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Abstract— Capabilities of mobile autonomous systems is often
limited by the sensory constraints. Range sensors moving
in a fixed pattern are commonly used as sensing modalities
on mobile robots. The performance of these sensors can be
augmented by actively controlling their configuration for mini-
mizing the expected cost of the mission. The related information
gain problem in NP hard. Current methodologies are either
computationally too expensive to run online or make simplifying
assumptions that fail in complex environments.

We present a method to create and learn a policy that maps
features calculated online to sensory actions. The policy devel-
oped in this work actively controls a nodding lidar to keep the
vehicle safe at high velocities and focuses the sensor bandwidth
on gaining information relevant for the mission once safety
is ensured. It is validated and evaluated on an autonomous
full-scale helicopter (Boeing Unmanned Little Bird) equipped
with an actively controlled nodding laser. It is able to keep the
vehicle safe at its maximum operating velocity, 56 m/s, and
reduce the landing zone evaluation time by 500% as compared
to passive nodding. The structure of the policy and efficient
learning algorithm should generalize to provide a solution for
actively controlling a sensor for keeping a mobile robots safe
while exploring regions of interest to the robot.

I. INTRODUCTION

Navigation through partially known environments, local-
ization, mapping and manipulation of objects etc. are all tasks
for which the robot is expected to detect objects, free space
or features in the environment. The rate and accuracy of
detection of information of interest dictate the performance
of the robotic system. Sensors to detect such features of
the environment are often limited by their properties like
field of view (FOV), resolution, sampling rate and signal to
noise ratios. These sensors are either fixed [1], [2], [3] with
respect to the vehicle or in some cases move in constant
pre-computed patterns [4], [5]. The capabilities of such
sensors and the robotic system can be augmented by actively
controlling the sensor configuration to minimize the cost of
completing the task assigned to the robot.

The problem of active perception is a well studied one
and finds its roots in sequential hypothesis testing [6]. Active
perception and adaptive sampling problems have since been
extended to account for mobile sensing within the framework
of Bayesian reasoning [7]. Later works have resulted in
various of solutions that incorporate information theoretic
measures for problems like object recognition, mapping, and
scene reconstruction [8]. Gradient based methods for next
best view and belief space planning have improved [9],
[10]. While such algorithms have shown to be useful in
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Fig. 1: Application Scenario: Top Left — Test Vehicle, Boeing
Unmanned Littlebird. Top Right — Near Earth Autonomy M3
sensor suite, equipped with a actively controllable high range
laser. Bottom — Example mission scenario, the vehicle is
suppose to autonomously navigate to a pre-defined landing
zone at high speeds, evaluate it and decide to whether to
land or not while ensuring safety.

their respective applications, they typically rely on restric-
tive assumptions on the representations, objective functions
and do not have guarantees on global optimality. Finite-
horizon model predictive control methods [11], [12] provide
improvement over myopic techniques, but they do not have
performance guarantees beyond the horizon depth and the
run times to operate online in large state-spaces. POMDP
based solvers [13],suffer from the same curse of dimension-
ality. The recursive greedy algorithm [14], Branch and bound
[15] use the budget to restrict the search space. But require
computation exponential in the size of the problem instance
due to the large blowup in the search space with increasing
budget.

We overcome the curse of dimensionality by searching
for a policy to actively control the sensor configuration. The
policy function is learnt such that it maximizes the gain
of information that is important for the completion of the
mission of the robot while ensuring its safety as it navigates
through unknown environments. We implement the policy on
a full-scale autonomous helicopter (Boeing Unmanned Little
Bird) equipped with an actively controlled nodding lidar,
using occupancy grid map as a world representation. The
policy optimizes the use of sensor bandwidth to enable safe,
high speed navigation and fast detection of landing zones.
The main contributions of the paper are as follows:



o Computational complexity analysis for calculating ex-
pected information gain for a range sensor and an
occupancy grid map representation .

o Policy function and feature design to allow for online
active sensor control that allows the vehicle to stay safe
at high speeds.

o Results from online evaluation on an autonomous full
sized helicopter that show guaranteed safe autonomous
navigation at speeds of 56m/s and straight in approaches
to landing zones, eliminating the need to hover.

The task of enabling safe, high speed flight enforces tight
temporal constraints on the sensor controller motivating the
reactive, online approach. In the next section we formally
setup the problem, section III presents with the approach
overview. Section IV, section V cover the implementation
details including construction and learning of policy. Results
of evaluation of the performance of the algorithm are dis-
cussed in section VII.

II. PROBLEM SETUP

In this section we formulate the problem as that of
minimization of expected cost of traversal from initial to
goal state, through optimization of sensor trajectory. This
problem is then shown to be the same as maximizing the
gain of information that minimizes the cost of traversal. This
problem formulation motivates and guides our approach.

Let the robot’s state space be X C R™. Let o : [0,7] —
X be the state space trajectory and C' : X — R be the
cost function, where 7' is the time horizon. The boundary
values are 0(0) = o¢ and o(T') = oy. Let the dynamics
constraints on the robot be given by h(o(t),c(t),5(t)) < 0.
The cost of the trajectory in a fully deterministic environment
is [ C(o(t)) dt.

Operating in partially known, unstructured environments
the robot has to decide on its next action based on its current
belief. Let the high dimensional state space of the world
be W C R™, where world includes the uncertainty of the
robot about its environment and it’s pose. Let, belief be a
probability distribution over the state of the world, b : W —
{0,1}. Let’s assume the belief of the robot at the start of the
mission is by. The belief of the robot changes as observations
are made using a sensor. Let the sensor’s state space be S C
R®. Let 0 : [0,7] — S be the sensor trajectory.

The cost function changes as the belief of the robot
evolves. To highlight this fact we represent the cost func-
tional as Cp : X x W — R. Due to the stochasticity of the
belief of the robot, it can only reason about expected cost of
its policy, E,(/0,5.,6,) Cb(.). The distribution of belief tra-
jectories p(blo, o5, b,) at any given time is dependent on both
state and sensor trajectory. Let the dynamics constraint on the
motion of the sensor be given by h,(os(t),ds(t),ds(t)) < 0.
The full optimization problem can then be defined as follows.

arg min E
o(t),os(t) p(blo,os,bo)

T
/0 Cy(o(t),os(t),b(t))dt (1)

h(o(t),a(t),d(t)) <0
hs(os(t), ds(t),05(t)) <0
In this paper we study the problem of optimizing the sensor
trajectory given a fixed vehicle trajectory o(.). The problem
is then reduced to.

T
argmin  E / Co(o(t),ou(t), b)) At (2)
os(t) Ploos,bo) Jo

The constraints on the sensor actuation specified in eq. |
also apply to eq. 2. Notice that, in this formulation the
sensor motion can only result in gaining of information
about the environment. Therefore, the minimization of the
cost function with the o(¢) as the only variable, results
in sensor gaining information that is important to mini-
mize the required cost function. We call this information
contextually important information, as it is important to
sense this information to reduce the cost function. Let
IG(z,0(t),04(t),b(t)) be the information gain at z € (W)
and time ¢. Let M (x,0(t),b(t)) € {0,1} return 1 if the
information is contextually important and O otherwise. The
optimization problem then reduces to eq: 3. Proof in [16].

T
arg max E / M(z,o(t),b(t
o.(t) POloosbo) Jo  Jvzex (. (0),b(2)) 3)

IG(z,0(t),05(t), b(t))dxdt

In our application, the robot is a full scale autonomous
helicopter, the sensor is a nodding lidar, with an actively
controlled pitch axis. The trajectory o4(¢) of the nodding
sensor relative to the helicopter can be completely defined
by its pitch angle profile in time p(t), laser configuration
Peon > Which consists laser’s fast axis resolution py, and its
pulse rate, p,,.. The pose of the robot is given by a high
accuracy GPS/INS system, the world representation is an
occupancy grid map [17]. The information gain evaluation
for an occupancy grid map is presented in detail in [16].
M(z,0(t),b(t)), the contextual importance function is dis-
cussed in detail in section IV. In the next section we present
an overview of our approach to solve eq. 3 for a mobile
autonomous robot.

III. APPROACH OVERVIEW

Information gain based path planning is an NP-hard
problem [14]. Moreover, the calculation of information gain
itself is computationally expensive. In this work, we use
an occupancy grid map based representation. For a laser
sensory action with R rays, interacting with N cells of
an occupancy grid map, the computation complexity of
calculating information gain is O(3%N) [16]. As a result,
the computational cost involved in calculating information
gain for a large number of rays over a large range, makes it
non-trivial to conduct gradient based optimizations.

To overcome the computational complexity issues and
solve the problem online, we propose learning a reactive
policy function that maps from features to action, (see



Point Cloudl

‘World Representation b(t) S0 Polic as(t)
. Features olicy
(Occupancy GridMap)
b(t)
M (v)
Contextual Importance

T

Mission Decsription o (t)

Fig. 2: Approach Overview: The sensor is actively controlled
through a policy that takes in the features that are extracted
from robot’s belief. The features take expected information
gain and contextual importance function into account.

Fig. 2). The policy learnt, is designed to maximize the
information gain in the next time step. For the application
considered in the paper, the policy learnt keeps the robot safe
at high speeds and enables quick landing zone evaluation,
allowing for low mission times. The data flow in the block
diagram (Fig. 2) is explained in the rest of this section to
provide an intuitive understanding of the suggested approach
and its application.

The point cloud generated by the laser is used by the
perception representation to form the robot’s belief about
the world, in our case an occupancy grid map is used as
the world representation. The belief of the robot, along
with the mission description and robot trajectory are used
to infer the contextual importance function. The contextual
importance function presents the locations from which it
is important for the robot to gain information to complete
its task safely. The construction of this function is further
described in section IV. The contextual importance function
along with the belief of the robot are used to calculate
features. The policy maps these features to sensory actions.
The features are the only input to the policy. Therefore,
they should capture the saliencies of the interaction between
sensory actions, the representation and the environment. The
construction of one such set of features is described in
section V-A.

The policy takes the features as input and provides the
trajectory for the sensor, o/(.). For the application considered
in the paper, the policy is designed for high range laser,
nodding in pitch axis with respect to the vehicle. The
construction of the policy is described in section V. The
parameters of the constructed policy function need to be
learnt to maximize the contextually important information
gain. The large partially known state space in which the robot
operates makes the learning of the correct policy parameters
intractable. We reduce the scenarios for which the policy
is to be learnt to overcome this problem. The procedure to
learn the policy parameters is presented in section VI. In
the next section we describe the construction of contextual
importance function for our application.

IV. CONTEXTUAL IMPORTANCE FUNCTION

Finding the contextual importance function is as hard
as solving for the original optimization problem [16]. We
approximate this function by defining M (x, o (t),b(t)) = 1,
for all x, that might be important to the vehicle given the
belief b(t) and the robot state o. In this work, we consider the
structure of the contextual importance function to have two
components - safety Myqr.(.) and landing zone evaluation
M. ().

A. Safe Navigation

We use the emergency maneuver library [18] to enforce

the safety constraint. It suggests using an offline computed
emergency maneuver library to ensure vehicle safety. If there
exists a trajectory in the emergency maneuver library that
starts from the current state of the vehicle and stays within
the known obstacle free region for infinite time, the vehicle
can be considered safe. Therefore, it is important to sense
the volume occupied by emergency maneuver trajectories
corresponding to the planned trajectory.
Given a vehicle state o(t) at time ¢, let there be a function
k(z,0(t)) € {0,1} which is one for the points inside the
volume occupied by emergency maneuver library for state
o(t) if it is unsafe and zero otherwise. The the contextual
importance function for safety is then given as.

Msafe(z,0(t),b(t)) = k(z,0(t)) 4

B. Landing Zone

The mission objective of the helicopter is to navigate
safely from start to goal and then land. Therefore, it is
important to evaluate landing zones before the helicopter
commits to a landing. The landing zone is represented as
a 2D grid, with each cell storing the probability of that
cell being a safe landing site. Let, the landing zone grid
be represented by LZg. Each cell inside the landing zone is
allocated contextual importance of one.

M (z,0(t),b(t)) = 1Va € LZg 3)

The combined contextual importance function of safety and
landing zone evaluation is given as

M(.) = max(Mgqre(.), Mi2 (1)) 6)

Fig. 3, illustrates the contextual importance function for a
helicopter navigating towards a landing zone to land.

V. PoLICY PARAMETRIZATION

We have discussed that the problem of directly optimizing
the cost function itself is NP hard and the cost function
evaluation is computationally expensive, making local opti-
mization intractable. Therefore, we develop a mapping from
features to actions that can be used online.

We learn a policy, 7 : Rf — R®, where R/ is the feature
space and R“ is the action space. The policy is developed
such that it can guarantee the safety of the vehicle at high
speeds if the environment allows so. We restrict the action
space to constant velocity nods to make the search compu-
tationally feasible. We learn a policy offline that maximizes
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Fig. 3: Contextual Importance Function — The figure illus-
trates the region with contextual importance function greater
than one in orange, and regions which were contextually
important in grey. As the robot navigates, the regions known
in the past are now irrelevant, as there is no more information
to be gained that might affect its future actions. The volume
around the trajectory, bounded by the emergency maneuver
library for the future as yet unsafe states and volume inside
the landing zone is contextually important.

the information gain in the worst case scenario. The worst
case scenario and the process of learning the policy function
is presented in section VI.

We want to optimize the use of sensor bandwidth and
avoid wasting sensoif’s time looking at regions that are
already known, inaccessible or unimportant to the mission.
Therefore the features have to cover visibility, information
gain and contextual importance function. In the next subsec-
tion we cover the feature design and then present the policy
function.

A. Features

To calculate the relevant field of view for the sensor,
we calculate and store the contextually important expected
information gain along a grid of pitch () and yaw (¢)
directions, with rays originating from laser’s center. This
forms a 2D map (,,(0,6¢) — R, mapping view direction
to contextual information gain. We generate this map by
tracing rays through 3D occupancy grid representation and
calculating contextually weighed expected information gain
along the rays. The algorithm for calculating the expected
information gain along the rays is presented in [19]. Average
range at which information is gained 7. is also used as a
feature for the policy. 7. can be calculated while calculating
Cm. The algorithms to calculate (,, and r. are presented in
detail in [16]. The policy function can then be represented
as eq. 7 below.

[/@ Pconfsr Pmax, pmzn] = W(Cmm Te) (7)

The FOV to scan p,az, Pmin, 1S inferred using (,,,. The ppaz
is given by maximum pitch in (,,, for which the information
gain is greater than 0. The p,,;,, is given by minimum pitch
in (,, for which the information gain is greater than 0. The
velocity of the nod is stored as lookup table against r. at
which the information to be sensed. We now look at how we
learn the mapping (lookup table) between range and velocity
that maximizes the information gain at that range.

VI. POLICY SEARCH

We want to find a nodding speed at which to scan the
volume to maximize the gain of contextually important
information. The standard method to find the optimal policy
is to run the system either in simulation or in field and search
the parameter space for values that minimize the average
cost over a range of scenarios. But given we are designing a
policy to keep the vehicle safe in all conditions, we search for
the optimal policy for the worst case scenario. In the worst
case scenario, the time available to the sensor for scanning
is minimal and the volume to be covered is maximum.

The following subsections develop the worst case scenario
for a guaranteed safe autonomous mobile robot navigating
through unknown environments. This scenario is used to
learn the optimal nodding action for a given query range. The
optimal action maximizes contextually important information
gain. Where, information gain is a function of reduction in
uncertainty about the presence of obstacle of interest.

In the case of a rotorcraft the smallest obstacles of interest
are wires. This section describes how information gain is
related to probability of detection of obstacles of interest. We
further describe algorithms to efficiently calculate probability
of detection given sensory actions, enabling search of policy
parameters (p) in reasonable times.

A. Policy Search Scenario

Proposition 1 (Worst Case Scenario for Safety). Given the
average range at which contextually important information
is requested is r. The sensor would have to strive to gain
maximum information to ensure vehicle safety while the
vehicle follows the planned trajectory if it is moving at the
maximum speed that allows the vehicle to stay safe at range
r. Assuming the vehicle is flying unknown environment and
the environment allows for safe following of the nominal
trajectory.

The proof of the proposition [16] relies on the fact that the
volume occupied by emergency maneuvers is monotonically
increases with vehicle’s speed. We optimize the nodding
speed for this worst case scenario. Assuming the world
representation takes ¢, seconds to refresh. We search for a
nodding speed that maximizes the gain of information in
the relevant volume V;. in ¢, seconds, where V,. is given by
equation 8.

V. = max(Sy(r)) (8)

where Sy (r), returns a vector of bounding volumes of
emergency maneuver libraries that lie completely within a
sphere of radius r of the vehicle. In the next subsection we
develop the definition of information gain for safety, and
show how to optimize for it efficiently.

B. Information gain as probability of detection of worst case
obstacle

Let us assume, the smallest obstacle against which the
autonomous system has to guarantee safety is given by o, the
probability that an object is present at x is given by p,(0).
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For brevity we use p(o0) instead of p, (o). Let the probability
of detection of obstacle given there is exists an obstacle at x
be given by p(d|o) and probability of detecting an obstacle
given there is no obstacle at x is given by p(d|o’). We express
the the expected information gain given p, (o) as a function
of p(d|o) and p(d|o’)

E1G(0) = p(o)(p(d|o)[H (p(0)) — H(p(o|d))+
]

p(0")(p(d|o")(H (p(0)) — H(p(old)))+
p(d'|o")(H(p(0)) — H(p(old'))))

where, H(.) is the entropy [20].

Proposition 2 (Monotonicity of Information Gain). Assum-

ing there are no false positives, p(d|o’) = 0,p(d'|0") = 1.

For a given p(o), EIG can be completely expressed as a

function of p(d|o) and monotonically increases in p(d|o).

Proposition 2 is proved in [16], and Fig. 4 illustrates it.
Hence, to find the effectiveness of an action we evaluate
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Fig. 4: Information Gain — The expected information gain
given a prior (p(0)) is monotonic in probability of detecting
the event w if the event occurred, p(d|o). The assumption
being, there are no false positives, p(d|o’) = 0. This implies
for maximizing information gain, one may maximize p(d|o)

p(d|o) for a given p(o) and calculate the information gain
in the mission relevant region. The action that provides the
maximum information gain is selected as policy for given
feature inputs. In the next section we present an efficient
algorithm to calculate p(d|o), that allow the creation of policy
lookup table tractably.

C. Efficient calculation of probability of detection

We describe a method that exploits the symmetry and the
structure of the problem to calculate information gain for
a range sensor efficiently. The naive method of calculating
p(d|o) is through sampling configurations of the object
from p(o) and computing ray intersections with the object
given the sensor nodding motion. This algorithm has the
complexity of O(RM), where R is the total number of rays
generated by the laser and M is the number of samples

drawn from p(o). Let’s assume an objects exists in a 6D
space, and for each dimension we sample N particles. The
computational complexity is then O(RN®). We introduce
an algorithm that reduces this computational complexity to
O(R3N*) by reasoning about ray-object intersections in the
object’s cspace in spherical coordinates. We further exploit
the symmetry and structure of the problem of sensing for
safety to reduce the complexity to O(R;N), where R; is a
small fraction of the actual number of rays.

The algorithm for fast calculation P(d|o) is presented in
Alg. 1. The input to the algorithm is sensor trajectory, o
whose information gain is to be calculated, an object’s partial
POSE€ Tpartial, ONly stating the distance of the object from the
sensor and its relative orientation. We assume that the size
of the object is small as compared to the query range, which
results in negligible change in projection of the object to
[0, #] plane of the spherical coordinate frame, centered at
the laser. The algorithm returns a function p(d|0, ¢, Zpartial)
that provides the probability of detection of object if its in
Tpartial cOnfiguration at any [0, ¢]. Lets, assume the object is
detected if n points hits are detected on the object. Each laser
beam is represented as polygon in [, ¢] space of spherical
coordinates It is assumed that if the ray and the object
intersect, the hit will be reported with a probability of p,.

The Intersect(.) function (Alg. 2), calculates the intersec-
tion of set of unique polygons amongst themselves and stores
it as Y;,,; and also returns the list of members of its input set
that intersected to form a polygon Vi € Y, as )\;:nt € Aine.
The output of Alg. 2 are used by Probability(.) function
(Alg. 3), to calculate the probability of detection given an
object at Tpariiar V[0, ¢]. It is obvious that given a fixed

Algorithm 1: Ef ficientCalculationof P(d|o)
Input : o, Tpartial

Output: p(d|0, ¢, Tpartial)

So < ProjSpherical(spartiai)

Sy, + GeneratePolygons(os)

SL,o = SL @ So

// The minkowski sum projects polygons in

// Sy, to the space of S,.

[Yine, Aint] < Intersect(Sp.o)

p(d|f, ¢, Spartial) < DetectionProbability(Yine, Aint)
Return: P(d|97 ¢a Spartial)

angular motion profile for a range sensor the number of rays
intersecting an object decreases with increasing distance.
This implies that the probability of detection of the object
decreases with increasing distance [16]. We maximize the
information gain at the range at which the information
is requested, maximizing the minimum information gain.
This results on maximizing the information gain on a 2d
spherical manifold [0, ¢]. So the configuration space of the
object restricted to a 2D plane is z,y,60. Assuming, we
use N particles for each dimension to approximate p(o),



Algorithm 2: Intersect(.)
. S[“o

Input

. Spartial
Y, ) Aint

int

Output

TR T Spartial __ i e
Initialize: Y, = 81,0, Aipy = 1Vi €

Yspartz‘al _ S
int s Lprev — P Lo

while |Y,,.,| > 1 do
KLC’LU =
for j € Y,,co do
for k € Yyper — [1: 7] do
Ynew = Yney} U (.7 N k)
)‘g:ngl = )‘gnt U )‘fnt
end
end
Vi = Remore Vi Yo
int — Tant new

Ypref = Ynew

end
Return : Y., Aine

Algorithm 3: Probability(.)
. Yspa,rtia,l7Ac?pa,rtia,l’qb’9

nt nt

Input
OUtput: p(d|¢a 9, Spartial)

i < ReturnPolygonContaining (0, ¢, Y, m"")

Al i i
p(d|9, 0, Spartial) = ZL:”,TI (‘/\%"‘)pz(l —ph)p\znt‘ k
Return: p(d|¢, 0, Spartial)

the computational cost of evaluating an action is given by
O(R3N).

We restricted the action space to constant velocity nods,
hence the laser points lie at a constant distance form each
other in pitch and yaw space, forming a grid. This symmetry
can be exploited by finding p(d|o) for every configuration
in a single grid cell as p(d|o) is the same for every cell.
Also, the intersection of the object need only be checked
with the points in [? radius of the grid cell. Let these number
of points in 2 radius be R;. The complexity of evaluating
an action is O(R;N). For further details about reduction in
computational complexity please refer to [16].

Alg. 1 is evaluated exhaustively for the complete nodding
velocity space at finite discrete intervals, to create the lookup
table of range vs nodding velocity. The slowest nodding
speed is restricted such that one complete nod occurs in
maximum ¢, = 1.4s. The action providing maximum in-
formation gain is stored as the nodding time for that range.
Fig 5 presents plots for expected probability of detection of a
wire, given a uniform distribution. This gives a more intuitive
evaluation of the nodding trajectories.

The policy for scanning for landing zone evaluation may
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Fig. 5: Expected Probability of Detection: The expected
probability of detection of a wire if it exists, Ey ) p(d|o)
for a given action is an intuitive indicator of how good
an action is. The plot shows [E,)p(d|o) versus varying
nodding time period for the worst case scenario for the
sensor at vehicle velocity, v = 45 m/s. Each sensor velocity
corresponding to different nodding time periods is evaluated
till ¢, = 1.4seconds. The evaluation shows scans with slower
scanning speed are better, this is also intuitively the correct
behavior as slower nodding speeds means more uniform
point distribution in the [0, ¢] manifold.

also be calculated by the method presented above, but for
our application continuously scanning the region of landing
zone to get a uniform point distribution on it sufficed as an
adequate policy. The sampling rate of the laser is fixed for
safety scans to 29000 points per second, as changing the
sampling rate means switching off the laser for 7 seconds
and reducing the maximum range of the laser from 1400m
to 650m, which rendered the vehicle unsafe. Once the safety
of the entire mission is ensured, the sampling rate of the
sensor is increased for faster landing zone evaluation.

VII. RESULTS

We test our approach on an autonomous full-sized heli-
copter which uses the Near Earth Autonomy, Mark 3 active
nodding range sensor. We tested our approach in Mesa, AZ,
Manassas, VA, Pittsburgh, PA and Quantico, VA for more
than 30 autonomous missions in varying conditions. Fig. 6
shows a typical collection of missions. All the missions need
the vehicle to navigate from start to the landing zone at high
speeds, evaluate the landing zone and land without hovering
if the landing zone is safe. The sensor had to clear enough
region to keep the vehicle safe, even at the speeds of 56
m/s and sample a 100m diameter landing zone with enough
number of points to evaluate it for landing the vehicle on it.
On an average the time available to the laser to sample the
landing zone (LZ) was below 20seconds. Such missions were
impossible to conduct with a passive scanning approach.
Passive scans designed to ensure safety and evaluate landing
zone are only able to keep the vehicle safe up to a maximum



speed of 18 m/s and evaluate the complete landing zone in
112 seconds. Fig. 7 shows a detailed analysis of the sensor

Google-earth

Fig. 6: Mission Definition: The helicopter navigates from
loiter point to landing zone in less than 210 seconds. It has
to navigate the environment while being provably safe and
touch down at the LZ without hovering over it to look for
potential sites.

angles during a mission in Mesa, AZ. The policy scans
for safety in the beginning when the vehicle is navigating
towards its destination. The focus of the sensor is moved
to LZ evaluation once safety is ensured till the end of
the mission. Notice the laser configuration is changed only
after confirming the safety of the vehicle for the rest of the
mission. This mitigates the problem of reduced sensor range
at high sampling rates affecting vehicle safety. Fig. 8 shows
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Fig. 7: Sensor Angles and Configuration: The top figure
shows the sensor angles. In the initial part of the mission,
the sensor plans to keeps the vehicle safe (oscillation of the
blue line). It switches to focussing on the landing zone when
safety for the remainder of the mission has been guaranteed.
This focussing of the laser is shown by the narrow peak to
peak of the nodding angles. At the very end, once enough
points on the landing zone has been focussed, the sensor
reverts back to ensuring that the vehicle can be safe should it
desire to waveoff. The bottom figure shows the configuration
switch. Since switching configuration reduces range, the
policy triggers this event at the appropriate distance to
landing zone, while making sure that the safety of the rest
of the mission is ensured.

the performance of the policy in keeping the vehicle safe.
The sensor always keeps the vehicle safe and only switches
to scanning the landing zone when it has guaranteed safety
for the entire trajectory leading to touchdown. Notice that
the executed vehicle speed is always well below the safe
speed of the vehicle. Fig. 9 shows performance of the system
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Fig. 8: Safety analysis for a single mission. In each figure,
two events are marked - first (blue) is when a manual pilot
makes an aggressive maneuver, second (yellow) is when the
sensor switches to scanning the landing zone. The figure in
the top shows that in autonomous mode the vehicle is flying
slower than the safe speed limit. The middle figure shows the
time after which the vehicle will be unsafe given its current
belief. As the vehicle approaches to land, this time increases
till its high enough for the sensor to switch to scanning the
landing zone. The bottom figure shows the progress of the
mission.

over 12 missions executed in Quantico, VA. The vehicle is
always safe and evaluates the landing zone in time for all
the missions, this demonstrates the reliability of the policy
in the real world.

VIII. CONCLUSION

The main contribution of this paper is to define an al-
gorithm for actively controlling the sensor mounted on a
vehicle to maximize the vehicle’s performance. We reduce
the problem of actively controlling the sensor to minimize
trajectory cost to the problem maximizing contextually im-
portant information gain. We suggest a policy based approach
to solve the NP hard problem of maximizing contextually
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Fig. 9: Multiple Mission Safety Analysis: The safety analy-
sis shown over several missions. The worst case performance
of the system is still shown to be guaranteed safe.

important information gain. The method is evaluated through
application on a full scale autonomous helicopter. We have
shown clear benefits of actively controlling the sensor using
our method as opposed to passive nodding. The method
enabled the helicopter to perform autonomous high speed,
guaranteed safe flights and land on landing sites without the
need to hover.

In the future, we want to explore the possibility of
inferring the contextual importance function, given a cost
function. We are currently working towards applying the
method on micro aerial vehicles and extending the policy
search space to allow for richer sensory trajectories.
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