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Abstract— Real-time and reliable localization is a prerequisite
for autonomously performing high-level tasks with micro aerial
vehicles(MAVs). Nowadays, most existing methods use vision
system for 6DoF pose estimation, which can not work in
degraded visual environments. This paper presents an onboard
6DoF pose estimation method for an indoor MAYV in challenging
GPS-denied degraded visual environments by using a RGB-
D camera. In our system, depth images are mainly used
for odometry estimation and localization. First, a fast and
robust relative pose estimation (6DoF Odometry) method is
proposed, which uses the range rate constraint equation and
photometric error metric to get the frame-to-frame transform.
Then, an absolute pose estimation (6DoF Localization) method
is proposed to locate the MAV in a given 3D global map by
using a particle filter. The whole localization system can run
in real-time on an embedded computer with low CPU usage.
We demonstrate the effectiveness of our system in extensive real
environments on a customized MAYV platform. The experimental
results show that our localization system can robustly and
accurately locate the robot in various practical challenging
environments.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) rely on accurate location
information for a variety of purposes including navigation,
motion planning, control and mission completion. Nowadays,
most outdoor MAVs obtain their location from the global
positioning system (GPS). However, in indoor environments
or GPS-denied environments, MAVs must locate themselves
using onboard sensors. Due to the payload and power limita-
tions, only a few lightweight sensors can be carried on MAVs
for pose estimation. Among all kinds of sensors, cameras
are the most popular sensors due to their advantages such as
light weight, low power consumption and rich information.
In recent years, several vision [1] [2] based pose estimation
methods have been proposed for MAVs. Those methods can
work very well in feature rich environments. However, they
cannot work in featureless or degraded visual environments.
Beside vision sensors, lightweight 2D laser scanners are
also very popular for indoor MAV pose estimation [3] [4].
However, these methods usually only work in 2D or 2.5D
environments since the 2D laser scanner can only detect
a plane in a single scan. Recently, consumer-level RGB-D
cameras have also become very popular for visual navigation
of indoor MAVs [5] [6]. Unfortunately, most methods still
heavily rely on either sparse visual features or dense visual
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Fig. 1.
shows the 3D map, depth point cloud and particle set. The bottom picture
shows the color and depth images output from RGB-D camera

Localization in degraded visual environments: The top picture

information from RGB images. Therefore, they also do not
work in featureless or degraded visual environments.

There are several challenges need to be considered for the
pose estimation of MAVs in our confined degraded visual
environments. First, the vehicle should be small enough to
navigate in the narrow environments (Width < 65cm). There-
fore, accurate laser scanners, such as Hokuyo UTM-30LX,
cannot be used due to MAV’s payload restrictions. Second,
the onboard computational resources are very limited while
pose estimation methods should run in real-time together
with other tasks like control, path planning and obstacle
avoidance. Third, in degraded visual environments, there are
almost no or very few visual features available. Therefore,
most existing RGB-D visual odometry or localization meth-
ods which use visual information would not work in such
environments. Though there are some depth-based RGB-D
pose estimation methods, such as ICP [7] or NDT [8] based
methods, they are either too slow or computationally too
heavy to run on a small MAV.

In this paper, we propose a real-time 6DoF localization
system for an indoor MAV that mainly uses depth infor-
mation from a RGB-D camera in degraded visual environ-
ments. An illustrative picture is shown in Fig. 1. To achieve
this goal, we first propose a fast and robust relative pose
estimation (6DoF Odometry estimation) method that mainly
uses depth images. Then, a real-time absolute pose estimation
(6DoF Localization) method is proposed to locate the MAV



in a given 3D global map with a particle filter. The whole
localization system can run in real-time on an embedded
computer with low CPU usage. The experiment results show
that our localization system can robustly and accurately
locate the robot in practical challenging environments.

The rest of this paper is organized as follows. In section II,
we discuss the related work. Section III describes the pro-
posed direct RGB-D odometry estimation method. Section
IV describes the particle filter based localization algorithm.
We validate the performance of our methods by using real
datasets in section V and we conclude in section VI.

II. RELATED WORK

The state estimation of MAVs is mainly composed of two
sub-problems, namely odometry estimation (relative pose
estimation) and localization (absolute pose estimation).

For relative pose estimation, many odometry estimation
methods have been proposed with stereo cameras, monoc-
ular cameras, RGB-D cameras and 2D laser scanners. In
[9], a stereo camera and 2D laser scanner based odometry
estimation is proposed for indoor MAVs. This method uses
sparse visual feature matching and scan matching algorithm
to compute odometry. However, this method doesn’t run
on the onboard computer. A monocular visual odometry
method which can run very fast on an embedded computer
is proposed in [1]. However, monocular visual odometry
can only estimate the odometry up to an unknown scale.
To solve the unknown scale problem, IMU information is
used in [2], [10] to estimate the absolute metric scale. In
recent years, many RGB-D visual odometry methods have
also been proposed. For example, Huang et al [5] propose
the Fovis RGB-D odometry estimation method for MAVs.
In [11], a dense RGB-D visual odometry which minimizes
the photometric error between two RGB images is proposed.
Pomerleau [7] develops an ICP-based odometry estimation
method which only uses depth information. However, though
this method can run on our embedded computer (Odroid XU)
at 10Hz, the CPU usage is very high.

For absolute pose estimation, there are several ways to
locate a robot in a given map. The first kind is 2D method
[12] [3]. However, those methods usually only work in
structured or 2.5D environments. Some people also use a
floor plan for the localization using a RGB-D camera [13].
This method is efficient and fast, but limited to environments
with many line features. The second kind is 3D method. A
common idea is to create a global point cloud map, and then
use ICP or NDT based methods to match the current point
cloud to global map. However, those methods are usually
very slow. Some researchers also try to use 3D planes as the
global map to locate the robot [14] [15]. For example, Fallon
[15] proposes Kinect Monte Carlo Localization (KMCL)
method. However, this method only estimates x, y and yaw
using the particle filter and needs powerful GPU to run in
real-time. Oishi [16] uses particle filter to track the robot’s
pose in a known 3D NDT map. However, this method is
still too slow to run on a MAV. Another method is an
Octomap based method [17]. But in their paper they have

a relatively accurate and robust odometry from the encoders,
and everything is running on a remote desktop. Bry [4]
also proposes a real-time localization algorithm based on
an Octomap for a fix-wing MAV. However, they use a high
accurate 2D laser scanner for sensing, which is too heavy to
be used on our small quadrotor MAV.

ITI. ROBUST DIRECT RGB-D ODOMETRY ESTIMATION

In this paper, we use a direct method to compute the frame
to frame motion from depth images directly, which is robust
and much faster than state-of-the-art ICP based methods.
However, if only depth images are used, the odometry will
suffer from degeneration problems in some challenging envi-
ronments. In our method, when severe degeneration happens,
we try to use dense visual odometry method to calculate the
frame-to-frame motion. By doing so, our odometry method
can be computationally efficient and robust in degraded
visual environments.

A. Direct Motion Estimation from Depth Images

Most existing depth-based motion estimation methods are
based on registration algorithms, such as ICP [7], 3D NDT
[8] or 3D geometric feature based methods [18]. Those
methods can get very accurate pose estimation if a dense
point cloud is available. However, they are too slow and
computationally heavy to run on a MAV. In this paper, a
direct method based on the idea of [19] is used to calculate
the frame-to-frame motion estimation. It directly works on
the depth image without detecting any features.

Let a 3D point R = (X,Y, Z)T (measured in the depth
camera’s coordinate system) is captured at pixel position
r = (x,y)Tin the depth imageZ;. This point undergoes a
3D motion AR = (AX,AY,AZ)T, which results in an
image motion Ar between frames ¢y and ¢;. Given that the
depth of the 3D point will have moved by AZ, the depth
value captured at this new image location r + Ar will have
consequently changed by this amount:

Zi(r+ Ar) = Zy(r) + AZ (1)

This equation is called range change constraint equation.
Taking the first-order Taylor expansion of the term Z(r +
Ar) generates a pixel-based constraint relating the gradient
of the depth image VZ; and the temporal depth difference
to the unknown pixel motion and the change of depth as
follows:

Zi(r+ Ar) = Z1(r) + VZ1(r) « Ar = Zo(r) + AZ (2)

For a pin hole camera model, any small 2D displacement
Ar in image can be related directly to the 3D displacement
AR which gave rise to it by differentiating the perspective
projection equation with respect to the components of the
3D position R
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Substituting equation 3 into equation 2, we can get a linear
constraint equation of three unknowns relating the motion
AR of a 3D point imaged at pixel r to the gradient of
the depth image VZ; = (Z,, Z,) and the temporal depth
difference:

@20 (3) -

Under small rotation assumption, if the sensor moves
with instantaneous transnational velocity v and instantaneous
rotational velocity w with respect to the environment, then
the point R appears to move with a velocity

dR

dt
with respect to the sensor. Substituting equation 5 into
equation 4, we can get:
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€ = Wy, Wy, Wy, Vs, vy, 0] 1. Here, wy, wy, w, and vy, vy, v,
are components of the rotation and translation vectors.

This equation generates a pixel-based constraint relating
the gradient of the depth image VZ; and the temporal depth
difference to the unknown pixel motion and the change of
depth. If there are n pixels in the image, then we can get
n such equations with only six unknowns. Here, we use a
least-squares error minimization technique to solve the set of
equations. In practice, in order to improve the computation
speed, the depth image is downsampled to 80 x 60 which is
sufficient to get an accurate estimation.

B. Dealing with Degeneration Problem

The direct depth-based method can estimate the frame-to-
frame transform very fast. However, in environments with
few geometric features, this method will suffer from the
degeneration problem, for example when the camera can only
see a ground plane or parallel walls. In these "ill-conditioned"
cases which are really common in indoor environments, the
direct depth-based method will produce wrong estimates. In
such cases, the only way to solve the problem is to try to use
additional information, such as RGB or IMU information.

In our algorithm, we try to detect when the degeneration
happens. And, when the degeneration happens, we try to use
visual information to calculate the frame-to-frame transform.
Since we want to get a very fast odometry estimation with
low CPU usage, we do not always incorporate the visual
information into the depth image based odometry estimation

method. Though joint optimization methods [20], [21] may
get more accurate estimation, it is much more expensive to
compute. In our system, we are not too concern with the ac-
curacy of odometry estimation method since our localization
algorithm can correct the drift of visual odometry. Compared
to accuracy, robustness is more important for localization
since a sudden odometry failure or wrong estimation will
influence the localization performance much more than an
inaccurate odometry estimation.

Here, we try to analyse the eigenvalues of equation 6
to determine whether the equation is "ill-conditioned". In
mathematics, we can use a measure called condition number,
which is the ratio of the largest to the smallest eigenvalue,
to detect the degeneration. We use the condition number
to measure the degeneration degree of 6. When severe
degeneration happens (condition number > 1000), we try
to incorporate RGB information to estimate the frame to
frame motion. If the RGB information is not available, then
our method output a failure signal to indicate the odometry
estimation fails.

C. Direct Motion Estimation from Color Images

The dense visual odometry method [11] is used to estimate
the frame-to-frame motion when degeneration happens in
the depth based method described in section III-A. In our
previous study [22], we found that dense visual odometry
is more robust than sparse feature based visual odometry
methods in some challenging environments.

Compared to sparse visual feature based methods, this
approach is based on the photo-consistency (also called
brightness change constraint equation) assumption, which
means a world point p observed by two cameras is assumed
to yield the same brightness in both images.

L(X) = L(7(§, X)) ()

where 7(§, X) is the warping function that maps a pixel
coordinate X € R? from the first image to a coordinate in
the second image given the camera motion £ € R°. The goal
is to find the camera motion ¢ that minimizes the photometric
error over all pixels. For dense visual odometry method, more
details can be found in [11].

IV. PARTICLE FILTERING BASED LOCALIZATION

From section III, we can get a robust odometry estimation,
however it will definitely drift after a long time of running.
In order to get an accurate absolute pose in the environment,
we need a localization algorithm to locate the robot in a
given 3D environment.

For 6DoF absolute localization in a given 3D Map, there
are two important things should be considered. First, what
kind of 3D map representation should be used? Second, what
kind of localization algorithm should be used? There are
several 3D map representation approaches, such as point
cloud, planes, NDT map [16], 3D octomap [17] and 3D
Polygonal Map [15]. Some of them are raw data based
maps, while some of them are feature-based maps. Here, 3D
octomap is selected since it is compact and can represent



many kinds of environments. For localization, a particle
filter algorithm (also known as Monte Carlo Localization,
MCL) is selected since it is very robust, which has already
verified extensively on ground mobile robots [23]. Though
the MCL has been successfully used on ground mobile
robots, 6DoF pose S = (z,y, z, ¢, 0, 1) which needs to be
estimated for MAVs increases the complexity of the problem.
In this paper, we show that by carefully designing the motion
and observation model, MCL can work very well on an
embedded computer.

A. Particle Filtering Algorithm

Particle Filtering Localization is a Bayes filtering tech-
nique which recursively estimates the posterior about the
robot’s pose S; at time t:

p(St‘Ol:tvulztfl) =1 'p(Ot‘St)‘
/ p(St‘Stfl, ut) : p(st71|01:t717 ul:tfl)dstfl

St—1
Here, n is a normalization constant resulting from Bayes’
rule, u.; is the sequence of all motion commands up to time
t, and Oy is the sequence of all observations. p(S¢|Ss—1, ut)
is called motion model, which means the probability that
the robot ends up in state S; given it executes the motion
command wuy; in state S;_1. And, p(O;|S;) is the observation
model, which means the likelihood of obtaining observation
O, given the robot’s current pose is S;. The particle filter
approximates the belief of the robot with a set of particles:

Se={(stwi) o (s}, w}) } ®)
where, each si is one pose hypothesis and w{ is the cor-
responding weight. The particle set is updated iteratively by
sampling those particles from the motion model and compute
a weight according to the observation model. Particles are
then resampled according to this weight and the process
iterates.

B. Motion Model

For each subsequent frame, we propagate the previous
state estimate according to the motion model p(S¢|St—1, ut)
using the odometry computed by the fast direct RGB-D
odometry proposed in section III. The propagation equation
is of the form:

e; ~ N(0,0%) &)

where w; is relative transform estimated from visual odom-
etry and e; is a small amount of normally distributed noise.
For smooth and continuous motion, usually the above noise
model works well. However, during abrupt accelerations or
sharp turning close to the wall (the minimum and maximum
measurement range are around 50cm and 700cm respec-
tively) or in ill-conditioned cases, the odometry algorithm
may suffer from periods of total failure. In such cases, we
will propagate the particle set using a noise-driven dynamical
model replacing Eq 9 with

Sy =Si1+ e

St = St—l + U + €4

e} ~ N(0,0%) (10)

where ¢’ is much bigger than o.

C. Observation Model

The belief of vehicle’s 6DoF state is updated according
to several different sources of sensor information in one
observation O, namely depth measurements d; from depth
camera, roll 9}, pitch (th and height measurement z; from
ground plane detection or onboard sensors (IMU and Sonar).
Therefore, the final observation model is:

p(Ot‘St) == p(dt7 2t7 ¢5t7 étISt) =
p(di]Se) - p(Z:|Se) - p(de|Se) - p(6c|Se)

The likelihood formulation p(:|S;) is given by a Gaussian
distribution. Here, the ground plane is used in two ways.
First, the ground plane is detected to get the roll, pitch and
height measurement. Then, since the ground plane has no
contribution for determining the x,y, yaw, it is filtered out
when updating the particle’s position weight using depth
measurement.

In order to detect the ground plane from the point cloud, a
RANSAC based method is used. We assume that the ground
plane is the furthest plane to the MAV and the closest to
horizontal. After detecting the ground plane, roll, pitch and
height values can be easily computed from the ground plane
equation. Then, the weight of each particle is updated accord-
ing to the observed measurement and predicted measurement
by using following equations.

p(2]Se) = plzt — %, 02)
p(0e]St) = p(dr — bry00)
p(0:]S:) = p(6; — by, 00)

where zZ;, qgt and 9~t are calculated from the detected ground
plane, and o0.,04 and oy are determined by the noise
characteristics of the ground plane.

In order to evaluate the depth sensing likelihood p(d:|S:),
we use a sparse subset of beams from the point cloud. From
our experiment, we found that how one selects the subset of
beams really influences the robustness and accuracy of the
localization algorithm. In order to efficiently use the points
with most constraints, we try two ways to select points. First,
the point cloud is segmented into ground and non-ground
point clouds. Since the ground part has little importance to
determine the x, y and yaw of the MAV, only very few points
from the ground part is selected. For the non-ground part,
we found that most time in indoor environments especially
in long corridors, there are only few points on the wall are
useful for determining the forward translation. If we use
a uniform downsampling, then we will miss this valuable
information. In order to use this information, we select those
points using a Normal Space Sampling method [24]. By
doing so, we can select those points with most constraints.

We assume that the sampled measurements are condition-
ally independent. Here, the likelihood of a single depth mea-
surement d; ;, depends on the distance d of the corresponding
beam endpoint to the closest obstacle in the map:

(1)

(12)

2

__ep(—)
ETP\ ———=
\V2ro P 202

p(dik|Se) = p(d,0) = (13)



where o is the standard deviation of the sensor noise and
d is the distance. Since a point cloud measurement consists
of K beams d j, the integration of a full scan is computed
as the product of the each beam likelihood. To improve the
computation efficiency, an endpoint observation model [23]
is used for calculating p(dy|S;).

Another issue that should be considered is that depth
values of the RGB-D camera are very noisy when the
measurement range is bigger than 4 meters. For example,
when the measurement distance is less than 3 meters, usually
the measurement error is less than 2.5cm. However, when
the measurement distance is at 5 meters, the measurement
error could be around 7cm. Therefore, the sensor noise is
quite different at different distances. In order to include this
characteristic into our observation model, we use a changing
o which increases with the measurement distance.

V. EXPERIMENTS AND ANALYSES

In order to realize localization in a given 3D map, we
need to create the global map. In our system, LOAM [25]
is used to create the 3D map. In all the experiments, we
set our map resolution to 4cm. We test the odometry and
localization algorithms in different kinds of environment
by carrying or semi-autonomously flying our customized
MAV. Our customized quadrotor is equipped with a forward-
looking Asus Xtion Pro Live RGB-D camera and Odroid
XU embedded computer. The RGB-D camera is used for
odometry estimation and localization. We develop our lo-
calization system using ROS Indigo, PCL 1.7, OpenCV 2.4
and C++ language. In all experiments, the RGB-D images
are streamed at frame rate of 15Hz with QVGA resolution.
The experiment video can be found in the attached video
file.

A. llustrative Localization Examples

In this part, the localization algorithm is tested in visual
degraded environment and natural office environment. In the
degraded visual environments, some areas are very dark and
some areas have very few visual or geometric features. In
the natural office environment, there are some long clear
corridors which pose great challenge for odomtry estimation
and localization. We show that our localization system can
work well in those environments.

1) Degraded Visual Environment: The first experiment is
in a narrow and cluttered environment, which has a size of
16m x 25.6m x 4.04m. In this environment, most of the time
the RGB images are very dark as shown in Fig. 2, while the
depth images are still very good. However, there are some
locations that the robot can only see one flat wall in front
of it. For example, when the robot turns left at corner (a),
since the corridor is very narrow (less than 1m), the robot
can only see the wall in front of it. Another example is that
when the robot is in the spacious room (b), the depth camera
can only see the ground plane and cannot see the wall in
front of it. In both scenarios, if just depth images are used
for odometry estimation, it will suffer from the degeneration
problem. In our system, when the degeneration is severe,

RGB information is considered to estimate the odometry. By
doing so, our odometry method will avoid suffering from a
severe degeneration problem. The localization result in this
environment is shown in Fig. 2.

Fig. 2. Localization in degraded visual environment: Pink: Odometry, Red:
Localization. The bottom pictures show some snapshots of the environment.
The top figure shows the odometry, localization results with the 3D octomap.
Note that ceiling and ground are cropped for visualization purpose (same
in the later figures).

The second experiment is in a structured but almost
completely dark environment, which has size of 11.8m x
19.2m x 2.8m. In this environment, we cannot get any
useful information from RGB images. There are also some
challenging locations where RGB-D camera can only see
the ground plane, one wall or two parallel walls, or even
detect nothing when it is very close to the wall( Minimum
measurement range of the RGB-D camera is around 0.5
meters). In such situations, the depth-based odometry will
also suffer from the degeneration problem. In this experi-
ment, if the degeneration is severe, the odometry estimation
method will output a odometry failure indicator. Then, our
localization algorithm will use the noise-driven motion model
to propagate particle set. In our experiment, we find that
if the odometry failure is relatively short in duration, it
is possible for the localization algorithm to overcome this
failure entirely. The localization result in this experiment is
shown in Fig. 3.

2) Typical Office Environment: In this experiment, we
want to show that our localization system not only works in
degraded visual environments, but also works well in normal
challenging environments. The test environment is a typical
office environment with long clear corridors, which has a
size of 64.2m x 21.2m x 3.9m. In this environment, the
illumination is very good. However, there are also several
challenges in this environment for odometry estimation and
localization using RGB-D camreas. First, the corridors are
very clear. Therefore, there are only few visual features



Localization in completely dark environment: Pink: Odometry,
Red: Localization. The top figures shows the odometry, localization results
with the 3D octomap. The bottom pictures show some snapshots of the
environment.

Fig. 3.

and geometric features in the corridors, which poses big
challenges for odometry estimation and localization. Second,
the corridors are very narrow, therefore when the robot turns
from one corridor to another corridor, the RGB-D camera
can only see a part of the wall. Therefore, the localization
system must be robust enough, otherwise it will easily fail
around each corner. The third challenge is that the maximum
measurement range of RGB-D camera is about 6~7m and
the measurement noise increases along with the distance.
However, in this environment there are several corridors
whose length are longer than 10 meters. Both the odometry
estimation method and localization method should find useful
constraints for estimation. In our experiment, we found our
localization system can robustly locate the robot in the map.
Fig. 4 shows the localization results.

B. Localization Accuracy

In this part, we compare the localization accuracy with
ground truth from LOAM mapping system. We attached an
Xtion RGB-D camera to the LOAM system and recorded
the datasets for offline comparison. Since the estimation
accuracy of LOAM system is very high, we could consider its
trajectory as ground truth. We test our localization algorithm
in two environments. One is a general office environment,
where there are many chairs, long tables, long corridors and
a lot of office furnitures. This environment is much easier
for odometry estimation and localization, since there are lots
of visual and geometric features. The other one is in a long
tunnel, which is very difficult for odometry estimation and
localization using a RGB-D camera since it is very clear. For
both experiments, the map resolution is 4cm and the particle

Fig. 4. Localization in typical office environment: Pink: Odometry, Red:
Localization. The top pictures show some snapshots of the environment. The
bottom figure shows the odometry, localization results with the 3D octomap.

Fig. 5. Accuracy comparison with ground truth in two different kind
of environments: Pink: RGB-D Odometry Red: Localization Blue: Ground
truth.

number is set to 500. The localization algorithm updates
the pose when the robot moves every 10cm or turns 0.1
radians. The experimental results are shown in Table. I. From
the experimental results, we also can see that localization
accuracy in office environment is better than in long tunnel
environment. In long tunnel environment, the biggest error
is in the x direction since sometimes there are not enough
constraints to determine its position. But our localization
algorithm can quickly converge to the true position once
there are enough constraints available. The accuracy of our
localization algorithm is better than others work [15] and
[13]. In their work, their mean localization error is about
40cm, while ours is about 17cm. It should be noted that the
localization accuracy changes in different environments or
moving at different speeds because it influences the accuracy
of odometry estimation dramatically.

TABLE I
LOCALIZATION ACCURACY FOR DATASETS SHOWN IN FIG.5

Environments Distance RSME Mean Std
Office 47.2m 0.161m 0.152m 0.056m
Tunnel 46.1m 0.235m 0.194m 0.107m




C. Runtime Performance Evaluation

We test the runtime performance of our algorithms on the
Odroid XU system, which has two CPUs. One is a quad core
1.6GHz CPU. The other one is a quad core 1.2GHz CPU.
Each core has one thread. Our odometry and localization
algorithms are both single-threaded programs. Therefore,
each algorithm takes only one core. For the experiment
in Fig. 2, the runtime performance is shown in Table. II
(including drivers). In our experiment, we use 300 particles.
Our algorithm can run up to 30Hz on the embedded system.
When it is running at 15Hz, the CPU usage is very low
which leaves many computation resources for path planning
and obstacle avoidance.

TABLE 11
RUNTIME PERFORMANCE ON AN EMBEDDED COMPUTER

Algorithm Runtime

Name Mean Min Max StdDev
Odometry 30.3ms Sms 110ms 20.2ms
Localization 65.8ms 45.8ms 97ms 16.5ms
Total CPU Usage 34.5% 30.5% 44% 2.80%

VI. CONCLUSIONS

This paper presents a localization algorithm for an indoor
MAV by using a RGB-D camera. Though our method is
designed for degraded visual environments, it also works
well in general indoor environments. Our system is based
on a fast direct RGB-D odometry estimation method and ro-
bust particle filtering localization algorithm. Our localization
algorithm can locate the robot robustly and accurately using
the onboard RGB-D sensor and embedded computer. Though
the system can be made to fail in extreme conditions, such as
very fast motion or a lack of both visual and depth features,
our system has performed very well in extensive experiments
in various indoor environments. In the future, we will test
our methods in a fully autonomous navigation experiment
(including odometry, localization, obstacle mapping, motion
planning and real-time control) in a dark and smoky environ-
ment. Furthermore, we will consider to fuse IMU information
into the odometry estimation and localization algorithms.
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