interested in extending the dual sampling step in the MPFto support these types of parameters. This
may be challenging because it is di cult to implement the Bay es update with continuous without su ering
from particle starvation ( ).

9.5.5 Real-Time Feedback

Finally, we would like to use the belief state estimated by the MPF for real-time feedback. This problem can
be naturally formulated as a partially observable Markov decision proces$POMDP) ( )
with the transition and observation models de ned in Section 3 and a reward function that assigns positive
reward to achieving the problem-specic goal.

Optimally solving a general POMDP is PSPACE-complete ( ). However, we are optimistic
that the structure of the contact manipulation problem will enable us to e ciently nd approximate so-
lutions. Contact sensors provide little information before contact and, as a result, the problem is nearly
deterministic. Once contact occurs, the discriminative ndure of contact sensors means that the belief state
exhibits sparse support ( ) that is constrained to the contact manifold. It may be possible to
leverage this knowledge in a special-purpose POMDP solvelVe are encouraged by recent work]including
our own ( )|that has achieved promising results in grasping ( ) )
and non-prehensile manipulation ( ) using a POMDP formulation of the problem.

10 Conclusion

In this paper, we investigated the problem of using contact snsors to estimate the pose of an object during
planar manipulation (Section 3). We showed that the conventional particle Iter (Section 4) performs poorly
on this problem because the state lies on the lower-dimensial contact manifold during periods of contact.

We introduced the manifold particle Iter (Section 5) as a solution to this problem and showed how it
can be applied to the contact manipulation problem (Section6) using three di erent representations of the
contact manifold. Our simulation results (Section 7) show that the CPF signi cantly outperforms the MPF
and that the gap widens further as sensor resolution and upd® step size decreases. Finally, we implemented
the MPF on a real robot (Section 8) and showed that the MPF is able to successfully track an objet using
commercially available tactile sensors.
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