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Abstract— Autonomous mobile robots are required to operate

in partially known and unstructured environments. It is imper-

ative to guarantee safety of such systems for their successful

deployment. Current state of the art does not fully exploit the

sensor and dynamic capabilities of a robot. Also, given the

non-holonomic systems with non-linear dynamic constraints, it

becomes computationally infeasible to find an optimal solution

if the full dynamics are to be exploited online. In this paper

we present an online algorithm to guarantee the safety of the

robot through an emergency maneuver library. The maneuvers

in the emergency maneuver library are optimized such that

the probability of finding an emergency maneuver that lies in

the known obstacle free space is maximized. We prove that the

related trajectory set diversity problem is monotonic and sub-

modular which enables one to develop an efficient trajectory set

generation algorithm with bounded sub-optimality. We generate

an off-line computed trajectory set that exploits the full dynam-

ics of the robot and the known obstacle-free region. We test

and validate the algorithm on a full-size autonomous helicopter

flying up to speeds of 56m/s in partially-known environments.

We present results from 4 months of flight testing where the

helicopter has been avoiding trees, performing autonomous

landing, avoiding mountains while being guaranteed safe.

I. INTRODUCTION

Robotic applications like cargo delivery, surveillance,
people transport, reconnaissance etc. require the robots to
operate in unstructured, partially known environments at high
speeds. The robots should ensure safety while navigating in
such environments without compromising on performance.
A popular method to guarantee safety relies on limiting the
vehicle speed such that it can come to a stop using longi-
tudinal deceleration within the known obstacle-free volume
[1]. This method fails to fully exploit either the vehicle’s
dynamics or known unoccupied volume, leading to unsat-
isfactory performance. Another method includes planning a
trajectory such that its initial part takes the robot towards
the goal while it ends in a control invariant set that lies
within the known obstacle-free region [2] . Although this
method fully exploits the known space it limits the planning
horizon. In this work, we examine the problem of ensuring
safety for mobile autonomous systems while maintaining the
capability to operate the vehicle at its performance limits.
The key idea is to ensure that the vehicle is always in a
safe state from which it can transition to a loiter pattern or
come to a stop within the known obstacle-free space. All
these states are inside the control invariant set of the robot
[3], which is a well-known approach to ensure feasibility for
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Fig. 1: Autonomous Unmanned Little Bird, coming in for a
landing in snowy conditions. This helicopter was used in the
autonomous flight experiments.

model predictive control applications [4]. Determining loiter
patterns or trajectories resulting in complete stop in various
environments is computationally challenging especially when
the robot has non-linear dynamics. Additionally, it is required
that the safety evaluation has a low worst-case response time
so that it can be used for on-line motion planning at high
speeds.

In order to ensure the on-line capability of the safety
evaluation, the problem is decoupled in an off-line and an
on-line part. The off-line part generates an optimized set
of trajectories allowing the robot to reach a safe state and
stay within the known obstacle free region for an infinite
time horizon. The trajectory set is designed to maximize the
probability of finding at least one emergency maneuver in the
known unoccupied environment. The on-line part determines
if the set contains a collision-free trajectory regarding the
current state and environment of the robot. Thereby, the off-
line generated trajectory set reduces the search space for
the on-line part. This safety evaluation approach serves as a
computationally tractable algorithm with bounded run time.

It can be shown, that the problem of generating this
optimized trajectory set is NP-hard [5]. We present an ef-
ficient, bounded sub-optimal approximate solution that finds
a trajectory set maximizing the probability of containing at
least one safe trajectory given a prior obstacle distribution.
The proposed novel safety assessment approach is based on
an emergency maneuver library and is compared to other
common known approaches such as the stopping distance.
The proposed approach was evaluated through a variety of
experiments conducted on the Boeing Unmanned Little Bird



helicopter, as shown in Fig. 1. In all evaluated scenarios
the novel safety assessment approach outperforms known
common approaches by allowing for higher velocities of the
rotorcraft while guaranteeing safety for the rotorcraft at all
times.

Parts of this paper has been presented before with a
focus on rotorcraft safety in [6]. In this paper we present
the approach to guarantee safety for generic mobile robots,
remove the reliance on having a fixed number of obstacles
for bounded sub-optimality of the emergency maneuver
library generation algorithm and present more insight into
an efficient generation of the emergency maneuver library.

Our main contributions are as follows:
• Generation of an emergency maneuver library that al-

lows for on-line safety assessment of robotic systems at
high speeds in unknown environments

• Efficient algorithm for the library generation with
bounded sub-optimality

• Experimental evaluation from field tests with an au-
tonomous full-sized helicopter flying at speeds of 56m/s

II. RELATED WORK

Autonomous mobile robots have matured over the years.
As these systems are developed for field applications [7]–
[10], the need for robust and safe autonomous robots is
highlighted. Previous work on safety of autonomous robots
can be broadly divided into two paradigms. One of the
paradigms is to make sure that the vehicle can stop within the
sensor range while applying maximum allowed longitudinal
deceleration [7], [11], [12]. The stopping distance based
velocity limit does not exploit the complete dynamics of the
vehicle, leading to conservative velocity limits.

Another paradigm is to simplify the non-linear dynamics
of the UAVs and plan a path that is guaranteed to stay
within the known unoccupied region. Mixed integer linear
programming is used in [2] to plan paths that stay within
the known region. Simplified dynamics in a sampling based
graph is used in [13] while limiting the maximum planning
time to ensure safety. The assumption is that the planner can
always plan an obstacle free path if allowed to run until the
maximum planning time. [10] uses Dubins curves to plan
paths within the known space. These methods also suffer
from not being able to exploit the vehicles full dynamic
capabilities.

It is also important to quantify the safety of the mobile
autonomous systems. [14] suggested using distance from
obstacles as a metric for safety of a robot navigating through
an obstacle field. This metric does not take into account the
sensory and dynamic limitations of the vehicle, thus it cannot
ensure safety of the vehicle.

In the next section, we present a safety metric that con-
siders both sensory and dynamics constraints of the vehicle
to evaluate the vehicle safety. We then present an emergency
maneuver library based method that utilizes the true dynam-
ics of the vehicle to find a positive control invariant set in
the known unoccupied space. We formulate the problem of
finding this library as a NP hard path diversity optimization

[5], [15]–[17]. We prove the path diversity problem to be
monotonic, sub-modular leading to an efficient, bounded sub-
optimal algorithm [18], [19] to generate the trajectory set.

III. DEFINING SAFETY

The safety of a mobile autonomous system is dependent
on its sensory and dynamic capabilities. In a fully-known
environment a mobile system is unsafe if it enters a state
for which there exists no trajectory that avoids a collision,
such a state is called an Inevitable Collision State [20]. In
a static partially-known environment the unknown regions
may contain obstacles. Therefore, to ensure the safety of
the mobile robot its state should be constrained such that it
can always transition to a terminal feasible invariant set [2]
that allows the robot to stay within the known obstacle-free
volume for an infinite time horizon. We now formally define
safety for robots operating in uncertain environments. Let,
x(t) be the state of the robot at time t in the state space X
which is in a manifold X ⇢ Rn. The workspace of the robot
is defined as W and the occupancy of the robot system in the
workspace at a certain state is given as A(x(t)) ⇢ W . The
known space of the workspace at a given time t is denoted
as Kt ⇢ W . The occupancy of the known obstacles at time t
is given by Ot ⇢ Kt ⇢ W . Let �

F

(x) be the search space of
trajectories for a given state x, that end in a terminal feasible
invariant set. Let �(x) be such a trajectory and let �(x, ⌧) be
the state of the vehicle at time ⌧ , along the trajectory �(x),
which is by definition rooted at state x. Then any trajectory
followed by the vehicle can be considered safe if for all
states on the trajectory there exists a trajectory �(x) which
completely lies inside the known obstacle-free space at that
time. Equation (1) presents this definition formally:

Definition 1 (Motion Safety):

8t, 8⌧, 9�(x) : A(�(x, ⌧)) ⇢ (Kt \ Ot) (1)

In the next section, we discuss how this safety definition
can be enforced on mobile autonomous vehicles in real-time
with the use of an emergency maneuver library.

IV. APPROACH

Finding a trajectory that satisfies (1) online is non-trivial
due to computation costs involved, especially if the robot’s
dynamics are non-linear. The current methods in use, lead
to a very conservative behavior, with robots acting well
below their dynamics and sensory capabilities. We provide
a method that allows for guaranteeing the safety of the
vehicle in static environments, while exploiting the limits
of vehicle dynamics and considering the available known
obstacle-free space. We split the problem into two parts, first,
we efficiently compute a reduced set of terminal invariant
trajectories offline then use this reduced set to search for
safe terminal invariant trajectories online. In the next section
we discuss how to compute the terminal invariant trajectory
set resulting in the emergency maneuver library. Before
discussing how this emergency maneuver library can be used
online to ensure safety of the mobile robot.



A. Emergency Maneuver Library

Instead of solving for dynamically feasible trajectories that
end in a terminal invariant set on-line, we approximate the
search space by a finite set of such trajectories. The trajectory
set is designed such that the probability that at least one
of the trajectories stays collision-free, given a prior on the
obstacle configuration for a given state is maximized for a
static environments. We show that this problem is NP hard
[5], [16] and then prove that it is monotonic sub-modular,
providing a sub-optimality bound for a greedy algorithm.

B. Problem Definition

We want to find a set of trajectories that are control
invariant and maximize the probability that the set contains
at least one collision-free trajectory. The trajectory set is
optimized for a spatial stochastic process defined in r 2 W ,
that captures the distribution of obstacle configurations that
the robot is likely to encounter during its lifetime. We assume
this spatial field is give by ⇣(u, r), where u is the event
of point r being unoccupied/free. The probability density
function defined by this process is then given by p⇣(u, r).
Probability that there is no obstacle inside a volume V ⇢ W
is thus given P

u

(V ) =

R
V p⇣(u, r)dr. The volume which

is swept by the robot following a certain trajectory � is
expressed as V (A(�)) = {r|r 2 W, 9⌧ r 2 A(�(⌧))},
[8]. In the rest of the paper we use the shorter notation
V� = V (A(�)) to denote the volume swept by the robot. The
probability of a path being safe is given by the probability
of the swept volume being free of obstacles.

P
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In order to maximize the safety of the robot, a finite path
set � must be determined maximizing the probability that
at least one path is collision-free. This is formulated as the
path diversity problem:

Problem 1 (Path Survivability): The desired trajectory set
�d maximizes the probability of finding at least one obstacle-
free path.

�

d

:= argmaxP
u

(�)

subject to k�
d

k < N
�

where, �
d

✓ � ✓ �

F

(3)

�

F

is the search space of trajectories. Since the path
diversity problem is known to be NP-hard, we present a
greedy method to optimize (3). But before that we prove that
greedily optimizing equation (3) is bounded sub-optimal. To
prove bounded sub-optimality we prove the P

u

(�) is sub-
modular and monotonically increasing in the cardinality of
�.

C. Monotonicity Proof

In the following we show that the probability of at least
one path in a path set being collision-free is monotonically
increasing by the cardinality of the path set.

Proposition 1 (Monotonicity of Path Sets). Given a path
set �A, a path �a and a path set �B = {�A, {�a}} the
probability that the set �B contains at least one collision-
free path is bigger or equal than for the set �A

P
u

(�B)� P
u

(�A) � 0.

Proof. The probability of the path set �b having at least one
obstacle-free path is given by

P
u

(�B) = P
u

(�A [ {�a}).
Using inclusion exclusion principle lead to

P
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For all �a, P
u

(�a) � 0 and max[P
u

(�A \ �a)] = P
u

(�a),
which is the case when all the volume covered by path �a

is already covered by �A. This implies that

P
u

(�a)� P
u

(�A \ �a) � 0

and inserted in (4) leads to P
u

(�B)� P
u

(�A) � 0

Prop. 1 shows that adding more trajectories to a path set,
cannot decrease the probability of finding an obstacle-free
path in the set. In other words, P

u

(�) is monotonically
increasing in the cardinality �.

D. Sub-Modularity Proof

In order to show that a greedy algorithm for the path
diversity problem (Prop. 1) is bounded sub-optimal, we
will show that P

u

(�) is a submodular set function. This
means, that the difference in the probability P

u

that a single
trajectory makes when added to the path set decreases as the
size of the path set increases.

Proposition 2. Let there be a path set �

�

✓ �

⌥

✓ V ,
where P

u

: 2

V ! R. Now, assume a path �e, such that
�e ✓ V \⌥. Define �

�+e = {�
�

,�e}, �
⌥+e = {�

⌥

,�e}.
For sub-modularity

4(e|⌥) < 4(e|�)

where, 4(·) is the discrete derivative.



Proof. The discrete derivative of 4(e|�) is defined as
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Applying Baye’s Rule
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can be rewritten as
4(e|�)�4(e|⌥) � 0.

E. Greedy Algorithm

Since, P
u

(�) is monotonic sub-modular, the path diversity
problem (Prop. 1) can be greedily optimized while maintain-
ing a sub-optimality bound of (1 � 1/e) ⇡ 63% [19], [21].
We describe the greedy algorithm in Alg. 1. We start with

Algorithm 1: Greedy Optimization for a Emergency
Maneuver Trajectory Set

Initialize: �G = ;

while |�G| < N� do

�s = argmax

�2�F /�G

P
u

(�G [ {�})
�G = {�G [ {�s}}

end

an empty trajectory set and search through �F to find the
trajectory that maximizes P

u

. This trajectory is saved in �G

and in the next step, the search for trajectory that maximizes
P
u

is conducted in �F /�G, and added to �G. The process of
greedily selecting trajectories from �F /�G and adding them
to �G is repeated till the desired number of trajectories N�

have been added. In the next section we explain how to use
this greedily generated set to guarantee safety.

F. Safety Algorithm

We ensure the safety of the mobile autonomous system
by using the emergency maneuver library to enforce the
constraint that the current and next state of the system always
lies in the positive invariant set, which does not intersect the
obstacles and stays within the known volume. The algorithm
to ensure safety is explained in Alg. 2. Let � : [0, T ] ! X be
the nominal trajectory that the vehicle is following to reach
the goal. Let, �St be the emergency maneuver library for
state at time t in � and �t be the time interval between
safety checks.

Algorithm 2: Emergency Maneuver Trajectory Set Ap-
plication for Reactive Safety

Initialize: t = 0

�

Previous

= �St

while mission active do

�

New

= {;}
for 8�c 2 �(st+�t) do

if 8⌧ A(�c(⌧)) ✓ (Kt \ Ot) then

�

New

= {�
New

, {�c}}
end

end

if �

New

= {;} then

execute �e 2 �

Previous

else

�

Previous

= �

New

follow �
end

end

The algorithm queries the emergency maneuver library at
a future state of the system, and ensures it can transition
to an emergency maneuver which lies in known obstacle
free space. If there are no such maneuvers, one of the
emergency maneuvers computed at the previous step (for
the current state) are executed. Otherwise the vehicle carries
on its nominal trajectory. This algorithm has a maximum
response time and is guaranteed to keep the vehicle safe. The
algorithm is explained with a working example in Fig. 2.

V. RESULTS

We generated the emergency maneuver library to ensure
the safety of the autonomous Boeing Unmanned Little Bird
Helicopter, equipped with a large field of view range sensor.
The dynamic constraints of the helicopter are given in Tab. I.

Given these constraints we approximate �F , by five hun-
dred trajectories each forming a positive control invariant
set. The trajectories for this application end in a hover and
can trivially be extended to end in a loiter if desired. Each
trajectory slows down the helicopter using the maximum
allowed deceleration. The trajectories are generated by sam-
pling the roll rate and z acceleration uniformly. Once the
helicopter has made a 180

� coordinated turn the radius of
the turn is fixed and the vertical velocity is forced to be
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Fig. 3: Generation of emergency maneuver library for one state. From left to right the plots step through the generation
of emergency maneuver library for 6 iterations. The top row displays the search space from which the current trajectory
is picked, where each trajectory is colored according to the probability of not passing through an obstacle in the set. The
middle row shows the greedily selected maneuver in the current step in green and existing maneuvers in the set in black.
The bottom row shows the total probability of finding at least one maneuver in the set not passing through an obstacle.
The robot starts at 25m/s longitudinal velocity for all the maneuvers and for illustration purposes, is restricted to move in
the xy plane.The benefit of adding new maneuvers diminishes as more trajectories are added and almost levels out after 5
trajectories.

TABLE I: Constraints on trajectory

Constraint Velocity kv(t)k

� 20m/s < 20m/s

Roll [�] 25.00 28.50
Roll rate [�/s] 15.00 �
Heading rate [�/s] � 28.50
Longitudinal vel. [m/s] 60.00 20.00
Vertical vel. [m/s] 5.00 5.00
Longitudinal accel. [m/s2] 0.75 0.75
Vertical accel. [m/s2] 1.00 1.00

0

m/s. We use a constant resolution three dimensional grid
as our representation and assume uniform probability of
occupation of each voxel. The probability of a trajectory set
containing at least one unoccupied trajectory is calculated
using inclusion-exclusion principle as suggested in [5]. Fig. 3
steps through the emergency maneuver library generation
process for the robot motion restricted to a plane starting
at 25

m/s forward longitudinal velocity. The probability of
at least one maneuver in the set surviving reduces with
each trajectory being added and almost levels off at about 5
trajectories. Given a trajectory set we can calculate the sensor
range required for different velocities. Given an emergency
maneuver library, the minimum sensor range required for a
certain velocity is calculated as

range = min

�c

(max(⇠(�c))). (5)

The function ⇠ returns a vector of the euclidean distances
between starting state x and all the states in �c 2 �G(x).

The best case sensor range required while using the
emergency maneuver library is given by (5). The worst case
is the same as the stopping distance. Hence, the emergency
maneuver library is guaranteed to provide at least as much
performance as using only the stopping distance for the
safety evaluation. In Fig. 4 the different requirements on
the sensor range for stopping distance and the emergency
maneuver library are illustrated. We can quantify the perfor-
mance of an emergency maneuver trajectory by calculating
the maximum safe velocity it allows the helicopter during a
mission and the planning time it allows the planner before
it becomes imperative for the helicopter to execute the
emergency maneuver library. Fig. 5 shows the maximum
safe velocity and allowed planning times for a flight test
conducted in Quantico, Virginia. The red line shows the path
where the helicopter is turning towards the landing zone. The
orange part of the path corresponds to the part of the mission
for which the sensor on the helicopter focuses on the landing
zone for its evaluation. This implies, when the helicopter is
moving through the path in orange the sensor stops looking
for obstacles and the helicopter comes increasingly close to
the known/unknown volume boundary, leading to a drop in
maximum safe velocity and allowed planning time. The red
part of the path corresponds to turns, it should be noted
how the maximum safe velocity according to the stopping
distance decreases as the vehicle turns. This happens due to
a reduction in effective range of the sensor because of the
sparsity of observations in front of the vehicle while turning.
The maximum safe speed by the emergency maneuver library



(a) (b)

(c) (d)

Fig. 2: Data from a flight test conducted on 18th December
2013 in Manassas,Virgina. a) Helicopter approaches a large
simulated wall with the emergency trajectory libraries wih
no emergency maneuver in contact with the wall. b) As the
helicopter gets closer to the wall, the emergency maneuvers
intersect the wall and become invalid. Only valid maneuvers
are displayed. c) More emergency maneuvers are pruned
away as they come in contact with the wall d) An emergency
maneuver is executed as the future state is no longer safe.

Fig. 4: Changes in Sensor Requirements. The sensor range
required for safe operation of the vehicle when using stop-
ping distance for safety is displayed in red, in green is the
sensor range required for safe operation of the vehicle when
using emergency maneuver library for helicopter safety.

is unaffected, as it efficiently utilizes the known space.
Fig. 7 shows the maximum safe velocity and allowed

planning times for seven flight tests conducted in Quantico,
Virginia which are shown in Fig. 6. As can be seen in
Fig. 7, the maximum safe speed is always greater than the
helicopter speed, which means the helicopter is always safe.
Furthermore, the stopping distance based safe velocity limit
is always considerably below the executed velocity which
shows that the emergency maneuver library approach is less
conservative than the stopping distance approach. The use of
the emergency maneuver library also allows higher available
planning times allowing for a better overall performance
of the motion planning approach due to longer available
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Fig. 5: Safety Quantization: Flight test in Quantico, Virginia.
a) Shows an autonomous landing mission conducted in
Quantico, Virginia on Unmanned Little Bird. b) Shows the
safe velocity of the helicopter with the emergency maneuver
library during the flight tests in dashed line, the executed
velocity in solid line and the safe velocity if stopping distance
is used in dotted line. c) This figure shows planning time
available to the planner, before the vehicle will reach the edge
of known space and execute one of the emergency maneu-
vers. The planning time calculated assuming the helicopter
will follow the current planned trajectory.

Fig. 6: Paths taken by the autonomous Unmanned Little Bird
during landing and wave-off missions conducted in Quantico,
on 26 Feb. 2014.
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Fig. 7: The figures show the allowed plan time, distance to the landing zone (LZ) and safe velocity relative to the executed
velocity of the helicopter. The black line shows the mean and the gray dashed line illustrates the upper and the lower bound
of the measurements of all considered flight tests.

computation time.

VI. CONCLUSIONS

The main contribution of this paper is the development
and evaluation of emergency maneuver libraries to guarantee
safety of high speed mobile autonomous systems online
in unknown environments. The algorithm determines the
maximum velocity for which safety can be ensured, given a
future path of the robot. Therefore, it takes into account the
constraints of the perception system as well as the dynamics
of the rotorcraft. An off-line optimized set of control invari-
ant trajectories (the emergency maneuver library) represents
the core part of the presented approach. As a result, the
approach is independent of the planner guiding the rotorcraft
to the goal and the dynamics of the rotorcraft. Furthermore,
the off-line generated trajectories enable real-time evaluation
of the safety of the rotorcraft.

The experimental evaluation of the proposed approach
shows, that it is always less conservative than the stopping
distance based safety evaluation. Thus, the helicopter is able
to operates at its performance limits while the presented
maneuver based approach still ensures safety at all time.

In the future, we want to further decrease the conservative-
ness of the safety evaluation by considering a closer coupling

between the emergency maneuvers and the motion planner.
Therefore, the planner pro-actively responds to potentially
unsafe situations rather than just react to them. Another focus
of our current research is to consider wind disturbances and
obstacle distributions to further improve the robustness of
the emergency maneuver library.
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