The Planner Ensemble: Motion Planning by Executing Diverse
Algorithms

Sanjiban Choudhury! and Sankalp Arora! and Sebastian Scherer!

Abstract— Autonomous systems that navigate in unknown
environments encounter a variety of planning problems. The
success of any one particular planning strategy depends on the
validity of assumptions it leverages about the structure of the
problem, e.g., Is the cost map locally convex? Does the feasible
state space have good connectivity? We address the problem of
determining suitable motion planning strategies that can work
on a diverse set of applications. We have developed a planning
system that does this by running competing planners in parallel.

In this paper, we present an approach that constructs a
planner ensemble - a set of complementary planners that lever-
age a diverse set of assumptions. Our approach optimizes the
submodular selection criteria with a greedy approach and lazy
evaluation. We seed our selection with learnt priors on planner
performance, thus allowing us to solve new applications without
evaluating every planner on that application. We present results
in simulation where the selected ensemble outperforms the best
single planner and does almost as well as an off-line planner.
We also present results from an autonomous helicopter that has
flown missions several kilometers long at speeds of up to 56m/s
which involved avoiding unmapped mountains, no-fly zones and
landing in cluttered areas with trees and buildings. This work
opens the door on the more general problem of adaptive motion
planning.

I. INTRODUCTION

The problem of designing a real-time motion planning
system for an application is an open problem. It is currently
solved by human intuition on what a good approach might
be, picking one’s favourite planner and augmenting it with
layers of heuristics for speedup. Suprising still, different
groups come up with different solutions - e.g compare the
urban challenge approaches [1], [2]. Thus, there is a demand
of a systematic approach to designing a planning solution
that works best for the given application.

In this paper, our application was to design a motion
planning system for an autonomous helicopter that has to fly
smoothly in unknown environments that may span mountains,
canyons and come into land avoiding buildings and trees.
Fig. 1 shows two types of situations that can occur in the
application. Given the requirement is for smooth paths, a
trajectory optimization (such as CHOMP [3]) would be a
natural choice. However, local minima (Fig. 1d) demand
global reasoning - but one has to decide on the search space
and search strategy of this global reasoning. One solution
is to hand engineer a complicated solution that intelligently
(using heursitics) decides what and when to optimize. Our
approach was to run in parallel multiple complementary
approaches and select the best one.

1The Robotics Institute, Carnegie Mellon University, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, USA sanjiban,basti@cmu.edu,
asankalp@andrew.cmu.edu

(a) (b)
CHOMP has Jp— CHOMP has
better solution _ > —~—> no solution W

§

\} [
N> =

>

/
Good local

Poor local
minima

minima

\

1
:%f T T~ */\RRT* has e RRT* has
\%"9\ poor solution \%/Z‘K\ good solution
(© (d)
Fig. 1: (a) Boeing’s Unmanned Little Bird comes in to land autonomously

in the snow. This was the platform used for our experiments. (b) The
application involved avoiding many unknown terrain features such as a tree
on the approach profile (c) Flying between mountains. The cost map is
locally convex and the gradients push the output of the optimizer into the
minimum. Other search algorithms cannot find the valley as effectively. (d)
A poor local minimum where the gradients are conflicting. A global planner
can easily circumvent the situation.

In this paper we present the planner ensemble. Each ele-
ment in the ensemble is a planning algorithm with different
parameters. The total size of this space is exponential in
the number of algorithms, different modes of graph creation
and different types of heuristics. We show that picking the
best ensemble for an application is equivalent to optimizing
a submodular criterium [4]. Since evaluating all possible
planners on an application is expensive (even in offline
cases), we resort to machine learning to learn priors on
planning performance. These priors are used to determine
the lazy evaluation of a planner.

Machine learning techniques have been used in [5] to learn
the effectiveness of a global optimization, to predict trajec-
tories in a new environment by learning from a database,
and to predict the initial effectiveness of a trajectory for
optimization [6]. The work closest to us is [7] in which
machine learning is used to predict a sequence of options.
Different learners are used for different slots - the marginal
loss of selecting an action for one slot is handed as training
data for the next slot. We differ by learning priors for
each planner and computing the marginal gains explicitly
- allowing us to add new planners and try new applications
without having to retrain.

There is also a considerable amount of work on running
planners in parallel to solve a motion planning task [8], [9],



[10]. Other works [11] use heuristics to adapt the search to
the structure of the environment. A recent work [12] uses
multiple inadmissible heuristics to guide a discrete graph
search. We believe the approach introduced in this paper can
be used to select effective heuristics given features about the
environment.

We have already presented in [13] the details of our motion
planning system for the autonomous helicopter. The reason
behind the high performance of the system was because
of the powerful combination of CHOMP [3] and RRT*-
AR [14]. In this paper, we present a novel approach to
automatically arrive at such a decision by characterizing
performance of planners.

Our main contributions are:

« An ensemble of specialized planners that leverage di-
verse assumptions to maximize the performance of the
system in an application.

o An automated ensemble selection that uses learnt pri-
ors on planner perfomance to create a custom set of
planners for a given application.

o Results for the ensemble on an autonomous helicopter
performing missions at high speeds.

II. PROBLEM STATEMENT

Let X C R™ be the configuration space of the system. Let
Xops C X be invalid configurations that result in collision
with obstacle. The dynamics of the system are specified as
a dynamics constraint g(z, %, ey dtr) <0,z € X, where
r is the relative degree. Let the trajectory & : [0,1] — X be
a smooth mapping from time to configuration. The planning
problem is to find the shortest dynamically feasible trajectory
from start xg to the goal x; that is collision free. This is

expressed as follows:

mini(n)lize / l(¢)||dt
x(t

subject to  2(0) = x¢
1) =uay

dzr d"z

1

( (D

g(w, —
(

T

<0
TdtT dtr)—
z(t) € X \ Xops, t € [0,1]

We define an application as a distribution over different
parameters of (1).

The success of a planner depends on the distribution
of X,us. For example, there are configurations of X,
which results in (1) being locally convex around an initial
guess. In such situation, a trajectory optimization algorithm
has a very high performance. There are also configurations
of X,ps which result in a cluttered environment with low
visibility, i.e., the straight line joining points far apart in
the configuration space intersect X,;s. In such situations,
sampling based algorithms have degraded performance due
to most of the connections failing during the collision check.

III. PLANNER ENSEMBLE
A. Overview

The central idea is to have an ensemble of planners
running in parallel as shown in Fig 2. These planners work
in parallel, often in a complimentary fashion, and bid their
plans. These plans are then fed to a trajectory executive.
The executive is a low latency verifiable unit whose job is
to receive plans, ensure safety and send the best plan to the
vehicle.

Planner 2

Trajectory To
Executive Vehicle

Planner n

(@
Fig. 2: The Planner Ensemble

B. Ensemble Generation

We first formalize the idea of an ensemble with the help of
some supporting definitions. Let the database of all planners
be P. A planner is an element P; € P. We use the definitions
provided in [15] to define a planner. It can be thought
of as a process operating on an implicit graph to make
an explicit tree. For a discrete graph search, the implicit
graph is a lattice with local connectivity. For sampling based
algorithms, the implicit graph consists of points sampled
from continuous space with a nearest neighbour ball to define
connectivity. For trajectory optimization, the implicit graph
is the continuous manifold. The explicit tree creation process
varies between dynamic programming and some approximate
versions. Heuristics are employed both in the implicit graph
and explicit tree creation process. A survey of heuristics
in sampling based motion planning literature is provided in
[16]. We will delve into more details about 7P; in subsection
IV-A, but note that all such possible combinations imply | P |
is very large.

Let f € F denote a particular planning problem, i.e., an
instance of (1). We define an application A as a distribution
over planning problems Pr 4(f).

Let s; = {0,1} be the event of planner P; finding a
feasible solution, i.e., only satisfying the constraints in (1).
Let Pr(s; | f) be the probability of this event for a planning
problem f. For deterministic planners, this reduces to an
indicator function.

Let Vi(s;, f) € [0,1] be the expected solution quality of
P; on f given the event s;. This is inversely proportional
to the cost. In this work, we use V;(1, f) = e~ Pei where
€; > 0 is the expected suboptimality fraction of the solution
and [ is a scaling factor. Lack of a solution implies O score,
ie., V;(0, f) =0.



Let I' C P be an ensemble of planners. I'() refers to the
i*" planner in the ensemble.! The optimization objective can
be stated formally as

malzcicrgl)ize /Vp(f) Pr(f) df
|IT|<B

2

subject to

where B is the budget of the ensemble and Vp( f) is the
expected score of the ensemble of f. This can be expressed
as

Ve(f) =D max{Vi(si, )} Pr(se | /) )

where sy = {s; : ¢ € I'} is a particular configuration of
success/failures of the elements in the ensemble I', where
the number of configurations is 2/7/.

There are two major reasons why the optimization is
intractable. Firstly, the problem in (2) is NP-hard and the
combinatorial approach has a worst case complexity O(|
P |B). Secondly, the evaluation of (3) is expensive since we
dont have analytical expressions for any of the terms. The
evaluation involves sampling from Pr 4(f) and for each f,
running the planners in the ensemble. In the next subsection,
we present an approach to alleviate both of these problems.

C. Greedy Selection with Lazy Evaluation

As the problem is NP-hard, we present a greedy selection
with lazy evaluation algorithm to optimize the criteria in (2).
A greedy approach has a bounded sub-optimality guarantee
as the criterium is sub-modular .

The objective is to select the best set I'* on an application
Pra(f) (2). Even though the setting is offline, since the
space of planners |P| is large, not every element can be
evaluated. If every element were to be evaluated we would
get a table s;(f:) and V;(s;, fi) for every planner P; and
sampled features f; from Pr4(f). Greedy selection on this
table would give a set with bounded sub-optimality.

Since the evaluation of (3) is expensive, we approach
this problem by learning priors on the performance of each
planner in P. Let f ~ f be an approximation of the planning
problem f in a feature space. The priors learnt are Pr(s; | f)
and V;(s;, f). These priors allow us to analytically evaluate
(3) without actually running the ensemble on the application.
We will delve into the details of how these are learned in
section V.

Before we move on to the algorithm, we briefly comment
on the assumptions made by the usage of priors. Firstly,
Pr(s; | f) and V;(s;, f) incorporate the performance fluctu-
ation due to approximation error of f , which we assume to
be small given sufficiently expressive features. Secondly, we
assume conditional independence of the success probabilities
of the ensemble given the features, i.e, Pr(sp | f) =

'le_Il"Pr(Si | f). This assumption holds if the feature is
7

IFor readability, we will refer to P; as i.
2This is similar to the set coverage function

TABLE I: Planning strategies and their learnt prior

Planners Optimizes Constraints Prediction  Regression
Accuracy Error
[%] (RMSE)
A* Y Dubins 80.61 0.071
CHOMP Y Smoothness 88.09 0.015
RRT* Y Dubins 84.69 0.253
RRT*-Tunnel Y Dubins 84.01 0.099
RRT*-Obs Y Dubins 71.43 0.214
RRT N Dubins 91.49 0.306
Lazy-RRT N Dubins 89.46 0.323
RRT-Connect N Dubins 94.56 0.349
LBTRRT N Dubins 90.47 0.210
T-RRT N Dubins 92.17 0.325
EST N Dubins 91.16 0.348
PDST N Dubins 87.07 0.274
KPIECE N Dubins 87.42 0.360
BKPIECE N Dubins 72.45 0.413
LBKPIECE N Dubins 71.08 0.409
STRIDE N Dubins 85.71 0.374
SPARS N None 76.53 0.295
SPARS2 N None 75.51 0.293
SBL N None 78.91 0.298
PSBL N None 78.91 0.301

expressive enough to represent the success of a planner
without any other additional knowledge.

The algorithm we present greedily selects terms based
on the marginal gains. Given an ensemble I', we define
the analytical marginal gain of adding an element e to this
ensemble as

A1) = [ (Vroga(h) - V() Pratndt @

Algorithm 1 describes the lazy greedy approach. The ap-
plication is initially sampled for a set of feature vectors FA.
At every iteration, an approximation of (4) is estimated for
every planner using the learnt priors and applying conditional
independence. This step is orders of magnitude faster than
running the planner on all the problems in Fa. The planner
with the largest marginal gain is selected and then the true
marginal gain is computed by executing the planner on the
application problems. The results of the trial are also used
to update the priors for the planner. If the true marginal gain
is still higher than the estimate of the next best planner, the
planner is added to the ensemble.

IV. LEARNING PLANNING PERFORMANCE PRIORS
A. Planning Strategies

In this work, we use the term planner P; to imply a
planning strategy. The core part of the planning strategy
consists of applying a planning algorithm to solve the
problem in (1). In addition, the strategy includes reductions
and simplifications of (1) as well as leveraging assumptions
about the structure of the problem.

Table I enlists the database of planners P. Each planner
was given 1.0s computation time. The first column indicates
if the algorithms were optimizing the criteria or simply
searching for a feasible option. The second column indicates
the extent to which the planners attempted to satisfy the



Algorithm 1 Planner Ensemble Selection

1: Input

2 Pr4(f) : Application feature distribution
3 Pr(s; | f) : Learnt prior of feasibility

4 Vi(si, f) : Learnt prior of performance

5: B : Ensemble budget
6

7

8

9

: Output
I" : The selected ensemble
: Variables
® : Set of planners that have been evaluated
10: p(e) : Marginal gain of planner e
11: procedure LAZYGREEDY
122 T+ 0
13 D0

14: (Fa,Fa) — SAMPLE(Pr 4(f))
15: while | T' |< B do

16: ple) < Ale |T),Ye € P\ {T U ®}
17: e + argmax p(e’)

e’'eP\I'
18: (p(e)) < EVALUATE(e,I', F 1))
19: D+ dU{e}
20: if p(e) < p(e’) Ve’ € P\ {T'Ue} then
21: ' T U{e}

22: end procedure

> Initialize ensemble to empty set
> Initialize evaluated set to empty set

> Sample from application to get set of planning problems and feature vectors

> Compute marginal gain estimates using learnt prior applied on Fa

> Select planner with maximum marginal gain

> Execute planner e on application to get actual marginal gain
> Add planner to evaluated set. This no longer needs to use priors.

> Check if e is still the best planner
> Add e to ensemble

constraints - we note the fact that none of these planners
were designed to fully satisfy the constraint g(...) in (1)
in their original form. Instead they either attempted to find a
smooth solution, or a solution that satisfied Dubin’s dynamics
or no constraints at all. We then use a fast non-linear
projection operator approach, Dynamics Projection Filter
[13], to project the solution on the constraint manifold.

To allow CHOMP to solve the problem, we created a
distance field extending beyond X,,s to allow gradients to
guide it out of collision. The smoothness term was used
to allow solutions to satisfy g(...) as much as possible
before projection. RRT*-Tunnel is a variant of RRT* [17]
that samples in the R® workspace in a tunnel around the
analytic solution. The tunnel is an assumption about how far
from the initial guess the optimal solution may lie. RRT*-
Obs is another variant of RRT* that samples on the obstacle
manifold. The planners that did not attempt optimization
were post-processed to get smooth outputs. We used the
open source OMPL [18] for most of the planners other than
CHOMP and A*.

B. Features

The feature vector f consists of two components - global
connectivity information and local distance field information.

1) Global Connectivity: A coarse lattice of fixed resolu-
tion spanning the whole workspace is created and centred on
the line joining the start and goal. The feature vector is then
f = {1(e ¢ Xups)} where 1(.) is the indicator function,
e is the edge. This feature vector approximates the global
connectivity of the workspace.

2) Local Distance Field: A dense lattice of fixed reso-
lution of bounded volume around the straight line joining
start and goal is created. For every vertex on this lattice, the
distance field is sampled for the distance and direction to
the nearest obstacle. This feature vector contains information
about the local convexity of the objective and the obstacle
density.

C. Training and Testing

Given the lack of standard training datasets in this area of
work, we synthesized a dataset of 10000 planning problems
by permutations and combinations of various scenarios that
emphasize one or multiple major assumptions leveraged by
an algorithm. Fig. 3 shows some samples from the dataset.

We used Random Forests [19] for learning success prob-
abilities and performance of the planners because of their
robustness to noise. To model the success probabilities,
we used a discriminative classifer rather than learning a
generative model for performance reasons. To get a model of
planner performance, we did regression on the sub-optimality
ratios. These ratios were obtained by running RRT* with
a longer time budget and then taking the minimum cost
incurred on a planning problem by any planner. The accuracy
on a test dataset is shown in Table 1.

V. ENSEMBLE SELECTION IN SIMULATION

We used parameters of the model of Boeing Unmanned
Little Bird (ULB) [13] with mission speeds of 30m/s. We
selected two contrary applications - Forest and City - and ran
simulations with fully known and unknown (sensor limited)
situation.



(@ (b) ()

(@ (e) ®

Fig. 3: Some samples of building blocks used to create the training dataset.
Each scenario focusses on a particular strenth / weakness that planners have.
Permutations of these make a planning problem. (a) Pole - Locally convex
(b) Wall - Non-convex, requires large excursion (c) Baffle - Local minima
on either side, narrow entry passage. (d) Corridor - Start and goal halves
of state space have only one small link (e) Bugtrap - Requires planners to
search backwards (f) Various combinations of random environments

A. Known Environment

EEEE

(@ (b)

Fig. 4: Samples of the distance field from known applications. The red
regions are the obstacles and upto the green expansion (50m) is considered
to be in collision. (a) Forest application: poisson forest field [20] (b) City
application: randomly perturbed city blocks

Fig. 4 shows snapshots from both applications. As the
entire environment is known, the sensor plays no role. To
clearly illustrate the ensemble selection process, Table II
shows every step. Along with the priors, the actual value
on evaluation is shown in brackets. In this case, RRT*-
Tunnel and CHOMP were selected as the two planners.
The lazy evaluation corrects for error in the estimation of
the performance of CHOMP. The reason these two planners
performed well is because the optimal solution was always
within a tunnel of the initial guess and the cost function was
usually convex around the initial guess. Fig. 4a is the output
of CHOMP.

For the city application, we see in Table III that A* and
RRT*-Tunnel were chosen. This is because this environment
required reasoning in a global sense, discretization effects
were acceptable and on occasion when the solution happened

TABLE II: Ensemble selection for known forest application

Planners Iteration 1 Iteration 2 Iteration 3
Prior (Eval) Prior (Eval) Prior (Eval)
A* 0.694 0.694 0.003
CHOMP 0.989 (0.681) 0.681 0.021 (0.069)
RRT* 0.700 0.700 0
RRT*Tunnel 0.983 0.983 (0.848) -
RRT*-Obs 0.483 0.483 0
RRT 0.540 0.540 0
Lazy-RRT 0.563 0.563 0
RRTConnect 0.510 0.510 0
LBTRRT 0.638 0.638 0.006
T-RRT 0.533 0.533 0
EST 0.529 0.529 0
PDST 0.588 0.588 0
KPIECE 0.491 0.491 0
BKPIECE 0.772 0.772 0
LBKPIECE 0.491 0.491 0
STRIDE 0.482 0.482 0
SPARS 0.342 0.342 0
SPARS2 0.330 0.330 0
SBL 0.456 0.456 0.002
PSBL 0.458 0.458 0.004
Ensemble
Slot 1 RRT*-Tunnel RRT*-Tunnel
Slot 2 CHOMP

to lie near the initial guess, the RRT*-Tunnel was the only
algorithm able to sample densely enough to get a solution
as shown in Fig. 4b.

B. Unknown Environment

& * *
. * .
Known . *
Space * .
*
*
g *
PY *
*
*
* *
* *
(b)

Fig. 5: Absence of a prior map makes the planning problem seem much
easier. We illustrate the view of the robot as it explores the city. (a) The
point cloud hits and misses correspond to seen obstacles and maximum
range returns respecitvely. As far as the robot can see there is only a front
row of obstacles (b) The RRT*-tunnel is easily able to plan through the first
row and is unaware of the other obstacles - thus producing a high quality
path.

In these environments, the environment was discovered
on the fly by the sensor. Evaluation of a planner implies
simulating with the sensor °. According to Table III, the
forest results remained unchanged but the city results were
completely changed.

We examine this problem in Fig. 5. Since the city is incre-
mentally revealed to the robot, it is for the most part easier,
even convex around the intial guess on many occasions. This

3Making dataset dependent on prediction creates a data set distribution
problem similar to [21]. We circumvent this for now by gathering datasets
by running the offline planner.



TABLE III: Ensemble v/s individual performance for different applications

Criteria Ensemble Ensemble Total
Slot 1 Slot 2 Score

Planner(Score) Planner(Score)
Known Forest RRT*Tunnel(0.85) CHOMP(0.68) 0.92
Unknown Forest ~ RRT*Tunnel(0.72) CHOMP(0.51) 0.85
Known City A*(0.68) RRT*Tunnel(0.59)  0.78
Unknown City RRT*Tunnel(0.80) CHOMP(0.54) 0.88

makes the use of A* wasteful when much higher quality
solutions free of discretization effects can be obtained. The
ensemble selection system is automatically able to leverage
this assumption. We also see the effect of combining two
planners in the forest environment leads to 18% improvement
and within 85% of offline performance.

VI. AUTONOMOUS HELICOPTER FLIGHT

The planning system has been stress tested on an au-
tonomous helicopter over a period of 4 months. Missions
have ranged from avoiding no-fly zones, terrain obstacles
and landing straight to ground while avoiding enroute trees,
facing the wind direction and dealing with clutter at the
landing zone. A detailed case-by-case analysis of these
results can be found in [13].

For flight on an actual helicopter, we appended a collision
avoidance objective, time to collision [13], which essentially
penalizes high speed flight near obstacles and can scale
naturally with speed. From the ensemble selection analysis,
the planners selected were RRT*-Tunnel and CHOMP.
We modified the RRT*-Tunnel to produce alternate routes
(RRT*-AR [14]).

Fig. 6 shows an example of avoiding a mountain in one
of the missions. This was a typical situation where CHOMP
produces a high quality solution while the RRT*-Tunnel
produces paths in the vicinity of the optimal solution. On
another very similar mission in the same environment, a
completely opposite situation was faced as shown in Fig 7.
Since the system was told to pass between a mountain and
no fly zone, it got stuck in a poor local minima and the
RRT*-Tunnel produced a path.

We also ran full system simulations on environments such
as the grandcanyon (Fig. 8) and urban environment (Fig.
9). In the grandcanyon environment, CHOMP was selected
65.82% and RRT*-AR 34.18%. In the urban environment,
CHOMP was selected 29.17% while RRT*-AR was selected
70.83%. The ensemble was able to keep the vehicle safe and
successfully complete 100% of missions in these scenarios.
The percentages indicate how the effectiveness of a planner
changes throughout an application.

VII. DISCUSSION

We have presented an approach to solve diverse planning
problems with an ensemble of complementary planners.
We designed an ensemble selection system based on a
greedy approach with lazy evaluation using learnt priors of
planning performance. We presented results in simulation
and for autonomous helicopters where the ensemble had

Gradient
direction

“— Cost Function
- - -Optimizer
: = RRT'AR1
3| H = RRT'AR2

Log normalized cost

0 50 6070 80 9 100 110 120 130
Distance to mountain peak

(@

Fig. 6: Flying around an unmapped mountain in Mesa, AZ. (a) Safety
pilot’s view of the mountain (b) The gradient due to time to collision
objective takes the trajectory away from the obstacle (c) The RRT*-AR
optimal path avoids the mountain by a much larger distance than required.
The RRT*-AR tree contains branches on either side of the cost valley (d)
The log normalized cost function valley with distance from the mountain
peak. The optimizer descends into the valley within 8 iterations. The RRT*-
AR computes alternate routes lying on either side of the valley.

Time to
Collision

(@

Fig. 7: Flying between a no-fly zone (NFZ) and an unmapped mountain
in Mesa, AZ (a) The skid camera view of the scenario (b) The gradient
due to the time to collision pushes the trajectory into the forbidden NFZ.
(c) The RRT*-AR tree is very diverse and contorts to find a near optimal
trajectory (f) Comparison of the RRT*-AR trajectory to optimizer shows
that RRT*-AR is safer

M.

(@ (b)

Fig. 8: Both RRT*-AR and Optimizer dominate interchangeably in a
mission in the Grand Canyon (a) Optimizer dominates here because the
gradients from the edges push it into a global minima (b) Optimizer gets
trapped in a bad local minima in a space between two obstacles. RRT*-AR
plans around the obstacle.



Optimizer RRT*

(a) (b)

Fig. 9: Planners selected interchangeably in an urban mission scenario. (a)
The optimizer follows a nice gradient around the building while the RRT*-
AR computes paths that miss the optimum valley (b) The optimizer gets
trapped in a local minimum inside a building. The RRT*-AR circumvents
the obstacle.

better performance on the mission than a single planner.
Even though our approach shows promising results, there
are several issues that make this a hard problem to solve.

The first issue concerns the noise in the learnt priors. The
priors are learnt over a training distribution which is different
from the application distribution. This makes it difficult to
bound the performance of the selected ensemble from the
best ensemble I'*. The approach used in [7], where a cascade
of regressors are used may reduce the noise level. However
the difference in distribution is still a key issue.

The second issue is that this approach does not address
an online setting. In the online setting, the algorithm is
required to produce a different ensemble I' at every time
step to bound the regret with respect to the best ensemble
I'* in hindsight. Since each element cannot be evaluated (as
in weighted experts [22]), this must be framed as a multi-
armed bandit problem [23]. In addition, the utilization of the
features f would allow for one to have a lower regret in
comparison to not using the priors.

The third issue is with regards to a more complex matter
of distributions. Not only is Pr 4(f) unknown, it should also
be a function of the selected ensemble I'. This is because the
planners dictate where the robot navigates and the kind of
problems it is likely to encounter. Work done in [21] provides
some potential direction for further research.

Another key source of difficulty is that the features must
be able to capture all aspects of the environment in order
to effectively predict planner performance. For practical
purposes, this might be a very difficult function to learn.
A more predictable property is to learn the interdependence
among planners. When one planner is evaluated, this model
can reliably predict the likelihood of success of a dependent
planner. Work done on multi-armed bandits with dependence
[24] shed some light on this matter.

VIII. ACKNOWLEDGEMENT

This work would not have been possible without the
dedicated efforts of the entire AACUS TALOS team and
was supported by ONR under contract N0O0014-12-C-0671.

REFERENCES

[1] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving

[2

—

[3

=

[4]

[5]

[6

=

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]
[20]

[21]

[22]

(23]

[24]

in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425-466, 2008.

Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” Control Systems Technology, IEEE Transactions on, vol. 17,
no. 5, pp. 1105-1118, 2009.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradi-
ent optimization techniques for efficient motion planning,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 489-494.

A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, p. 19,
2012.

A. Cassioli, D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Scian-
drone, “Machine learning for global optimization,” Computational
Optimization and Applications, vol. 51, no. 1, pp. 279-303, 2012.

J. Pan, Z. Chen, and P. Abbeel, “Predicting initialization effective-
ness for trajectory optimization,” in Robotics and Automation, 2014.
ICRA’14. IEEE International Conference on. IEEE.

D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell, “Contextual sequence
prediction with application to control library optimization,” Robotics,
p. 49, 2013.

S. Caselli and M. Reggiani, “Randomized motion planning on parallel
and distributed architectures,” in Parallel and Distributed Processing,
1999. PDP’99. Proceedings of the Seventh Euromicro Workshop on.
IEEE, 1999, pp. 297-304.

D. J. Challou, M. Gini, and V. Kumar, “Parallel search algorithms
for robot motion planning,” in Robotics and Automation, 1993. Pro-
ceedings., 1993 IEEE International Conference on. 1EEE, 1993, pp.
46-51.

M. Otte and N. Correll, “C-forest: parallel shortest path planning with
superlinear speedup,” Robotics, IEEE Transactions on, vol. 29, no. 3,
pp. 798-806, 2013.

J. Denny, M. Morales, S. Rodriguez, and N. M. Amato, “Adapting
rrt growth for heterogeneous environments,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE,
2013, pp. 1772-1778.

S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhacheyv,
“Multi-heuristic a*,” in Seventh Annual Symposium on Combinatorial
Search, 2014.

S. Choudhury, S. Arora, and S. Scherer, “The planner ensemble and
trajectory executive: A high performance motion planning system with
guaranteed safety,” in AHS 70th Annual Forum, Montreal, Quebec,
Canada, May 2014.

S. Choudhury, S. Scherer, and S. Singh, “Rrt*-ar: sampling-based
alternate routes planning with applications to autonomous emergency
landing of a helicopter,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. 1EEE, 2013, pp. 3947-3952.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Bit*: Batch
informed trees for optimal sampling-based planning via dynamic
programming on implicit random geometric graphs,” arXiv preprint
arXiv:1405.5848, 2014.

M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Access, IEEE, vol. 2, pp. 5677, 2014.

S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems,
2010.

I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, December 2012, http://ompl.kavrakilab.org.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,”
1IEEE Transactions on Robotics (submitted), 2012.

S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” arXiv
preprint arXiv:1011.0686, 2010.

N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Information and computation, vol. 108, no. 2, pp. 212-261, 1994.
A. Mahajan and D. Teneketzis, “Multi-armed bandit problems,” in
Foundations and Applications of Sensor Management. Springer, 2008,
pp. 121-151.

S. Pandey, D. Chakrabarti, and D. Agarwal, “Multi-armed bandit prob-
lems with dependent arms,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 721-728.


http://ompl.kavrakilab.org

	Introduction
	Problem Statement
	Planner Ensemble
	Overview
	Ensemble Generation
	Greedy Selection with Lazy Evaluation

	Learning Planning Performance Priors
	Planning Strategies
	Features
	Global Connectivity
	Local Distance Field

	Training and Testing

	Ensemble Selection in Simulation
	Known Environment
	Unknown Environment

	Autonomous Helicopter Flight
	Discussion
	Acknowledgement
	References

