
The Dynamics Projection Filter (DPF) - Real-Time Nonlinear
Trajectory Optimization Using Projection Operators

Sanjiban Choudhury1 and Sebastian Scherer1

Abstract— Robotic navigation applications often require on-
line generation of trajectories that respect underactuated non-
linear dynamics, while optimizing a cost function that depends
only on a low-dimensional workspace (collision avoidance).
Approaches to non-linear optimization, such as differential
dynamic programming (DDP), suffer from the drawbacks of
slow convergence by being limited to stay within the trust-
region of the linearized dynamics and having to integrate the
dynamics with fine granularity at each iteration. We address
the problem of decoupling the workspace optimization from the
enforcement of non-linear constraints.

In this paper, we introduce the Dynamics Projection Filter,
a nonlinear projection operator based approach that first
optimizes a workspace trajectory with reduced constraints
and then projects (filters) it to a feasible configuration space
trajectory that has a bounded sub-optimality guarantee. We
show simulation results for various curvature and curvature-
derivatives constrained systems, where the dynamics projection
filter is able to, on average, produce similar quality solution 50
times faster than DDP. We also show results from flight tests
on an autonomous helicopter that solved these problems on-
line while avoiding mountains at high speed as well as trees
and buildings as it came in to land.

I. INTRODUCTION

A common problem faced in robotics navigation ap-
plications is to generate on-line a smooth collision free
trajectory that respects the non-linear constraints imposed
by the dynamics of an under-actuated system. This problem
is difficult because real-time perceptual information requires
a fast response. At the same time, the trajectory computed
must be dynamically feasible, have a low cost and reach the
goal.

Trajectory optimization with non-linear constraints is com-
monly solved using variants of differential dynamic pro-
gramming [1] or sequential convex optimization [2]. [3] uses
sequential quadratic programming and deals with obstacles
through the use of signed distances. More complex dynamics
models have been considered by [4], [5], [6]. However the
nonlinear nature of the constraint makes this method slow.
There has been a lot of success in the field of fast high
quality unconstrained optimizations, such as CHOMP [7].
The reason for this is the use of workspace gradients and
parameterization invariance.

In this paper, we attempt to make a bridge between fast
optimization of objectives that depend only on the low
dimensional workspace and ensuring high dimensional con-
straint satisfaction using projection operators. [8] learns a low
dimensional structure automatically, but only for holonomic

1The Robotics Institute, Carnegie Mellon University, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, USA sanjiban,basti@cmu.edu

(a) (b)

(c)

Fig. 1: (a) Boeing’s Unmanned LittleBird is guided by the optimization
computing trajectories in real-time. (b) A typical scenario where the
helicopter has discovered some mountains in the way and has to plan around
them (c) An illustration of our approach. We optimize a workspace trajectory
ξ(τ) subject to smoothness constraints, project it to a feasible configuration
space ẋ = f(x, u) while ensuring bounded suboptimality using Lyapunov
bounds V (x, ξ, τ).

optimization. The work most similar to ours [9] uses a
projection operator, however, the underlying trajectory is still
high dimensional, the gradients contain the nonlinear con-
straint artifacts requiring small step sizes and the projection
has no guarantees.

In this paper, we present the Dynamics Projection Filter.
Our main contributions are as follows:
• We present a real-time approach to solving a non-linear

trajectory optimization where the cost function only
depends on a low-dimensional workspace.(Fig. 1)

• We define a nonlinear projection operator as a control
Lyapunov function that takes an optimized workspace
trajectory and projects it to a configuration space tra-
jectory with guarantees on sub-optimality.

• Results on an autonmous helicopter performing mis-
sions at high speeds.

II. PROBLEM STATEMENT

Let X ⊂ Rn be the configuration space of the vehicle,
W ⊂ Rw be the workspace of the vehicle (w is either 2
or 3) and U ⊂ Rm be the control space. Let T be the

time horizon of the problem. Let the configuration space
trajectory represented by the pair x : [0, T] → X and
u : [0, T]→ U be a mapping from time to configuration and
control respectively. The trajectories are subject to nonlinear
constraints ẋ(t) = f(x(t), u(t)). Let the function w : X →
W be the workspace projection of a configuration state

In the optimization problem, the start state is x0 and the

desired end state is xf . Let J(x(t)) =
T∫
0

c(x(t))dt be a line

integral cost. Let cf (x(T), xf) be a terminal cost function.
The problem we wish to solve is as follows

minimize
x(t),u(t)

J(x(t)) + cf (x(T), xf)

subject to x(0) = x0

ẋ(t) = f(x(t), u(t))

(1)

Problem (1) is fairly generic. However we wish to solve
a special case where J(x(t)) is only dependent on the
workspace component and has the following structure

J(x(t)) = Jobs(x(t)) + λ Jsmooth(x(t)) (2)

where λ is a weighting parameter. Similarly
cf (x(t), x(T)) = 1

2 ‖w(x(T))− w(xf)‖.
Jobs(x(t)) is an obstacle cost function

Jobs(x(t)) =

T∫
0

cobs(w(x(t)))

∥∥∥∥ d

dt
w(x(t))

∥∥∥∥ dt

where cobs(w(x(t))) is inversely proportional to the squared
distance to obstacle (Refer to [10] for details)
Jsmooth(x(t)) penalizes high velocities in workspace

Jsmooth(x(t)) =
T

2

T∫
0

∥∥∥∥ d

dt
w(x(t))

∥∥∥∥2

dt

The following assumptions are made for the class of
problems we look at in this paper
• The workspace dimension w is lower than the configu-

ration space dimension n.
• Since the cost function is only dependent on workspace,

the dynamics f(.) is the only term that deal with the
full configuration space.

• The dynamics f(.) are that of a mobile robot. f(.)
satisfies properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.

III. BACKGROUND: DIFFERENTIAL DYNAMIC
PROGRAMMING

Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efficient than full Newton’s
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.

IV. APPROACH: DYNAMICS PROJECTION FILTER

(a)

Fig. 2: Dynamics Projection Filter Overview

In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible configuration space trajectory. DPF
guarantees a fixed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a configuration space trajectory. The configuration space
trajectory is further optimized using DDP (Section III).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory

The DPF accepts a workspace trajectory as input, uses
a controller to track this trajectory and the outputs the

configuration trajectory traced out by the system. To provide
guarantees about the output, the first component required
is a control-Lyapunov function (CLF) that stabilizes around
a feasible workspace trajectory. Since the controller can
observe all states, has a perfect model and is free from any
disturbance, approaches such as feedback linearization and
backstepping can be applied [11], [12], [13].

Let the workspace trajectory be ξ : [0, 1] → Rw. A
control-Lyapunov stabilized trajectory firstly requires the
existence of a feedback control u = K(x, ξ, τ) where
x ∈ Rd is the configuration space coordinate of the robot,
τ is the index of the workspace trajectory. It also requires
the definition of index dynamics τ̇ = Γ(x, ξ, τ). Careful
selection of these functions can ensure a function V (x, ξ, τ)
to satisfy the Lyapunov criteria when ξ is dynamically
feasible. If x ∈ Xξ implies perfect tracking, the Lyapunov
criteria is V (x, .) > 0, V̇ (x, .) < 0,∀x ∈ X \ Xξ and
V (x, .) = 0,∀x ∈ Xξ (globally asymptotic stable version).

A further local exponential stability is also required, i.e,∣∣∣∣dV (., τ)

dτ

∣∣∣∣ > αV (., τ), α > 0, V (.) < Vmax.

where the rate of exponential stability α determines how fast
convergence occurs. This property will be used to guarantee
decay properties of the CLF. A detailed derivation of these
properties for a fixed wing UAV is provided in Section V.

The output x(t) = DPF(ξ) is given by[
x(t)
τ(t)

]
=

[
x(0)

0

]
+

t∫
0

[
f(x(t),K(x(t), ξ, τ(t)))

Γ(x(t), ξ, τ(t))

]
dt (3)

In the scope of this work, we consider ξ to be approxi-
mated by a set of workspace samples at equal discretization
∆τ : ξ ≈ (q1, q2, . . . , qn)

T ∈ Rn×w, with q0 and qn+1 the
fixed starting and ending points of the trajectory. This will
facilitate concrete expressions on bounds that are parameter-
ization dependent. However, the method remains valid for
other parameterizations, such as splines.

Under the assumption that the linear segments between
waypoints are dynamically feasible (there exists u ∈ U
which allows perfect tracking) , the Lyapunov function V (.)
converges in the straight line portion of ξ. However, at every
waypoint it increases by ∆V > 0 because of the angle
change at the waypoint. The more jagged ξ is the more
the cumulative effect of ∆V will be. The maximum V (.)
at anytime determines how much deviation x(.) has from ξ.
We first establish that under certain assumptions about V (.),
a bounded Lyapunov value implies a bounded intersegment
deviation.

Proposition 1 (Bounded Intersegment Deviation). Given
a desired bound on the Lyapunov function V (x, ξ, τ) ≤
Vmax,∀x, τ ∈ DPF(ξ), the intersegment deviation is also
bounded, i.e.

(
1 + (qi−qi−1)T(qi−qi+1)

‖qi−qi−1‖‖qi−qi+1‖

)
≤ ρmax.

Proof. Let ρi =
(

1 + (qi−qi−1)T(qi−qi+1)
‖qi−qi−1‖‖qi−qi+1‖

)
be the interseg-

ment deviation and Vi be the Lyapunov value at waypoint i.

Let the inflation of Lyapunov value be ∆Vi on transitioning
to the segment leading to waypoint i + 1. We define the
relation ∆Vi ≤ h(Vi, ρi), where a specific form of h(.)
depends on the form of V (.) as we show in Section V. Let
l = mini ‖qi − qi+1‖. The exponential stability α implies
that along l, the Lyapunov decays from V to V e−αl.

We now find the largest ρi that guarantees Vi+1 ≤ Vi.

Vi+1 ≤ Vi

(Vi + ∆Vi)e
−αl ≤ Vi

∆Vi ≤ Vi(e
αl − 1)

h(Vi, ρi) ≤ Vi(e
αl − 1)

ρi ≤ h−1(Vi(e
αl − 1))

(4)

where h−1(.) is an abuse of notation to imply that the relation
is invertible.

We assume that h−1(.) monotonically increases with Vi
so that the tightest bound is achieved when Vi−1 +∆Vi−1 =
Vmax and decays to Vi = Vmaxe

−αl.

ρi ≤ h−1(Vmaxe
−αl(eαl − 1))

ρi ≤ h−1(Vmax(1− e−αl))
(5)

We now prove that bounded Lyapunov value implies
x(t) = DPF(ξ) is within bounded suboptimality of ξ (by
abuse of notation J(.) serves a dual role of cost evaluation
of ξ and x)

Proposition 2 (Bounded Suboptimality). Given a desired
bound on the Lyapunov function V (x, ξ, τ) ≤ Vmax,∀x, τ ∈
DPF(ξ), J(x) ≤ (1 + ε)J(ξ)

Proof. (Sketch) The workspace deviation is bounded,
‖w(x(t))− ξ(τ)‖ ≤ dmax since V (x, ξ, τ) ≤ Vmax. Un-
der the assumption that DPF always ensures τ̇ > 0, the
total length is within bounded inflation ‖w(x(t))‖ ≤ (1 +
γl) ‖ξ(τ)‖, where γl is an inflation constant derived from the
dynamics constraints. This implies a bounded smoothness
cost factor, Jsmooth(x) ≤ (1 + εs)Jsmooth(ξ) where εs is
a sub-optimality bound. The function cobs(.) is assumed
to be Lipschitz continuous which gives Jobs(x) ≤ (1 +
εo)Jobs(ξ).

Since the projected trajectory is not guaranteed to be
locally optimal, executing a DDP as a post-processing step
results in local optimality.

B. Workspace Optimization

The workspace optimization problem is to optimize J(ξ)
subject to constraints at each waypoint ρi stated in propo-
sition 1. While a wide variety of approaches exist to solve
this problem [2], [14], we use CHOMP [7]. CHOMP opti-
mizes the same objective functional but has a lot of added
advantages such as using a steepest descent direction with
respect to a Riemannian metric that allows fast convergence
as well as invariance to parameterization. By selecting a

parameterization only dependent on the cost function granu-
larity and independent of the dynamics, CHOMP is able to
make large progress away from obstacles while still retaining
smoothness.

Let ξi be the trajectory at the ith iteration. Let A be
a measure of the acceleration along a trajectory. Then the
update rule for CHOMP is

ξi+1 = ξi −
1

η
A−1∇J(ξi)

where η is the step size.
CHOMP does not explicitly guarantee satisfaction of

workspace constraints. However, we take advantage of the
fact that minimization of the smoothness objective at each
waypoint of ξ is equivalent to minimization of ρi and hence
contributes to constraint satisfaction. CHOMP is executed
till convergence and the constraint is checked for. If it is not
met, the smoothness term λ is increased and the process is
repeated. Fig. 2 shows the overall process.

V. DERIVATIONS FOR FIXED WING UAV

We go into a detailed example because the realization of
the dynamics filter is strongly coupled with the system. We
select a 2D fixed wing UAV (n = 3) for simplicity although
our end application is for a n = 12 system.

Let the R3 configuration space be X = [x, y, ψ]T and the
workspace be R2. The speed of the uav is v and the angular
speed (control input) is ω. Then the dynamics of the system
are represented by ẋẏ

ψ̇

 =

v cosψ
v sinψ
ω


where | ω |≤ ωmax

A. Controller Synthesis

Let the workspace trajectory be ξ(s) = (xr(s), yr(s)),
where s is an arc-length parameterization. The instantaneous
direction of the workspace trajectory is ψr(s) = tan−1 ẏr(s)

ẋr(s)

and the curvature of the trajectory is κ(s).
We will now define the error dynamics of the system with

respect to ξ(s). Let p = (x, y) be the position of the vehicle.
The error vector is defined as the position difference from
the workspace trajectory frameesed

ψ̇

 = RT (ψr(s))(p− ξ(s))

where es is the along track error, ed is the cross track error
and R is the rotation matrix. The error state space is then
composed of es, ed, heading error χ = ψ − ψr(s) and the
reference index s. The error dynamics are as follows

ės
ėd
χ̇
ṡ

 =


v cosχ− (1− κ(s)ed)ṡ

v sinχ− κ(s)esṡ
ω − κ(s)ṡ

kses + v cosχ



The following control Lyapunov function [12] is used

V (s) =
1

2γ
(e2
s + e2

d) +
1

2
(χ− δ(ed))2

where γ is a scaling factor and δ(ed) = −χ∞ e2ked−1
e2ked+1

generates a steering angle based on the cross track error [11].
The function V (s) satisfies the conditions V (s) ≥ 0. If

ω =− kω(χ− δ(ed)) + κ(s)ṡ+ δ′(ed)(v sinχ− κ(s)esṡ)

− edv

γ

(
sinχ− sin(δ(ed))

χ− δ(ed)

)
(6)

we get the derivative of the Lyapunov function

V̇ (s) = −ks
γ
e2
s +

edv

γ
sin(δ(ed))− kω(χ− δ(ed))2

Since ed sin δ(ed) ≤ 0, V̇ (s) ≤ 0. Moreover, since V̇ (s) = 0
only for V (s) = 0, by LaSalle’s invariance principle, the
system is stable.

B. Exponential stability of controller

Proposition 3 (Exponential Stability). Given a bound on the
Lyapunov value V (s) < Vmax, the controller is exponentially
stable , i.e.,

∣∣∣dV (s)
ds

∣∣∣ > αV (s), α > 0.

Proof. The time derivative V̇ (s) was derived as

V̇ (s) = −ks
γ
e2
s +

edv

γ
sin(δ(ed))− kω(χ− δ(ed))2

Rewriting as a derivative w.r.t arc length dV (s)
ds = V̇ (s)

ṡ

dV (s)

ds
=

1

ṡ
(−ks

γ
e2
s +

edv

γ
sin(δ(ed))− kω(χ̃− δ(ed))2)∣∣∣∣dV (s)

ds

∣∣∣∣ ≥ 1

ṡmax
(
ks
γ
e2
s −

edv

γ
sin(δ(ed)) + kω(χ̃− δ(ed))2)

since ed sin δ(ed) ≤ 0.
For V (s) < Vmax, we can find a limit es < es,max and

ed < ed,max. This makes ṡmax = kses,max + v. Note that∣∣∣ sin(δ(ed))
χ∞ked

∣∣∣ is monotonically decreasing function for ed. Thus
∃Lδ,− sin(δ(ed)) ≥ Ledχ∞ked, ed ≤ ed,max∣∣∣∣dV (s)

ds

∣∣∣∣ ≥ 1

ṡmax
(
ks
γ
e2
s + Lδ

e2
dv

γ
+ kω(χ− δ(ed))2)

α =
2

kses,max + v
min(ks, Lδχ

∞kv, kω)

C. Angle constraints on a piecewise linear workspace tra-
jectory

We will now derive a bound on the angle deviation |∆ψi|
between successive segments such that Vi ≤ Vmax.

Proposition 4 (Angular Deviation Bound). The Lyapunov
value is bounded Vi ≤ Vmax if the angle deviation satisfies
|∆ψi| <

√
2Vmax(1− e−αl2), where l is the minumum inter-

waypoint distance.

TABLE I: DDP and DPF comparison for 1000 trial runs

Criteria DDP DPF DPF
(w/o post DDP)

Cost 337.1 (±161.9) 284.0 (±135.4) 310.1 (±140.3)
Time [s] 10.13 (±4.976) 1.238 (±0.051) 0.209 (±0.029)
Cost Ratio − 0.906 (±0.370) 1.000 (±0.396)
Speed Up − 8.198 (±4.035) 49.49 (±25.57)

Proof. Let Vi be the Lyapunov value and ∆ψi be the angular
deviation at waypoint i. Let the inflation of Lyapunov value
be ∆Vi. (It is trivial to see e2

s + e2
d doesnt change). Then

∆Vi =
1

2γ
(e2
s + e2

d) +
1

2
(χ− δ(ed) + ∆ψi)

2

− 1

2γ
(e2
s + e2

d) +
1

2
(χ− δ(ed))2

=
1

2
∆ψ2

i + ∆ψi(χ− δ(ed))

≤ max
es,ed,χ

1

2
∆ψ2

i + ∆ψi

√
2(Vi −

1

2γ
(e2
s + e2

d))

≤ 1

2
∆ψ2

i + ∆ψi
√

2Vi

(7)

Referring to Proposition 1, we see that ρi is proportional
to ψi. Applying (7) to (4), and substituting ψi

1

2
∆ψ2

i + ∆ψi
√

2Vi ≤ Vi(e
αl − 1)

∆ψi ≤
√

2Vi(
√
eαl − 1)

(8)

Applying the result to (5)

∆ψi ≤
√

2Vmax(1− e
−αl
2)

VI. RESULTS

A. Fixed Wing UAV

The model we used for the fixed wing has v = 20m/s,
ωmax = 0.8496rad/s. The dynamics filter used a controller
with the following parameters: γ = 700, ks = 1, kw = 0.98,
k = 0.08, χ∞ = 0.785. The lyapunov limit Vmax was chosen
from ed,max = 40m. DDP integrates the dynamics at 0.02s
which corresponds to 500 points if T = 10s. For the same
length, CHOMP chose N = 100 waypoints such that the
obstacle cost can be measured to an acceptable accuracy.

To highlight the difference between DDP and DPF, we
show an example in Fig. 3 of a ‘Wall Baffle’ - two obstacle
placed in such a way that the vehicle has to avoid them in
opposite directions. DDP gets stuck in a local minima while
DPF is 18 times faster and has a lower cost (almost the global
minima).

We benchmark tested the two algorithms for 1000 plan-
ning problems in a random poisson obstacle field (1 obstacle
every 2744m2). Table I shows a summary of results. On
average DPF was more than 8 times faster while still being
more optimal on average. Table II shows the breakdown of
the DPF performance in terms of cost ratio reduction of each

TABLE II: Analysis of DPF process for 1000 trials

Criteria CHOMP Filter DDP
(Step I) (Step II) (Step III)

Cost Ratio 1.799 (±5.677) −0.035 (±0.111) 0.130 (±0.302)
Reduction
Time [s] 0.133 (±0.020) 0.076 (±0.018) 1.029 (±0.041)

TABLE III: DPF performance in autonomous helicopter flights

Criteria Value

Filter Projection Loss 0.001 (±0.002)
DPF Time [s] 0.066 (±0.086)
Optimization Length [m] 4911 (±3600)

step(−∆c
c∗) and time taken. CHOMP is the fastest and most

effective component while DDP takes the most time and
offers little benefit. Hence we show that without DDP, we
reach speed-up of 50 while still producing similar quality.
We show success and failure cases in Fig. 4.

DPF

DDP

(a)

DPF

CHOMP

DDP

(b)

Fig. 4: Success and failure cases from 1000 trials in a poisson obstacle field.
(a) DDP fails while DPF succeeds. DDP is stuck in a bad local minima due
to obstacles on both sides. DPF takes larger steps to move to one of the sides
and then is able to satisfy constraints (b) DPF fails while DDP succeeds.
CHOMP moves in a direction by taking a large step where even though it
can converge, it cannot satisfy the DPF constraints and hence the filtered
path passes through obstacles. DDP taking smaller steps moves to the other
side into a good minima.

B. Autonmous Helicopter

The dynamics projection filter has been stress tested on
an autonomous helicopter over a period of 4 months flying
various missions (more results in [15]). The DPF for this
complex helicopter model used a controller that mimicked
the closed loop response of a helicopter tracking waypoints.
The constraints of the system is described in details in [15].
We did not run the post-processing DDP because it provided
little benefit and had a very high run time. Table III shows the
average performance during the missions. The DPF suffered
minimal projection loss from the infeasible path and ran in
real time optimizing paths kilometeres in length. Fig 5 shows
some scenarios faced during actual missions. The DPF was
always able to produce high quality collision free paths.

VII. CONCLUSION

In this paper, we have presented an approach for real-
time trajectory optimization while respecting non-linear con-
straints. The method is based on optimizing in workspace
and then projecting the result to configuration space. We
show that by systematic design of the projection operator and

(a)

(b)

0 1 2 3 4 5
0

100

200

300

400

500

Log iterations

C
o

s
t

CHOMP

Constraint

DPF

postDDP

DDP

(c)

Fig. 3: A difficult ‘Wall Baffle’ environment. The global minima is between two bad local minimas. The cost map is shown in gray scale (darker means
higher cost). (a) DDP takes small steps initially due to ill-conditioned matrices. It eventually converges to a local mimina in the configuration space. (b)
DPF takes large steps to first converge in terms of the cost function and then ensure constraints are met. The filtered trajectory is in the valley of the
global minima and post DDP ensures convergence. (c) The cost history during iterations for both algorithms. A semi-log plot is used as DDP takes far
more iterations. CHOMP converges to minima by the 15th iteration (t = 0.023 s), satisfies constraints by 20th (t = 0.03), filters (t = 0.11) and post
DDP takes 4 iterations to converge (t = 1.55s). On the other hand, DDP takes 93 iterations and 29.08s.

(a)

Iteration 8

Iteration 1

Mountain

(b)

(c)

Tree

Landing Site

(d)

Fig. 5: DPF solves real-time nonlinear optimization to guide a fully
autonomous helicopter. (a) Avoiding an unmapped mountain in Mesa, AZ.
View of the mountain from the helicopter cockpit after the helicopter has
avoided it. (b) DPF converges in 8 iterations and takes 0.5s. (c) Avoiding
trees on approach during landing. (d) DPF converges within 3 iterations and
takes 0.2s.

enforcing simple constraints on the workspace optimization,
the suboptimality of the solution can be guaranteed. We
present derivations and results with a simplistic model of
a fixed wing UAV. We have tested this approach on an
autonomous helicopter and present results where the opti-
mization allowed the helicopter to avoid mountains and trees
while operating at high speeds. In future work, we wish
to overcome the Lyapunov constraint and substitute it with
softer requirements.

VIII. ACKNOWLEDGEMENT

This work would not have been possible without the
dedicated efforts of the entire AACUS TALOS team and
was supported by ONR under contract N00014-12-C-0671.

REFERENCES

[1] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[2] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: Science and Systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[3] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-
time,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 3719–3726.

[4] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[5] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 4906–4913.

[6] T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 4914–4919.

[7] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[8] P. Vernaza and D. D. Lee, “Learning dimensional descent for optimal
motion planning in high-dimensional spaces.” in AAAI, 2011.

[9] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” in IFAC world congress, 2002.

[10] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradi-
ent optimization techniques for efficient motion planning,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 489–494.

[11] A. Micaelli, C. Samson, et al., “Trajectory tracking for unicycle-type
and two-steering-wheels mobile robots,” 1993.

[12] L. Lapierre, R. Zapata, and P. Lepinay, “Combined path-following
and obstacle avoidance control of a wheeled robot,” The International
Journal of Robotics Research, vol. 26, no. 4, pp. 361–375, 2007.

[13] D. Jung and P. Tsiotras, “Bank-to-turn control for a small uav using
backstepping and parameter adaptation,” Jung, 2008.

[14] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 4569–4574.

[15] S. Choudhury, S. Arora, and S. Scherer, “The planner ensemble and
trajectory executive: A high performance motion planning system with
guaranteed safety,” in AHS 70th Annual Forum, Montreal, Quebec,
Canada, May 2014.

	Introduction
	Problem Statement
	Background: Differential Dynamic Programming
	Approach: Dynamics Projection Filter
	Lyapunov Stabilized Workspace Trajectory
	Workspace Optimization

	Derivations for Fixed Wing UAV
	Controller Synthesis
	Exponential stability of controller
	Angle constraints on a piecewise linear workspace trajectory

	Results
	Fixed Wing UAV
	Autonmous Helicopter

	Conclusion
	Acknowledgement
	References

