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Abstract— Ensuring safety in partially-known environments
is a critical problem in robotics since the environment is
perceived through sensors and the environment cannot be
completely known ahead of time. Prior work has considered
the problem of finding positive control invariant sets (PCIS).
However, this approach limits the planning horizon of the
motion planner since the PCIS must lie completely in the
limited known part of the environment. Here we consider the
problem of guaranteeing safety by ensuring the existence of
at least one PCIS in partially-known environments leading to
an extension of the PCIS concept. It is shown, that this novel
method is less conservative than the common PCIS approach
and robust to unknown small obstacles which might appear in
the close vicinity of the robot.

An example implementation for loiter circles and power
line obstacles is presented. Simulation scenarios are used for
validating the proposed concept.

I. INTRODUCTION

Many robotic challenges such as navigation of autonomous
cars or unmanned aerial vehicles (UAVs) require to perceive
the world with sensors to get the information about their
environment. However, each perception system has limited
capabilities due to limited sensor range, occlusions by ob-
stacles or sensor noise which provides the robot only with
incomplete information of its surrounding resulting in a so
called partially-known environment (PKE). Robots operat-
ing in PKEs must take into account that not all obstacles
in the surrounding of the robot are detected at the same
distance. The detection range depends on various properties
of the object or the used perception system. But in general
the following rule applies: the smaller the obstacle, the
shorter the detection distance. Thus, small obstacles might
be detected only in a short distance to the robot constituting
a safety issue. An illustrative example is an UAV that is
equipped with a LIDAR and is flying in partially-known
environments (Fig. 1), which might contain power lines.
Due to the small profile of the power lines, they are only
detectable in the vicinity of the UAV. Since the obstacles are
small, they only require small changes in the robot motion in
order to prevent collisions. We want to formalize this notion
and find alternatives that enable guarantees on the safety of
the vehicle with unknown obstacles.

Common approaches for navigation in PKEs use model
predictive control (MPC) [1] also called receding horizon
control (RHC). The main idea of RHC is to apply iterative
optimization inside a finite time horizon of the known space.
Thereby, the problem is partitioned into subproblems which
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Fig. 1: Automatic landing of the Unmanned Little Bird (ULB).

allow an on-line optimization. However, two problems arise
from the partial trajectories: the problem of stability (in the
sense of reaching a goal) and the problem of feasibility
(no constraint violation). The common technique to ensure
feasibility is to apply the theory of positive control invariant
sets (PCIS) [2]. If the system is inside a PCIS it can stay
there for an infinite time ensuring safety. However, the theory
of PCIS requires complete knowledge about its environment.
In order to apply PCIS to PKEs, it must be ensured that
the PCIS lies completely inside the known space of the
environment. Thus, the PCIS is limiting the planning horizon
of the motion planner due to its strict constraints, especially
for robotic systems operating at high speeds such as UAVs.

In this work, the problem of feasibility in PKEs with the
application to fast flying UAVs is discussed. Therefore, an
extension of PCIS is presented which is robust to unknown
obstacles in the environment. An on-line capable implemen-
tation is presented which uses a set of connected PCISs
to ensure the existence of at least one PCIS regarding a
finite set of unknown obstacles. Finally, simulation results
are presented verifying that this novel approach relaxes the
constraints for the motion planner and hence improves the
overall navigation result of the UAV by allowing higher
velocities.

II. RELATED WORK

In order to guarantee feasibility, no violation of constraints
including the collision constraint, invariant set theory [3]
is used in RHC applications. In [4] a non-linear model
predictive control framework is presented which guarantees
nominal feasibility using invariant sets. In order to guarantee
feasibility at all times, necessary and sufficient conditions on
the control horizon, prediction horizon and constraint state
space are presented. In [5] receding horizon control for UAVs
based on mixed integer linear programming is presented.
Therefore, loiter circles represented by affine transforma-
tions are added to the mixed integer linear programming
formulation to ensure safety for an infinite time horizon. The
main difference to former approaches is, that this method is



applied on-line and needs no complex off-line computation
which is not flexible to changes in the environment. A library
of precomputed emergency loiter maneuvers is used in [6]
to ensure safety for a full-scale autonomous helicopter. It
generates a set of feasible emergency maneuvers for the
discretized state space of the helicopter by optimizing the
path diversity, i.e. the difference of paths according to some
measure. As a result, this approach can on-line assess the
safety of the helicopter at flights over 50 m/s.

In order to ensure feasibility of the robotic system under
bounded disturbances, robust positive control invariant sets
(RPCIS) are used. Therefore, constraint tightening is used in
[7] to take into account disturbances such as changing wind.
In [8] a robust MPC using MILP formulation is presented
which is an extension of the work in [5]. The two approaches,
constraint tightening and affine feedback reparameterization,
are evaluated to take into account disturbances. The idea of
tube-based MPC [9] also relies on RPCIS to solve the robust
MPC problem.

Other related work deals with the problem of the existence
of an infinitely long collision-free trajectory. This problem is
discussed in [10] by the means of the ergodic forest scenario.
The aim is to determine criteria such as size of the obstacles,
distribution of the obstacles and maximum velocity of the
robot under which almost surely an infinite time trajectory
exists.

The problem of feasibility is also addressed by the
concepts of region of inevitable collision (RIC) [11] and
inevitable collision states (ICS) [12]. The RIC is defined as
the set of states which are already in collision or which are
inevitably leading to a collision. In [13] the analytic com-
putation of RIC for convex polygons and the approximation
for unions of RIC sets is discussed with the aim to make
motion planning more efficient and safer. The effectiveness
of the RIC approach for motion planning of vehicles with
underactuated dynamics is shown in [14]. The concept of ICS
has already been applied in dynamic environments [15] and
also for car-like vehicles [16, 17]. Additionally, in [18, 19]
an extension for stochastic environments is presented taking
into account the uncertain motion prediction of the obstacles
in the workspace. Therefore, the probability is calculated that
a state of the robot will inevitably lead to a collision.

However, to the best knowledge of the authors, no related
work exists discussing the robustness of PCISs regarding
unknown obstacles in PKEs. In the next section, the prob-
lem formulation for ensuring feasibility in partially-known
environments is given.

III. PROBLEM FORMULATION

In this section we formulate the problem of guaranteeing
safety for an UAV in partially-known environments resulting
from the limited perception capabilities. Furthermore, we
only consider static environments and assume that the robot
has deterministic behavior meaning that there exists no
motion uncertainty.

A. Robot Model and Environment Description

The state of the robot at a certain time point t is de-
noted as x(t) = [p(t),v(t), θ(t)] and contains the position
p(t) = [x(t) y(t) z(t)] and velocity v(t) = [ẋ(t) ẏ(t) ż(t)]
and roll θ(t) given in an inertial coordinate frame. The
dynamics of the robot are characterized by the motion model
ẋ(t) = f(x(t), u(t)) and the constraint input space u(t) ∈ U
and state space x(t) ∈ X . It is noted, that the proposed defi-
nition and concepts of the novel safety assessment approach
are independent of the used motion model. The workspace
of the robot is denoted by W, p(t) ∈ W and the subset of
the workspace occupied by the robot is referred to A ⊂ W
and as A(x(t)) at the state x(t). The occupancy of the ith
obstacle in the workspace is denoted by Bi, whereas all
obstacles are considered as static.

Since we consider a partially-known environment we
distinguish between known Bk and unknown obstacles Bu.
The unified occupancy of all objects is written in short
notation as B = Bk ∪ Bu. The limitation of the perception
system is modeled by two different field of view (FOV)
regions FOVk ⊂ FOVu ⊂ W . This models the fact, that
large obstacles can be detected at a longer distance (FOVu)
than for smaller obstacles. Any obstacle which is inside
FOVk(x(t)) at state x(t) is assumed to be detected by
the perception system. In FOVu(x(t)) only obstacles with
cross section ∅ bigger than τ∅ will be detected. Thus, we
distinguish between two workspace sets

Wk =
⋃
t

FOVk ⊂ W, Wu =
⋃
t

FOVu ⊂ W,

where Wk is the part of the workspace in which all ob-
stacles are known and Wu represents the partially-known
workspace. Depending on the distance from the robot to the
obstacle and its cross section ∅ the obstacle is known or
unknown

Bi ∈


Bk,∃t Bi ∩Wk(t) 6= ∅,
Bk,∃t Bi ∩Wu(t) 6= ∅ ∧∅(Bi) ≥ τ∅,
Bu, otherwise,

where τ∅ is the threshold of the cross section and
Wk(t),Wu(t) are the known and partially-known subsets of
the workspace at time t. The obstacles ∅(Bi) < τ∅ represent
obstacles which have a cross section below the threshold and
thus are hard to detect for the perception system. Regarding
the application of UAVs, typical examples for such kind of
obstacles are wires, conductors or thin utility poles. Only
in the near vicinity (FOVk) of the robot the detection is
guaranteed. Furthermore, a finite set of Bu inside Wu is
assumed, meaning that only a maximum number of obstacles
may appear inside Wu.

B. Problem Statement

In deterministic (completely known) environments, safety
beyond the planning horizon is guaranteed by ensuring that
the considered state of the robot is inside a positive control
invariant set:



Definition 1 (Positive Control Invariant Set (PCIS)
[2]): The set Ω ⊂ X is a positive control invariant
set if it is obstacle-free and dynamically feasible mean-
ing ∀x(t = 0) = x0 ∈ Ω there exists a continuous feed-
back control law u(t) = Φ(x(t)), u ∈ U which assures
x(t) ∈ Ω ∧ A(x(t)) ∩ Bk = ∅ for t > 0.

The PCIS guarantees that the robot can stay inside Ω for
an infinite time without collisions. Therefore, the PCIS must
be completely inside of the known workspace Ω ⊂ Wk. Ex-
amples of such feasible invariant sets are braking trajectories
or loiter patterns. In this work the problem of invariant sets
in partially-known environments is discussed. First, we give
the definition of the maximal positive control invariant set
from literature:

Definition 2 (Maximal Positive Control Invariant Set
(MPCIS) [4]): The non-empty set C∞(X ) is the maxi-
mal control invariant set contained in X for the system
ẋ(t) = f(x(t), u(t)) if and only if C∞(X ) is positive control
invariant and contains all positive control invariant sets
contained in X , i.e. Ω is positive control invariant only if
Ω ⊆ C∞(X ) ⊆ X . This set can be seen as a set of PCISs
C∞(X ) = {Ω1,Ω2, . . . ,ΩNΩ}.

This definition allows us to formulate the feasibility prob-
lem in PKEs

Problem 1 (Feasibility in PKEs): Feasibility in PKEs is
ensured iff

@Bu, |Bu| = NBu : C∞(X a(Bk ∪ Bu)︸ ︷︷ ︸
B

) = ∅
with

X a(B) = {x | x ∈ X ∀Bi ∈ B A(x) ∩ Bi = ∅}.

Loosely speaking, if there exists no possible configuration of
the finite set Bu that the MPCIS is an empty set, feasibility
of the robotic system is guaranteed, since at least one PCIS
exists.

IV. CONNECTED POSITIVE CONTROL
INVARIANT SETS

In this section a novel approach for ensuring feasibility in
partially-known environments based on Prob. 1 is presented.
The main idea is to approximate the MPCIS with a set of
connected PCISs ensuring feasibility for any configuration
of the finite set Bu ∈ Wu. The set Bu contains obstacles
which can only be detected in the close vicinity of the
robot (FOVk). It is assumed that the parametric model of
their geometry is known, but their configuration (position
and orientation) is unknown. Furthermore, we restrict their
maximum number to ensure the existence of at least one
PCIS while taking into account all possible configurations.

A. General Idea

In order to ensure feasibility for a state of the robot or
the final state of an intended trajectory, we approximate
the MPCIS by a set of connected PCISs. All PCISs are

intended trajectory

Set of PCIS

Known 
Space

Partially-Known 
Space

Known 
Space

Fig. 2: The figure demonstrate the novel approach from the top view and
shows the interaction between loiter circles, transition trajectories and known
workspace. The FOV is presented by half circles and the loiter circles
and the associated transition trajectories are illustrated by black lines. The
transition state is depicted by a small solid black circle.

reachable from the common transition state xt. The indi-
vidual PCIS are allowed to be partially outside the known
space Wk at the time of the assessment t0. However, when
the robot reaches the transition state, all PCISs must lie
completely in the known area of the workspace at time t1.
Thus, the robot is able to choose a collision-free PCIS at
the transition state. This concept of ensuring safety for an
intended trajectory beyond the planning horizon is illustrated
in Fig. 2.

B. Connected Set of PCISs

The computation of the MPCIS in the limited space Wu,
would contain all possible PCISs, but its computation is
only efficiently possible for LTI systems subject to linear
inequality constraints, for piecewise affine systems and some
classes of hybrid systems [4]. Therefore, we perform a
conservative approximation by generating only a finite set
of connected PCISs {Ω0, . . . ,ΩNΩ

}. We assume that a
common approach for the generation of a single PCIS Ω is
used, e.g. [6]. All Ω need to respect the vehicle constraints
and must be collision-free regarding the known obstacles
in the workspace Wu. Furthermore, all Ω must contain a
common state, the transition state xt and all Ω must be inside
the known space when the robot reaches xt

∀Ω, ∀x ∈ Ω : A(x) ∩ Bk = ∅
∃xt, ∀Ω : xt ∈ Ω

∀Ω :Wu ⊃ Ω ∧Wk(xt) ⊃ Ω,

where Wk(xt) is the known workspace when the robot
reaches the transition state xt.

C. Robustness of Connected PCISs

In order to ensure feasibility of the set of PCISs
{Ω1, . . . ,ΩNΩ

}, one has to show that there exists no con-
figuration of Bu which can cover all Ω. This problem is
related to the cycle elimination problem in graph theory,
since the connected PCISs form a directed graph. Feedback
arc sets or feedback vertex sets are used to solve for the
cycle elimination problem [20]. The problem can also be
transformed to a geometric set cover problem (SCP) [21].
The PCISs form the universe and each obstacle in Bu can
cover a subset of PCISs meaning that the execution of the
PCIS will lead to a collision. If there exists a combination



of subsets which covers the entire universe, there exists a
solution to the set cover problem. The geometric set cover
problem is formally defined as follows:

Problem 2 (Geometric Set Cover): Given a finite set of
PCISs {Ω1, . . .ΩNΩ

} (called the universe) and a set

F = {S1, . . . ,SNs
}, Si ⊂ {Ω1, . . .ΩNΩ

}

of subsets which can be covered by the considered geometric
shapes, the set cover problem is to identify the set with the
smallest cardinality J which contains the entire universe
(blocks all Ω)

min |J | with J ⊂ {1, . . . ,Ns}
subject to ∀Ω, ∃x ∈ Ω, ∃i ∈ J : A(x) ∩ Si 6= ∅.

The set cover problem allows to formulate the proposition
of the feasibility of connected PCISs:

Proposition 1 (Feasibility of Connected PCISs). A set of
connected feasible loiter trajectories ensure feasibility iff
the solution to the respective geometric set cover problem
requires a cardinality greater than the cardinality of Bu

|J | > |Bu|.

The proof follows directly from Def. 1.

Proof. Since there exists no solution to Prob. 2, it is ensured
that there exists one Ω which begins at the transition state xt

(see Sec. IV-B). Thus, the state xt is always inside a PCIS
regardless of the configuration of Bu.

In order to apply Prop. 1 it is necessary to ensure that
the set Bu cannot cover all PCISs. In [22] it was shown
that the SCP is a NP-complete problem. However, there
exists a variety of approximation algorithms for this problem
[23]. Recent inapproximability results show that the greedy
algorithm is the best-possible polynomial time approximation
algorithm [24]. Therefore, in any step the subset that covers
the largest number of elements not covered yet must be
determined.

V. IMPLEMENTATION

In this section we present an example implementation of
the approach presented in Sec. IV which is suitable for fast
flying helicopters. The focus lies on a special construction of
loiter trajectories (PCISs) which together with the parametric
model of the obstacles allow for an efficient approximation of
the set cover problem Prob. 2. This in turn is used to ensure
feasibility of the robot according to Prop. 1. Since overhead
power lines are a source for a high potential of hazard for
helicopters, we focus on conductors for this implementation.
In the following subsections we describe the construction of
a certain set of PCIS allowing to approximate the worst case
configuration (number of covered PCISs) of power lines.

A. Generation of Connected PCISs

Similar to the approach described in [6] we sample the
inputs of the helicopter model in order to retrieve dynamic

feasible loiter maneuvers. The set of connected PCISs
{Ω1, . . . ,ΩNΩ} is represented by a set of independent loiter
circles and a set of transition trajectories sharing the same
initial state xt (transition state) and end in one of the loiter
circles. Formally, the transition trajectories also belong to
the PCIS, however, the separation is later used to allow
for an efficient approximation of the set cover problem.
Additionally, we require, that the transition trajectories lie
completely inside the known workspace Wk at time t0.
Furthermore, the considered PCISs are loiter trajectories
which form a set of concentric circles along the z-axis. Each
level contains a set of concentric circles which all have the
same distance dmin to each other. The same distance applies
also between circles of the different levels. An example set of
loiter circles is shown in Fig. 3. As illustrated, it is required
that the loiter circles have the same minimum distance to
each other in the xy-plane and along the z-axis.

For the generation of the transition trajectories and the
loiter trajectories we apply a slightly modified version of the
algorithm described in [6]. This approach samples the input
space of the helicopter model to generate a set of possible
PCIS which end in a loiter circle for high velocities. In
order to generate loiter circles which have constant distance
in the xy-plane and in the z-axis we separate the problem.
For the loiter circles in the xy plane, we generate multiple
trajectories by adopting the roll rate θ̇ of the robot ensuring
that the resulting banked turns result in a radius rk with a
constant offset to the radius of the reference loiter circle ri,

ri =
‖v‖2

g tan(θ)
, ‖ri − rk‖ = k dmin,

where k is an integer and g is the standard gravity. The radii
must be increased or decreased depending if the reference
trajectory is turning right or left. This ensures that the
position of the loiter trajectories are parallel to each other
and have the distance dmin.

In order to generate the loiter circles in different levels
along the z-axis, a bang-bang control signal for the accel-
eration in z-direction is applied. This ensures that we use
the maximum dynamic capabilities of the robot in the z-
dimension and reach the maximum possible deviation in
z-direction. Furthermore, it must be ensured that the loiter
circles are parallel to the xy-plane which is equivalent with a
velocity of zero in z-direction. For the robustness analysis it
is required that all loiter circles and the transition trajectories
lie inside of Wk when the robot reaches the transition state.

B. Robustness of Connected PCISs

In order to ensure feasibility of the set of connected
PCISs, one has to show that there exists no configuration
of Bu which can cover all PCISs. If any occupancy of the
obstacles intersect with the occupancy of the robot while
navigating along the PCIS, the PCIS is covered. Since we
separated the transition trajectories (Sec. V-A) from the loiter
circles, we only have to reason about the unknown obstacles
Bu for the loiter circles. In the next subsection the parametric



Fig. 3: Figure depicts a set of loiter trajectories with 7 different levels in
z-direction and 3 loiter circles per level. All loiter circles have the same
distance of dmin to each other.

model for the conductor (power line) is presented.
1) Overhead Power Line: The shape of a conductor can

be represented by its catenary curve [25]

c(x) = z =
H

mCg
cosh

(mCgx

H

)
where w.l.o.g. the conductor is aligned with the x-axis and
mC is the conductor mass per length, H is the horizontal
component of the conductor tensile force and g is the
standard gravity. The factor H

mcg
is called the parameter of

the catenary curve. The slope of the conductor is given as

c′(x) =
dz

dx
= sinh

(mCgx

H

)
.

Since there are a lot of different kind of conductors (mC ∈
[60, 3000]kg/km [26]) which are mounted to transmission
towers which varying spacing, we consider intervals for the
parameters of the conductor model. The maximum slope of
the conductor is at the pole with the widest spacing and
with the highest mass. The profile size of the conductor is
neglected and it covers a loiter circle Ω if it intersects with
the occupancy of the robot

∃x ∈ Ω,∃[xc, yc, zc] ∈ A(x),

where [xc, yc, zc] represent a valid point along the conductor
curve.

C. Robustness

In this section we discuss the robustness of the set of
connected PCISs regarding the set of obstacles Bu. In order
to approximate the set cover problem, one need to determine
which obstacle configuration can cover most of the loiter
circles, which are not yet covered. This problem requires to
find the worst case configuration of the conductor regarding
the given set of loiter circles. For the presented conductor
model this requires to solve a 6 dimensional problem: start
position of conductor, mass, orientation in the xy plane and
span length.

In order to identify the maximum number of loiter circles
a conductor can cover, we take a perpendicular 2D slice of
the loiter pattern relative to the motion direction of the robot.
This slice of the robot occupancy along the loiter patterns
results in a set of evenly spaced circles A2d, assuming
the occupancy of the robot is represented by a sphere. An
example set of loiter circles with a possible slice is shown in
Fig. 4. This allows to transform the set cover problem from
a 3D workspace to a 2D workspace with circles.

Fig. 4: The different loiter maneuvers have the same minimum distance
of dmin. In order to perform the robustness analysis, a slice which is
perpendicular to the motion direction of the robot is generated.

Proposition 2 (Maximum Number of Circles Covered). If
the slope of the conductor exceeds the slope of a line which
is tangential to two vertical circles, there is a chance that the
conductor can cover more than one circle along the z-axis. If
the shape of the conductor fulfills the following conservative
criteria it covers k times 2 vertical loiters:

c( l
2 )− c( l

2 − a) ≥ (k + 1)(dmin − 2r) + (k − 1)4r (1)
with

a = (k − 1)dmin + 2r

The total length of the conductor is l and r describes the
radius of the circle resulting from the slice of the robot
occupancy A at the loiter circles. Assuming that the width of
the 2D slice is shorter than l

2 and a conductor cannot cover
more than 2 vertical loiters in one column, the maximum
number of loiter circles covered by one conductor Nc is given
as

Nc = k + Nxy
l .

Where Nxy
l is the number of loiter circles in one level (xy

plane).

It is noted, that we do not consider conductors which can
cover more than 2 vertical loiters, but the generalization for
this criteria is straight forward.

Proof. Depending on the distance dmin between the circles
and their radius r, there exists a minimum slope τs that
ensures the existence of a line which is tangential to two
vertical circles. The maximum slope of the catenary curve
must have at least the value of τs such that it can cover two
vertical circles of one column. If the catenary curve covers
multiple vertical circles, the height difference (z-direction)
for a given distance in x-direction needs to exceed a certain
value. This geometric criteria for a catenary curve with a
bigger slope than τs is sketched in Fig. 5 for k = 2. Since a
conductor of length l has the absolute maximum slope at the
two end points of − l

2 or l
2 (and it is a monotonic function

between [0, l
2 ]), it is sufficient to examine this criteria at

one of the end points of the catenary curve. Independent of
the slope of the catenary curve, it can also cover one circle
in each column. Thus, the sum of the number of columns
Nxy

l and the number of multiple vertical covers k result in
a conservative estimate for the maximum number of circles
covered by one catenary curve.

Finally, we show that the worst case orientation of a
conductor is perpendicular to the motion direction of the



Fig. 5: The criteria from Prop. 2 for covering vertical loiters for k = 2 is
depicted. Covered circles are red and uncovered are black.

robot.

Proposition 3 (Worst Case Conductor Orientation). The
worst case orientation of the conductor is always perpen-
dicular to the motion direction of the robot along the loiter
circles.

Proof. The perpendicular 2D slice results in circles with the
minimum possible distance to each other dmin. For the same
catenary curve, a smaller value of dmin would result in a
higher number of k according to (1). Thus, the perpendicular
slice constitutes the worst case orientation of the conductor.

VI. SIMULATION

In this section simulation scenarios are used to evaluate the
implementation from Sec. V. For the simulation scenarios,
the helicopter model described in [6] is applied which is
based on the fixed-wing model. The maximum roll rate is
θ̇max = 0.5 rad/s, the maximum roll angle is θ = 1.0 rad and
the maximum acceleration in z-direction is 1.0 m/s2 with a
maximum velocity in z-direction of 5 m/s.

A. Worst Case Loiter Cover

In this section we apply the approach described in Sec. IV-
C in order to determine the maximum number of loiter circles
a conductor can cover. Therefore, we generated a set of
loiter circles with a distance of dmin = 8 m and generate
3 circles in each of the 5 levels along the z-axis resulting
in 15 loiter circles. The robot occupancy is represented by
a sphere with radius 2 m. The minimum slope necessary to
cover two vertical circles is τs = 1.73. For the conductor
model, we consider the interval of masses per length of
60 → 1000 kg/km and span range of 50 → 800 m. Thus
the maximum slope of the conductor is 1.8221. According
to Prop. 2 this results in a worst case cover of 4 loiter
circles. Given the connected set of loiter circles, we can
conservatively approximate the set cover problem by

Ns =
⌊15

4

⌋
= 3,

where b·c is the floor function. This solution is conservative,
since it assumes that for each conductor an independent worst
case configuration exists. A possible configuration for one
example worst case configuration of a conductor is shown in
Fig. 6.

B. Maximum Feasible Velocity

In order to evaluate the performance gain for the novel
approach, we determine the maximum allowed velocity for
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Fig. 6: The conductor covers 4 loiter circles (red circles) which is one
possible worst case configuration for this loiter pattern.

straight level flight. Therefore, the robot performs a constant
velocity trajectory for 4 s and then safety for the final
state must be ensured. We determine the maximum allowed
velocity for a sensor range of 180 m→ 575 m, whereby the
opening angle of the sensor in the xy plane is π and π/2
along the z-axis.

The maximum feasible velocity is calculated by the three
different approaches: stopping distance approach, single
emergency maneuver approach and the novel connected
emergency maneuver approach. The braking distance ap-
proach determines the fastest speed which still allows to
come to a hover inside the current Wk(t0) of the robot.
The emergency maneuver approach is less conservative and
determines the maximum feasible velocity by determining a
loiter maneuver, combination of braking and roll maneuver,
which lies inside the current Wk(t0). Both approaches are
described in [6]. The results of all three approaches are
depicted in Fig. 7.
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Fig. 7: Allowed maximum velocity relative to the available sensor range is
shown. The solid line shows the novel approach based on connected PCISs,
the dashed line shows the result for the single emergency maneuver approach
[6] and the dotted line shows the braking distance approach.

The novel approach outperforms both other approaches for
all considered sensor ranges. Compared to the single emer-
gency maneuver approach, the minimum relative difference
is 10.86 % and the maximum relative difference is 18.37 %.

The resulting loiter circles for the emergency maneuver
and for the connected emergency maneuver approach are
shown in Fig. 8 for the velocity 65 m/s. From the transition
state xt till the border of Wk(t0) the robot has 4.16 s
allowing to reach 15 loiter circles {Ω1, . . . ,Ω15}. The robot
can reach 5 different levels along the z-axis and 3 loiter in
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Fig. 8: Figure shows comparison between the invalid single emergency
maneuver and the connected set of emergency maneuvers at 65m/s. The
connected emergency maneuvers are depicted by a solid black line and the
single emergency maneuver is shown as a dark gray line. The different
known spaces Wk are shown at the initial time and at the transition state.
Due to the scale, only one maneuver is shown for the connected emergency
maneuvers. The dashed line shows the intended trajectory of the robot.

each level with a minimum distance of dmin = 8 m between
the loiter circles. As determined in Sec. VI-A, feasibility is
still ensured for 3 conductors placed anywhere in Wu.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we discuss the problem of safety for a
robotic system in partially-known environments. To the best
of the authors’ knowledge, this is the first time that the
robustness of positive control invariant sets is discussed
regarding unknown obstacles in the environment. We have
shown that feasibility of the robot in partially-known en-
vironments can be guaranteed if the finite set of unknown
obstacles cannot block all positive control invariant sets of
the robot. Therefore, the worst case configuration of the
unknown obstacles is formulated as a set cover problem. An
on-line capable implementation for loiter circles is presented.
Furthermore, simulation scenarios are presented verifying
the novel concept and the implementation. It is shown that
the novel approach is less conservative than previous known
approaches and increases the maximum allowed velocity up
to 18 %.

In future work we want to integrate more classes of
obstacles and arbitrary loiter trajectories. Furthermore, we
want to apply a more enhanced model of the perception
system, such that obstacles have a different detection distance
depending on parameters such as size and orientation of the
obstacle. Additionally, fight tests with the Boeing Unmanned
Little Bird are scheduled in order to conduct an experimental
evaluation. ACKNOWLEDGMENT
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