Subdimensional Expansion: A
Framework for Computationally
Tractable Multirobot Path Planning

Glenn Wagner

CMU-RI-TR-15-33

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

December 2015

Thesis Committee:
Howie Choset
Manuela Veloso
Maxim Likhachev
Sven Koenig
Vijay Kumar

Copyright (© 2015 Glenn Wagner. All Rights Reserved.



Keywords: multirobot systems, path planning, planning with uncertainty



Abstract

Planning optimal paths for large numbers of robots is computation-
ally expensive. In this thesis, we present a new framework for multirobot
path planning called subdimensional expansion, which initially plans for
each robot individually, and then coordinates motion among the robots
as needed. More specifically, subdimensional expansion initially creates a
one-dimensional search space embedded in the joint configuration space of
the multirobot system. When the search space is found to be blocked dur-
ing planning by a robot-robot collision, the dimensionality of the search
space is locally increased to ensure that an alternative path can be found.
As a result, robots are only coordinated when necessary, which reduces the
computational cost of finding a path. Subdimensional expansion is a flex-
ible framework that can be used with multiple planning algorithms. For
discrete planning problems, subdimensional expansion can be combined
with A* to produce the M* algorithm, a complete and optimal multirobot
path planning problem. When the configuration space of individual robots
is too large to be explored effectively with A*, subdimensional expansion
can be combined with probabilistic planning algorithms to produce sRRT
and sPRM.

M* is then extended to solve variants of the multirobot path plan-
ning algorithm. We present the Constraint Manifold Subsearch (CMS)
algorithm to solve problems where robots must dynamically form and dis-
solve teams with other robots to perform cooperative tasks. Uncertainty
M* (UM*) is a variant of M* that handles systems with probabilistic
dynamics. Finally, we apply M* to multirobot sequential composition.
Results are validated with extensive simulations and experiments on mul-
tiple physical robots.
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Chapter 1

Introduction

Multirobot systems offer flexibility, sensor coverage, and redundancy, which makes
them attractive for tasks such as surveillance, search and rescue, and warehouse
automation. Exploiting the benefits of multirobot systems requires addressing a mul-
titude of issues including task assignment, communication, synchronization of world
models, and the coordination of large numbers of robots, in addition to all the chal-
lenges that face single robot systems.

One of the fundamental problems for multirobot systems is finding safe, colli-
sion free paths that take robots to configurations at which they can perform tasks,
which is termed the Multirobot Path Planning (MPP) problem. There is a fundamen-
tal trade-off between path quality and the computational cost of finding solutions.
Finding optimal solutions (i.e. minimal cost paths) is known to be NP-complete®
[143), 205], while finding solutions to more complex formulations of the MPP problem
that allow robots of differing sizes is PSPACE-hard? [78]. Conversely, feasible paths

of unbounded length can be found in polynomial time [98, 199]. Thus high-quality

INP-complete is a complexity class that represents the hardest problems in NP, such as the
traveling salesman problem and Boolean satisfiability. No known polynomial time algorithms exist.

2PSPACE-hard problems require polynomial space to solve, and are believed to be harder than
NP-complete problems
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(a) (c)

Figure 1.1: An abstract visualization of a variable dimensionality search space con-
structed by subdimensional expansion, for a system of five robots. (a) Initially each
robot is constrained to its individually optimal path, represented by a single line, but
when the individually optimal paths for robots 1 and 2 are found to conflict (b), the
local dimensionality of the search space must be increased, as represented by a 2D
square. When the individually optimal paths of three robots are found to conflict (c),
the local dimensionality of the search space must be increased further, represented
by the 3D cube, to include all local paths of the three robots. If robot 3 clears robots
4 and 5 before they resolve their mutual interaction, then the dimensionality of the
search decreases so that planning is coupled only for robots 4 and 5.



paths are hard to find, while low quality paths can be found rapidly.

In this thesis, we introduce a new approach that can find high quality paths
quickly called subdimensional expansion. Subdimensional expansion is not a specific
algorithm, but rather a method for manipulating the search spaces of existing search
algorithms to decrease the computational cost of solving MPP problems. Subdimen-
sional expansion starts by finding a path for each robot in its individual configu-
ration space without regard for robot-robot interactions or collisions (i.e. as if the
robot were the only robot). Combining the individual paths of each robot defines a
one-dimensional search space for the full multirobot system embedded in the joint
configuration space. When robots are found to collide in the multirobot search space,
subdimensional expansion locally grows the dimensionality of the search space to
allow an alternative path for the robots involved in the collision to be found with
coupled planning, while planning for the uninvolved robots remains decoupled (Fig-
ure 1.1). Although the search space may grow to cover the entire joint configuration
space in the worst case, leading to exponential time complexity, for many problems
subdimensional expansion can construct a low dimensional search space that allows

for efficient computation of a high quality path.

1.0.1 Contributions

This thesis makes contributions to optimal and e-suboptimal MPP on graphs, MPP
for systems where individual robots have many degrees of freedom (DOFSs), coopera-
tive path planning where robots must dynamically form teams to execute cooperative
tasks, planning with uncertainty, and combined planning and control for multirobot
systems (Table 1.1). All these contributions are based on subdimensional expansion,
a new framework for MPP that combines computationally efficient planning with the

flexibility to be readily applied to many variants of the MPP problem. Applying sub-



Contribution Explanation Chapter
Optimal and e-suboptimal | M* and its variants provide state of the art 3
MPP on graphs performance for MPP on graphs, including
directed graphs
MPP with robots with | SRRT and sPRM allow for efficient path 4
many DOFs planning for many robots where each robot
has many DOF's
Planning for many robots | CMS allows for planning paths for many 5
with cooperative paths robots that must dynamically form teams
to perform cooperative tasks
Planning with uncertainty | UM* can efficiently find paths for sys- 6
tems with uncertain dynamics where in-
teractions are possible anywhere in the
workspace
Combined planning and | M* can be combined with the sequential 7

control

composition framework to generate plans
for multirobot systems that consist of a
sequence of controllers, robustness against
environmental perturbations and modeling
erTors

Table 1.1: Contributions




dimensional expansion to graph search results in the M* algorithm and its variants.
M* provides state of the art performance for finding optimal and e-suboptimal paths.
Subdimensional expansion can be combined with probabilistic planning algorithms,
resulting in the sRRT and sPRM algorithms, to find paths for multirobot systems
where each robot has many degrees of freedom, outperforming existing probabilistic
approaches. CMS is an implementation of subdimensional expansion that can find
paths for multirobot systems where the robots must temporarily form teams to per-
form cooperative tasks, a problem that has received relatively little attention. UM,
a variant of M*, can efficiently solve problems where the dynamics of the robots are
uncertain. Unlike the work of Melo and Veloso [119], UM* can solve problems where
robots can interact anywhere in the workspace, instead of only in well defined inter-
action regions, but does so at the cost of computing only a single trajectory, rather
than a full policy that could respond to sensor measurements received during execu-
tion [119]. Finally, we show that M* can be combined with the sequential composition
framework to combine planning and control of multirobot systems. This is enabled
by the ability of M* to compute plans on directed graphs, and produces paths that
are robust to environmental perturbations.

The thesis is organized as follows: We begin by describing the MPP problem
and the prior work. Chapter 2 describes subdimensional expansion. Chapter 3 de-
scribes M*, an implementation of subdimensional expansion where the configuration
space of each robot is represented as a graph. Chapter 4 describes implementations
of subdimensional expansion based on probabilistic planning algorithms, which are
suitable for systems where each robot has many degrees of freedom. Chapter 5 de-
scribes an adaptation of M* to handle problems where robots must dynamically form
and dissolve teams to perform cooperative tasks. Robots will not perfectly execute
plans, so the last two chapters focus on generating plans that are robust to errors in

plan execution, via explicitly accounting for uncertainty at planning time (Chapter 6)

5



and integrating path planning and control via the sequential composition framework

(Chapter 7).

1.1 Problem Definition

We start by formally defining the MPP problem. Consider a system of n robots r

7
free*

indexed by the set [ = {1,...,n}. Each robot has a free configuration space @
The joint configuration space that represents the state of the entire system is given
by the direct product of the single robot free configuration spaces @ = [[;c; Qhee-
By this definition, the joint configuration space may contain robot-robot collisions,
but no obstacle-robot collisions. Let the II denote the space of continuous paths
m : [0,1] — @ in the joint configuration space. The MPP problem is to find an
optimal, collision-free path 7, € II, from an initial configuration of the system ¢, to a
goal configuration g;, that minimizes a cost functional g : Il — R*. To define which
states result in robot-robot collisions, we introduce a collision function ¥ : @) — P(I)
which returns the set of robots in collision at a given joint configuration, where P (I)
is the power set of I containing all subsets of I. The MPP problem can be expressed

as

7, = argmin g(m)

s.t.
m.(1) = dy

There are several important variants of the MPP problem. The permutation in-
variant multirobot path planning problem deals with homogeneous robots where a

robot must reach each goal position, but any robot can be assigned to any goal



[183, 204]. The k-color MPP problem is a generalization where there are k classes
of robots that are interchangeable within, but not between, classes [164]. In the ve-
hicle routing problem, there are a set of goal positions that must be visited by a
robot, and each robot can visit some, all, or none of the goal positions [I80]. The
Cooperative Path Planning (CPP) problem is a variant where multiple robots must
temporarily form tightly coordinated teams to perform cooperative tasks. The Mul-
tirobot Path Planning with Uncertainty (MPPU) problem addresses systems in which
the dynamics of the robots are uncertain.

Equation 1.1 looks like the formulation of the single robot path planning problem
for a robot with the configuration space (), which raises the question of how the MPP
problem differs from the single robot path planning problem. The first difference
is qualitative; the joint configuration space for multirobot systems can exceed 2000
dimensions [80], 192], while single robots typically don’t have more than 20 degrees
of freedom [136, 172]. The second difference lies in the direct product structure of
the joint configuration space, which means that not only can the joint configuration
space be factored into the product of single robot configuration spaces, but the actions
of the system as a whole can be factored into the actions of individual robots. As
a result, a planner can meaningfully reason about the motion of individual robots,
whereas the motion of individual joints in a robot arm cannot be generally considered

independently of one another.

1.2 Prior Work

MPP algorithms can be characterized by how and to what extent they exploit the
direct product structure of the joint configuration space to accelerate planning. In
general, the more heavily a MPP depends on the direct product structure, the faster

it will find solutions, at the cost of returning more expensive paths and possibly failing



to find a valid path. We proceed to discuss the existing literature on MPP grouped

by how the algorithms exploit the structure of the joint configuration space.

1.2.1 Reactive Planning

One possible approach to solving the MPP problem is to plan paths for each robot
seperately, then run a reactive controller on each robot during execution to avoid
collisions and deadlocks®. One approach is to simply have the robots stop if they be-
lieve a collision is imminent [85], which poses an obvious danger of deadlocks. A less
deadlock-prone approach is to command robots to follow a circular path and rotate
around one another [38, [75]. A variety of controllers have been inspired by biological
swarms [36], [44], [61], (73, 111, [1T5] 145, 193], using a combination of short-ranged repul-
sive forces, mid-ranged alignment forces, and long-ranged attractive forces. Swarm-
inspired controllers are generally designed to move large numbers of robots to a single

destination as a coherent flock.

In the aforementioned approaches, a robot does not consider the fact that the
robots with which it interacts are also trying to avoid collisions. Therefore, a robot
may work harder than necessary to avoid collisions. van den Berg et al. [I87] intro-
duced reciprocal velocity obstacles that split the responsibility for avoiding a collision
between the interacting robots, but makes the assumption that all robots execute
the same controller [163, 190]. Trautman and Krause [I81] used a Gaussian pro-
cess to learn how other agents/pedestrians react to the presence of a robot, allowing

cooperative collision avoidance between inhomogeneous robots.

3A deadlock occurs when one or more robots become permanently unable to move under the
chosen control scheme. A live lock occurs when robots continue to move but permanently fail to
make progress, typically by entering a cycle.



1.2.2 Workspace Decomposition

Another approach is to decompose the workspace into a number of regions. Robots in
different regions are known not to interact with one another, and simple rules can be
established to govern how robots can move from one region to another. One method
is to break the world into a series of corridors, and then prescribe traffic rules for
navigating intersections [2, 55, 196]. Svestka and Overmars [I78] developed a multi-
level hierarchical graph, where a single vertex may represent an entire region of the
workspace, while Ryan [148], [149] defines a high-level graph by decomposing the graph
that represents the workspace into cliques, stacks, and singletons. Each vertex in the
high-level graph can contain a specific number of robots, and has rules for entering
and exiting the vertex. A plan for the entire system is first found in the high-level
graph; a detailed plan for each robot through the workspace can be extracted from

the high-level plan later.

Rather than dividing the workspace into a small number of large regions, the
workspace can be split into many small reservation cells. Before a robot is allowed
to move into a new cell, it must acquire an exlusive reservation for said cell, either
from a centralized authority [55], 200], or via negotiation with nearby robots [142]. As
long as each cell is large enough for a robot to come to a complete stop, safety can

be guaranteed.

Alternatively, the workspace can be split into regions where coordination between
robots is or is not necessary. Interaction regions can be defined as states at which
the reward or transition function of a robot depends upon one or more other robot.
Varakantham et al. [191] handled such cases by modifying the individual reward func-
tion for each robot, increasing the reward for states where synergistic interaction could
occur, and decreasing the reward for states with antagonistic interactions. Spaan and

Melo [165] learned an individual policy for each robot outside of the interaction states,

9



and a joint policy for robots in interaction states. Furthermore, Spaan and Melo [165]
showed that performance could be improved by beginning to coordinate robots at in-
dependent states bordering states where rewards depend on the state of multiple
robots, i.e. it is too late to coordinate robots if they have already crashed. Melo and
Veloso [119][120] developed a Q-learning algorithm that builds on the work of Spaan
and Melo [165] to learn where coordination is necessary. A “coordinate” action is
added to the set of actions available to each robot. When the coordination action
is taken, the robot chooses an action based on its current state, and the position of
the nearest neighbor robot. Robots will typically learn to take coordinate actions at
bottlenecks, where robot-robot interactions are likely. Kok et al. [95][94] presented an
approach which performs Q-learning for each robot independently, but stores statis-
tics for the reward of the joint actions that are explored. If these statistics indicate
that coordinating actions at a specific location is beneficial, then the algorithm starts
learning coordinated actions at that state. This approach has the benefit of being
able to handle tasks besides basic path planning, such as capturing targets that re-
quired coordinated action by multiple pursers. De Hauwere et al. [48] [49] [50] learned
the states relative to a robot that necessitate coordination, i.e. a robot may need to
coordinate with a robot directly in front of it, but not with a robot far to the rear.
The approach of Bnaya et al. [23] computes all paths that a robot would take if no
other robots were present. A randomly drawn set of paths are drawn for each robot,
and checked for interference. A cost penalty is assessed on moving through states at
which robots may interfere with one another. Optimal paths for each robot are then
computed subject to the penalty terms, with final collision avoidance provided by a

reactive controller.

10



1.2.3 Rule-Based Path Planning

Rule-based approaches are centralized approaches which use a set of stereotyped
behaviors to govern robot-robot interactions during planning. The plans computed
by rule-based approaches specify the motion of the entire system and are guaranteed
to be collision free. Push and Swap [116], 100], Push and Rotate [51], the Tree-Based
Agent Swapping Strategy algorithm [89], and the work of Auletta et al. [7] utilize
behaviors that exchange the positions of two robots without disturbing any other
robot. Surynek [174], [175] developed algorithms based on the theory of bi-connected
graphs that use behaviors similar to Push and Rotate. Warehousing approaches shift
robots into configurations which will not interfere with the motion of other robots
[40], 133], 197], then plan for a small number of robots at a time.

The rule-based algorithms described in the previous paragraph are guaranteed to
find a solution in polynomial time, but the quality of the path is typically low. In
particular, the above methods only allow a single robot to move at any given time,
which results in very long execution times. Parallel Push and Swap is a variant of
Push and Swap which permits simultaneous motion of multiple agents, significantly

decreasing path costs [151].

1.2.4 Coupled Planning

Coupled MPP algorithms treat the robots in a multirobot system as components of
a single meta-agent whose configuration space is the joint configuration space. The
MPP problem is then solved by planning a path for the meta-agent using a single
robot path planning algorithm. By exploring the joint configuration space, coupled
approaches can offer completeness and optimality guarantees, at the expense of high
computational cost.

A* [T7] could be used to search the joint configuration space, resulting in a simple,
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coupled planner. However, the exponential growth of the joint configuration space
as the number of robots increases quickly renders planning paths with A* computa-
tionally infeasible. Iterative Deepening A* (IDA*) reduces the memory consumption
of A* by using depth-first search [46, 96]. However, it is only effective when robots
are packed densely enough that only a few robots can move at any time. One basic
problem with A* based approaches is the presence of many redundant actions which
A* will instantiate, but never actually use, such as actions where every robot moves
directly away from its goal. Operator Decomposition (OD) [167] and Enhanced Partial
Ezpansion A* (EPEA*) [62][71] are lazy variants of A* designed for MPP which delay
instantiating actions which are heuristically expensive, and thus unlikely to be used as
part of the optimal solution. Such lazy evaluation dramatically reduces the effective
branching factor of the multirobot system, significantly reducing computational cost
of finding a path.

Probabilistic planners were developed to find paths for robot mechanisms with
many internal degrees of freedom, for which deterministic planners such as A* were
unable to find paths in a reasonable amount of time. The suitability of probabilis-
tic planners for high-dimensional planning has led to the development of coupled
algorithms that use probabilistic planners to explore the joint configuration space
of multirobot systems [35], [63], 103} 152, [153]. However, the structure and pure size
of the joint configuration space of multiple robot systems limits such approaches to
relatively small numbers of robots; to the best of our knowledge, the largest problem
solved by running a probabilistic planner directly in the joint configuration space of
a multirobot system involved 10 robots [63], 34].

An alternate approach to coupled planning is to recast the MPP problem as a
Boolean Satisfiability (SAT) problem. The SAT problem is to find an assignment of
truth values to variables that satisfy a logical formula. The MPP problem can be

recast as a SAT problem by creating a set of Boolean variables to track the location
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of each robot, and adding terms to the Boolean formula to enforce collision avoidance
[58, ’1, 87, 176, 177]. SAT planners have also been used to find shortcuts to reduce
the cost of non-optimal paths computed by rule-based planners [14] [175].

Similarly, the permutation invariant multirobot path planning problem can be
reformulated as a network flow problem. Yu and Lavalle [204] showed that such a
transformation allows for optimal paths to be found in polynomial time. By com-
posing the workspace into many largely independent cells, the network flow approach

can be applied to systems of 1,000,000 robots [86]

1.2.5 Decoupled Planning

Where a coupled planner searches the joint configuration space of a multirobot system,
decoupled algorithms explore one or more low dimensional search spaces. Decoupled
planners can quickly find paths for systems containing many robots. The drawback
of decoupled algorithms is that the search spaces employed by decoupled planners
represent only a small portion of the joint configuration space, and thus decoupled
algorithms are not guaranteed to find a path for all solvable problems [153]. There are

two primary classes of decoupled planners, velocity schedulers and priority planners.

Velocity Scheduling

Velocity scheduling approaches first plan a path for each robot, and then construct
a coordination space, which describes the position of each robot along its path. The
velocity scheduling approach then seeks a path in the coordination space, i.e. a
velocity schedule, that moves each robot to its goal without robot-robot collisions
[45], 84, 108, 134, 160]. Krishna et al. [99] introduced a decentralized approach where
a robot coordinates its velocity schedule with a limited number of neighboring robots.

Lavalle and Hutchinson [105] developed a hybrid between velocity scheduling and
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coupled planning by restricting each robot not to a single path, but rather to a sparse

roadmap.

Priority Planning

Priority planners assign each robot a priority, and then plan for each robot in order of
decreasing priority, treating higher priority robots as moving obstacles [60]. Priority
planning can be readily decentralized, with low priority robots giving way to high
priority robots [33], 64, 144, 192]. Saha and Isto [I50] attempted to address the
issue that low priority robots cannot influence the path of high priority robots by
hybridizing priority planners and velocity schedules. They allowed a low priority
robot to change the velocity schedule of higher priority robots, but not the path in
the workspace that the higher priority robot takes.

A key element to the success of a priority planner is the choice of priority ordering;
a high priority robot whose goal is in a bottleneck of the environment can easily
prevent a solution from being found. van den Berg and Overmars [I86] assigned
a priority to robots based on the intial distance the robot is from its goal, with a
longer distance to the goal corresponding to a higher priority. Turpin et al. [I82] [183]
showed that for permutation invariant multirobot path planning there is a priority
ordering that is guaranteed to produce a solution. Assign each robot to a goal such
that the sum-squared distance traveled is minimized. Then assign priority to robots
in decreasing order of distance to the goal. The resulting algorithm can be shown to
be complete and run in polynomial time.

Other approaches to priority planning rely on searching the possible priority order-
ings [12, [159]. One commonly used heuristic to guide search over priority orders is to
examine the position of the initial and goal configurations of the robots [30, 117, [188].
If the goal configuration of robot r! lies on or blocks the path of 2, then r? is assigned

a higher priority than r!. Conversely, if the initial configuration of r* lies on or blocks

14



2. These relations may

the path of r2, then r! is assigned a higher priority than r
introduce cycles, which different approaches break in different manners, including

random search in priority ordering [117].

1.2.6 Dynamically Coupled Planning

Dynamically coupled planning is an alternative to coupled or decoupled algorithms
which grow the search space during planning, so that the search space can initially
be very small, then grow only where necessary. In the worst case, the search spaces
constructed by dynamically coupled algorithms may cover the entire joint config-
uration space, but for most problems a substantially smaller search space suffices.

Subdimensional expansion is a dynamically coupled planner

Al-Wahedi presented an approach in which paths are found separately for each
robot, followed by coupled planning in a window around conflicts, but said approach
does not return optimal paths [I]. The work of van den Berg et al. [I88] shows how
to identify the minimal sets of robots which must execute a cooperative path instead
of sequentially executing single robot paths. The dynamic networks of Clark et al.
[41] couple online planning during execution for sets of robots capable of mutual
communication. The Increasing Cost Search Tree (ICST) [3] (155 154], 158] limits the
cost that can be incurred by an individual robot, then uses pairwise tests to determine
for which robots the cost limits must be raised. Independence Detection (ID) [167]
and Meta-Agent Conflict Based Search (MA-CBS) [I57] initially attempt to find a
path using decoupled planning approaches, but revert to coupled planning for subsets
of robots for which the decoupled planner cannot find optimal paths. Standley and
Korf [I68] introduced a variant of ID that reverts to prioritized planning when the
coupled subsets of robots get too big, at the cost of optimality. Calliess and Roberts

[32] proposed a method that is very similar to MA-CBS, but based on Mixed-Integer

15



Programming rather than graph search.

1.2.7 Miscellaneous

There are several interesting approaches that do not cleanly fit into the categories
discussed so far. Bhattacharya et al. [22] developed an approach that can find optimal
solutions to problems with complex inter-robot constraints, by iteratively replanning
for each robot in turn. Initially, the inter-robot constraints are ignored. At the
beginning of each iteration, the weight given to inter-robot constraints is increased
slightly. The resulting paths can be shown to converge to the optimal path. Ghrist
and Koditschek [70] showed that the free joint configuration space of a system of
two robots at a Y-intersection had a simple geometry, that of a punctured disk with
six triangular fins, which allows for easy planning. Multirobot coordination can be
simplified by annotating each point in the workspace with a preferred direction; mov-
ing in the preferred direction is cheaper than moving against the preferred direction
[82, [130]. Finally, Kloder and Hutchinson [90] developed a clever method of solving
the permutation invariant multirobot path planning problem without ever explicitly
assigning robots to goal locations by representing the position of the robots and the
goal as the complex valued roots of polynomials. A path in polynomial space be-
tween two configurations can be computed by interpolating the coefficients of the
polynomials that represent the initial and final configurations. However, extracting a
workspace trajectory for a given robot requires repeatedly solving a track assignment
problem, which makes this approach significantly less practical, and planning in the

presence of obstacles is difficult.
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Chapter 2

Subdimensional Expansion

In MPP there is an inherent trade-off between path quality and the computational
cost of finding a path. However, in many problem instances of interest, the MPP
problem naturally decomposes into small subproblems, which permits optimal paths®
to be found at low computational cost. Specifically, if the interactions between robots
are sparse, the MPP problem can be split into two parts: planning paths for individual

robots and optimally resolving conflicts between robots.

Subdimensional expansion is a framework for MPP that exploits the aforemen-
tioned natural decomposition to find optimal paths at low computational cost. Sub-
dimensional expansion begins by computing an individual policy for each robot. The
individual policy specifies the individually optimal path from each point in the free
configuration space of a robot to its goal configuration, neglecting the presence of
other robots. The path of the multirobot system induced by each robot obeying its
individual policy is termed the joint policy path. Robot-robot collisions are likely to

be present in the joint policy path.

Subdimensional expansion then uses the individual policies to guide the construc-

! An optimal path is a collision-free path which minimizes some cost function.
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tion of a search space of variable dimensionality that is embedded in the joint configu-
ration space of the system, in which to coordinate the motion of the multirobot system
and resolve any conflicts. Subdimensional expansion makes the optimistic assump-
tion that the joint policy path is collision free until there is evidence otherwise, and
thus each robot is initially restricted to obeying its individual policy. The resulting
search space is one-dimensional, as a point on in the search space is fully determined
by how long the robots have executed their individual policies, and planning is fully
decoupled, i.e. each robot follows an independently computed plan. An underlying
planner, such as A*, is then employed to find an optimal path in the search space.
When the underlying planner encounters a robot-robot collision, the involved robots
are permitted to diverge from their individual policies, locally increasing the dimen-
sionality of the search space. In the region of increased dimensionality, planning is
conducted as a search over the joint actions of the robots involved in the collision,
i.e. coupled planning for those robots.

Two constructs, the backpropagation set and the collision set, are employed to
ensure that the search space is only expanded where and as much as necessary. Sub-
dimensional expansion only expands the search space when the underlying planner
finds a collision, but the optimal resolution of the collision may require the involved
robots to diverge from their individual policies long before the collision would take
place. This requires expanding the search space along all paths that the underlying
planner has explored that lead to the collision. The backpropagation set of a point
¢ in the search space is used to propagate information about a collision back along
all paths that lead to ¢, and consists of the set of all points for which the underlying
planner has considered ¢ as a possible successor. If the underlying planner is A*, then
when a vertex is expanded it is added to the backpropagation set of each of its out-
netghbors, whereas if RRT is employed as the underlying planner the backpropagation

set of a configuration contains its parent in the search tree.
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Subdimensional expansion uses the collision set to aggregate information about
collisions and to determine the local dimensionality of the search space. The collision
set C' of a given point ¢ in the search space is the set of robots involved in a collision
either at ¢ or at successor of ¢ on a path that has been explored by the underlying
planner. If a configuration has not been visited by the underlying planner, its collision
set is empty. The collision set is computed using the backpropagation set. If the
collision set (', of a configuration g, changes, including the first time the underlying
planner visits a configuration at which a robot-robot collision occurs, then the robots
in C}, are added to the collision set of each point in the backpropagation set of g. In
addition, if a new configuration ¢; is added to the backpropagation set of ¢, then the
robots in C} are added to C;. Note that the above rules imply that the collision set
is a function of the current state of search, and the collision set of any given point in
the search space will only grow as the search progresses.

Robots in the collision set are known to collide with other robots if restricted
to their individually optimal paths, but there is no evidence that robots outside the
collision set will collide while obeying their individual policies. Therefore to ensure
that a collision-free path can be found, the search space must include any possible
joint action for the robots in the collision set, while the robots not in the collision set
obey their individual policies. The result is a local increase in the dimensionality of the
search space, but the search space will likely still be of lower dimensionality than the
joint configuration space in which the search space is embedded. Because the search
space is embedded in the joint configuration space, each point in the search space
fully defines the configuration of the system, regardless of the local dimensionality of
the search space. A locally low dimensional search space just restricts which paths of
the system will be explored by the underlying planner.

Although the search space constructed by subdimensional expansion is embedded

in a high-dimensional space and is thus hard to visualize, the geometry of the search

19



C| =3

Figure 2.1: Geometric visualization of the search space as embedded in the joint
configuration space. The circle represents the goal configuration. The cube represents
a region of the search space in which the collision set contains three robots, while the
square denotes a region where the collision set contains two robots. The lines denote
the joint paths for the multirobot system induced by the individual policies, which
connect configurations on the periphery of the higher-dimensional regions of the search
space to the goal.

space can still be succinctly described, and provides an alternate way of understanding
subdimensional expansion. The search space will have the appearance of a set of
elongated “tubes” of decreasing dimensionality embedded in the joint configuration
space, extending from the initial configuration towards the goal (Figure 2.1). Each
tube grows around an explored path or set of paths that lead to a robot-robot collision,
and thus the interior of each tube consists of states with non-empty collision sets. The
surface of each tube are covered with one-dimensional “hairs” that extend towards
the goal. Each hair is the joint policy path leading from a state on the surface of the
tube with an empty collision set to the goal. The search space starts as a single hair,

which thickens and branches as robot-robot collisions are found.

To better illustrate the workings of subdimensional expansion, we present an ex-
ample for MPP on graphs. Planning is done using the M* algorithm, an implemen-
tation of subdimensional expansion that uses A* as the underlying planner. M* will
be described in detail in section 3, but for the purposes of this example M* can be
described as being equivalent to running A* on a small search graph which grows

every time a robot-robot collision is found.

20



r ’Uf

1
2 Uf

1 7“1 ’U?: 7“2

A B C

Figure 2.2: Example of the working of subdimensional expansion. Robots 7!, 7% r
start at A1, C'1, and A3 respectively, with goal configurations B2, B1 and C3.
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Figure 2.3: Subdimensional expansion starts by computing a individual policy for
each robot. The optimal action for a robot at each configuration is indicated by
arrows. The loop at the goal state indicates that the robot should seek to remain at
its goal.
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Neighbors of Expanded State

(B1, B1, B3)

1 r1—+v?+—r2

A B C

Collision Set = 0

(a) Configuration at Step 1

(b) Search tree after expansion.

Figure 2.4: (a) Example of the workings of subdimensional expansion. The robots
start at (Al,C1, A3) and have the goal (B2, A2,C3). The grid on the left shows
the configuration that is expanded by M* in step one. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and

collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.

The vertex expanded in step one is bolded.
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Figure 2.5: (a) Example of the workings of subdimensional expansion. The robots
start at (Al,C1, A3) and have the goal (B2, A2,C3). The grid on the left shows
the configuration that is expanded by M* in step two. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and

(A2, B1, B3)
(A1, B1, B3)
(B1,C1, B3)
(42,C1, B3)
(B1,C2, B3)
(A2,C2, B3)
(A1,C1, B3)
(A1,C2, B3)

collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.

The vertex expanded in step two is bolded.
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Neighbors of Expanded State
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(a) Configuration at Step 3
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(b) Search tree after expansion.

Figure 2.6: (a) Example of the workings of subdimensional expansion. The robots
start at (Al,C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the
configuration that is expanded by M* in step three. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states

while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step three bolded.
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(b) Search tree after expansion.

Figure 2.7: (a) Example of the workings of subdimensional expansion. The robots
start at (Al,C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the
configuration that is expanded by M* in step four. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states

while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step four is bolded.
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Consider a system of three robots, r', r?, and 3, which move on a graph rep-
resenting a four connected grid. The X coordinates of the graph are labeled with
letters, while the Y coordinates are labeled with numbers. Robot r! starts at the
initial configuration v} = Al and has the goal v; = B2. Robots r* and 7°* have initial
configurations v = C'1 and v} = A3, and goal configurations v; = Bl and v} = C3
respectively (Figure 2.2). The initial configuration of the multirobot system is de-
noted (A1, C1, A3), while the goal configuration is (B2, B1,(C3) The robots incur a
cost of 1 for any action, including remaining in place, but the robots can wait at their
goal for zero cost.

Subdimensional expansion begins by computing an individual policy for each robot
(Figure 2.3). The choice of policies is not unique. For instance, an alternate policy
for r1 would be to move up from Al rather than right. Choice of individual policies
is discussed in section 3.5.4.

Once the individual policies are computed, search for the multirobot system can
commence. M* maintains an open list of candidate vertices which are explored in
order of f-value, the sum of the cost to reach a vertex and a heuristic cost-to-go.
When search begins the open list only contains the initial configuration, with an
empty collision set (Figure 2.4). An empty collision set means that every robot obeys
its individual policy. Therefore, when the initial configuration is expanded, there is
only one neighbor, (B1, B1, B3) (Figure 2.4a). At (B1, B1, B3) robots ! and r? are
in collision, which triggers a collision set update. The initial configuration is in the
backpropagation set of (B1, B1, B3), (Figure 2.4b), so r! and r? are added to the
collision set of the initial configuration, which implicitly modifies the search graph.
To allow the modified search graph to be explored, the initial configuration is added
back to the open list (section 3.2).

In the second iteration of M*, the initial configuration is once more taken from the

open list, and expanded (Figure 2.5). This time, r* and r? are in the collision set of
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the initial configuration, so only r? is restricted to its individual policy. As a result,
the initial configuration now has nine neighbors (Figure 2.5a), including (B1, B1, B3).
The backpropagation set of each neighbor contains only the initial configuration, as
the only paths that have been explored lead from the initial configuration to one of
its neighbors (Figure 2.5b). The initial configuration has an empty backpropagation
set, because no paths have been explored that lead to the initial configuration, and
thus collisions at one of the neighbors cannot be propagated to the collision set of
a different neighbor. The only robot-robot collision occurs at (B1, B1, B3), and the
involved robots have already been added to the collision set of the initial configuration,
the only state in the backpropagation set of (B1, B1, B3). Therefore, no further
modification of the collision sets is required. The collision-free neighbors are then
added to the open list and sorted by f-value.

In the third iteration, the most promising vertex is (A2, B1, B3) (Figure 2.6).
(A2, B1, B3) was never previously expanded, and thus has an empty collision set,
and therefore a single neighbor (B2, B1,(C3), the goal configuration. The goal con-
figuration is collision free, and thus is added to open list. Note that in the counter-
factual case that the neighbor of (A2, B1, B3) had contained a robot-robot collision,
the involved robots would be added to the collision sets of both (A2, B1, B3) and
(A1,C1, A3).

In the fourth iteration, the goal configuration has the lowest f-value of any vertex
in the open list, and is thus expanded (Figure 2.7), which indicates that the optimal

path has been found.
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Chapter 3

M*

A key detail of subdimensional expansion is how the search space is constructed, an
issue which depends upon the planner used by a given implementation. We will now
describe how subdimensional expansion can be implemented for planning paths for
multirobot systems moving in spaces represented by graphs. A* [77] is an attractive
planner when the configuration space of each robot can be represented by a graph.
A* is optimal, meaning it finds optimal paths, and complete, meaning that it will take
finite time to either find a path or determine that no path exists. In this section, we
present the M* algorithm, a complete and optimal implementation of subdimensional

expansion which uses A* as the underlying planner.

3.1 Problem Definition

Consider a system of n robots r* indexed by the set I = {1,...,n}. Let the free
configuration space of ¥ be represented by the directed configuration graph G =
{V* E'}. V'is the set of vertices in G', each of which represents a configuration of
ri. E'is the set of directed edges, each of which represents an action that transitions

r® from one configuration to another. Each edge is associated with a positive cost.
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Symbol  Meaning

ri ith robot

G Configuration graph representing configuration space of r

v Vertex in G* representing a configuration of r?

vl Initial configuration of 7

v} Goal configuration of 7!

G Joint configuration graph representing joint configuration space of system
v Vertex in G representing a configuration of the multirobot system
Vs Initial configuration of multirobot system

vy Goal configuration of multirobot system

vl Configuration of 7' at joint configuration specified by vy,

7(vg,ve) Path for the multirobot system connecting vy to vy

g(m(.))  Cost of specified path

U (o) Set of robots that collide at vy

Table 3.1: Symbol definitions for multirobot path planning on graphs

Each robot has an initial configuration v, € V* and a goal configuration v} € V".

The joint configuration space which describes the state of the entire multirobot
system is represented by the joint configuration graph, which is the direct product of
the individual robot configuration graphs G = G* x --- x G", with vertex set V and
edge set E. Recall that the direct product of two graphs, G* x G7, has the vertex set
Vi x Vi, Two vertices (vi,v]) and (v, v])) in V? x V7 are connected by an edge in
the product graph if the edge e}, connecting v} to v} is present in E* and the edge

eie connecting vi to vg is present in E7. Note that G may contain vertices at which

robots collide.

Let II* denote the set of all valid paths in G?, where a valid path consists of a
sequence of vertices such that each vertex in the sequence is an out-neighbor of its
predecessor in G*. TI = II* x - - - x II" denotes the set of all paths in G. Let 7' (v, vy)

denote a path in G* from v, to vy. The cost of a single robot path ¢¢ : II* — R* is
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the sum of the costs of the edges traversed in the path. The cost g : IT — R™ of a
path m(vg,vp) in G is the sum of the costs of the corresponding single robot paths

7' (v, vl), where v} is the position of r* at the joint configuration v,

g(m(vg,vp)) Zg '(vi, v})) (3.1)

el

The task of M* is to find an optimal, collision-free path from the joint initial
configuration vs = v} x -+ X v to the joint goal configuration v; = v} X e XU},
denoted 7, (vs,vr). To determine where robots collide with one another, we define
a collision function U : V — P(I) which returns the set of robots in collision at a
given vertex, with P(I) denoting the power set of I which contains all subsets of I.
What constitutes a collision depends on the problem being solved, and may represent
a physical collision, a contention for a shared resource, or some other conflict. Note
that W (v) describes the robots which are locally in collision at vy, whereas C}, collects
all collisions occurring at a successor of v, on some path explored by the underlying
A* planner, thus ¥(vy) € Cy. For the purpose of description, only collisions at

vertices will be considered, as collisions taking place during the traversal of edges can
be modeled by inserting additional vertices into the joint configuration graph.

The notation in this thesis can get complex, due to the number of different objects
that the text must describe, and the number of different spaces in which said objects
may lie. To make the notation more comprehensible, a standard format is employed.
The symbol 2¥ refers to an object of type x, where 2 is a label for the specific object
instance, and y C [ is robot or set of robots which are described by z. For instance,
vl refers to a vertex k describing the configuration of robot . The symbols z} and
xfg refer to the components of xj describing robots ¢ and j respectively. The symbols

1,7,k and £ are reserved for short term indexing, and are reused throughout the thesis
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Symbol ~ Meaning

@' Individual policy for 7!
m,(v*,v}) Path for r’ induced by its individual policy from v’ to v}

mg(v,vp)  Path the for multirobot system induced by each robot obeying its
individual policy from v to vy

7, (vk,v¢)  Minimal cost, collision-free path connecting vy, to vy

Ch Collision set at vy,
V/abh Limited neighbors of vy,
h(v) Heuristic cost-to-go from vy to vy

Table 3.2: Symbol definitions for M*

in different contexts. The definitions of symbols used in the problem definition are

summarized in Table 3.1.

3.2 Algorithmic Description

M* is broadly similar to A* [77] in implementation. The primary difference is that
M* restricts the set of possible successors of a vertex based on the collision set. Only
robots in the collision set are allowed to consider any possible action; all other robots
must obey their individual policies (Figures 2.4-2.7). A more detailed description
follows.

M* is most easily described as a set of modifications to A*. Recall that A*
maintains an open list of vertices v, to explore. Each vertex represents one point in
the joint configuration space of the multirobot system, specifying the configuration of
every robot. These are sorted by f-value, which is the sum of a g-value and a heuristic
cost. The g-value is the cost of the cheapest path to v, found thus far, and is therefore
an upper bound on g(m,(vs,vg)). The heuristic cost, h(vy), is a lower bound on the
cost of the optimal path from v, to the goal, i.e. h(vy) < g(m, (vg,vs)). At each

iteration, the vertex v, with the smallest f-value in the open list is ezpanded. Each
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neighbor v, of v, is added to the open list if the path reaching v, via vy is cheaper than
the current g-value of v,. The process continues until the goal vertex vy is expanded,
which indicates that an optimal path to the goal has been found for the multirobot

system.

Prior to planning for the multirobot system, M* computes the individual policies
@' : Vi — V? for each robot, where ¢(v%) is the successor of v* along the minimal
cost path to v} for robot r, ignoring robot-robot interactions. ¢’ can be efficiently
computed by Reverse Resumable A* [159]. The path induced by ¢ from v’ is de-
noted 7j(v*,v}). The joint policy ¢ : V' — V moves each individual robot along its
individual policy, with the joint policy path induced by ¢ from v denoted 7 (v, vy).
Computing the individual policies permits the efficient computation of the highly in-
formative Sum of Individual Costs (SIC) heuristic, which is commonly employed for
multirobot path planning [62, 06, [167]. The SIC heuristic evaluated at vy is the sum

of the costs of the individually optimal paths of all robots

h(vi) = g(my(vr, v5)) < g, (vk, vy)). (3.2)

The primary difference in implementation between M* and A* lies in the expansion
step: while A* considers all neighbors of a vertex vy for addition to the open list, M*
only considers a subset of the neighbors of v, denoted the limited neighbors. The
limited neighbors anbh are the set of neighbors of v, which can be reached from vy
when each robot not in the collision set C} of v, moves according to its individual
policy. A robot in the collision set of vy is allowed to move to any neighboring state
in the robots configuration graph G*. More formally, the limited neighbors V;""! are
the set of neighbors v, of v, such that the ¢’th component of v, satisfies one of two
properties: i) if i € C then v} is an out-neighbor of v}, or ii) if i € C} then v} is the

individually optimal successor of v}, according to ¢'. If there is a robot-robot collision
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Algorithm 1 Pseudocode for collision set backpropagation

Require: v, (', open
{vy- vertex in the backpropagation set of v}
{C}- the collision set of v,}
{open- the open list for M*}
if Og g Ck then
Ck < Ck U Cg
if —(vx € open) then
open.insert(vg) {If the collision set changed, v, must be re-expanded}
for v,, € v.back_set do
backprop(v,,, Cy,open)

at vy then V2™ = () to prevent paths from passing through collisions.

ei, cE' ieC
anbh: Vg { | MA | k (3.3)
Ué = Qﬁl(vllc)? l @é Ch

The collision sets of each vertex must be updated whenever M* finds a new path
to a robot-robot collision. To this end, M* maintains a backpropagation set for each
vertex vy, which is the set of all vertices v, that were expanded while v, was an
element of V"2, The backpropagation set is thus the set of neighbors of v, through
which the planner has explored a path to v,. M* propagates information about a
collision at vy by adding the robots in W(vy) to the collision set of each vertex v, in
the backpropagation set of v. The robots in Cy are then added to the collision set of
each vertex in the backpropagation set of v,, with the process repeating recursively
until a vertex v, is reached with ¥ (v,) C C,,. Because Vfbh is dependent on CY,
changing C, adds new paths through v, to the search space. To allow these new

paths to be explored, v, is added to the open list (Algorithm 1). Pseudocode for M*

is provided in Algorithm 2.
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Algorithm 2 Pseudocode for M*

{Define default values for vertices}
for all v, € V do
vg.cost +— MAXCOST
vi.back_set « ()
Ck — @
{Initialize search}
vg.cost + 0
open < {vs}
while open.empty() == False do
vy < open.pop() {Get cheapest vertex}
if vy = vy then
{A solution has been found}
return back_track(vy) {Reconstruct the optimal path by following the back
pointers}
for v, € V™" do
ve.back set.append(vy) {Add v, to the back propagation list}
Cg < Cg U 1\ (’Ug)
{Update collision sets, and add vertices whose collision set changed back to
open}
backprop (v, Cy,0pen)
if U(v,) =0 and vy.cost+f(ex) < vg.cost then
{vy, is the cheapest route to v}
Vg.cost — vg.cost+ f(exe)
ve.back_ptr < vy, {Track the best path to v,}
open.insert(vy)
return No path exists

3.3 Completeness and Cost Optimality

In this section, M* will be shown to be both complete and optimal. The description of
M* given in 3.2 is well suited to implementation, but provides only a local description
of the operation of M*, which is not optimal for proving global properties. In the
following subsection, a global description of M* is provided which is more suited
to proving properties of the M* algorithm, with a focus on the search space that is
constructed by M*. M* will be shown to be equivalent to alternating between running
A* on a search graph, and expanding the search graph based on collisions found by

A*. As a result, demonstrating that the construction of the search graph takes finite
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Symbol Name Meaning A* equivalent

G Joint configura- Joint configuration space
tion graph
Gsh Search graph Current search graph Graph that is being

searched

G®P  Explored graph Explicitly constructed by  Vertices in the open list

M*
G"™  Neighbor graph  G®® plus limited Vertices in the open list
neighbors plus their out-neighbors

G? Policy graph Individually optimal
paths starting from
anh \ Gexp

Table 3.3: Search graph symbols

time and that the search graph will eventually contain the optimal path, if extant, is

sufficient to prove that M* is complete and optimal.

3.3.1 Alternative Graph-Centric Description

M* differs from A* solely in the use of the limited neighbors when expanding a vertex
and the presence of the backprop function (Algorithm 1). The backprop function does
nothing unless a new path to a collision is found. Therefore, between discoveries of
new paths to collisions, M* behaves exactly like A* running on a search graph G5
which is a subgraph of the joint configuration graph G that represents the joint
configuration space.

The search graph G* consists of three subgraphs: the explored graph Ge®, the
neighbor graph G®", and the policy graph G¢ (Table 3.3). G®® is the portion of G
which has been searched by M*, G"P" represents the limited neighbors of the vertices
in G*P, and G? consists of the paths induced by ¢ that connect vertices in G™" to

vy. Only G™P is explicitly constructed, with G™" and G? being implicitly defined by
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G®P and the collision sets of the vertices in G**P.

We now describe the explored graph G®®, neighbor graph G**", and policy graph
G? in greater detail. The vertex set of G™P consists of all vertices which have been
added to the open list. When a vertex v, € G*P is expanded, its limited neighbors
Vibh are added to the open list, and thus to the vertex set of G™P. The edges
connecting v to each of its limited neighbors are added to the edge set of G*P.

The collision set of a vertex is a function of the paths that have been explored by
the underlying planner. G**P contains all such paths, and therefore encodes all the

information required to compute the collision set of any vertex vy.

U(op) | W(o) v €@
Cr = V€V (3.4)

@ Ulc ¢ Gexp

where Vi, = {vy | Im(vg, v) C G*P} is the set of vertices to which there exists a path
from vy, in G*P. If v, ¢ G*P, then M* has never visited vy, and thus v; has not been
explicitly constructed and thus ¥ (v) has not yet been computed. In accordance to
the optimistic assumption, vy is assumed to be collision-free, and C} is initialized as
the empty set. Therefore, a path in G*" may contain a vertex v, in G50\ G®P at
which robots collide. However, v, must be added to the open list, and thus to G™P,
before any such path could be returned. At that point, ¥(v;) would be computed,
leading to the out-neighbors of vj, being removed from G*", as per the definition of
the limited neighbors.

The neighbor graph GEP! is the subgraph of the joint configuration graph G*"

nbh

that represents the limited neighbors of vy € G™P. GYP contains vg, V;™P", and the

edges leading from vy, to the vertices in V", Let G™h = | J G and therefore

v, EGEXP
Gexp C anh

Because C), = () for all v;, which are not in the explored graph G, search from
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v € G™M\ G will proceed along 7, (vg, vy) until either vy or a vertex in GO
is reached. The resulting path segment is denoted W¢(vk), and is represented as a
subgraph Gf, whose vertex set is the set of vertices in 7T¢(’Uk), and whose edge set
contains each edge connecting a vertex in 7T¢(Uk) to its successor. Let the policy graph
be defined as G = Uy equvn ges GY.

G*M can now be defined as the union of G, the subgraph explored by M*; G"b",
the limited neighbors of vertices in G*P;and G?, the individually optimal paths
connecting vertices in G™™ \ G**P to v;. By the definitions of G™P, G"™™ and G?,
vertices and edges shift from G to G™", and from G™ to G*P as search progresses.
However, G*" as a whole only changes when the collision set of a vertex in G5

changes. See Figure 3.1 for an illustration of how the subgraphs change over time.

3.3.2 Proof of Optimality and Completeness

As demonstrated in the previous section, M* can be treated as alternating between
exploring the search graph G*" with A* and modifying G*" based on the partial
search results. Because A* is complete and optimal [77], M* is complete and optimal if
G5 will contain 7, (vs, vf) and no cheaper path after a finite number of modifications
or, if 7, (vs, vs) does not exist, G*" will be modified at most a finite number of times.

We proceed by showing that if no solution exists, M* will terminate in finite time
without returning a path. We then show that M* will eventually find the optimal
path if one of two conditions always hold: G*" contains the optimal path, or G5
contains an unexplored path containing a robot-robot collision which costs no more
than the optimal path. We complete the proof by showing that at least one of the

two conditions always holds.

L1f 7T¢(’Uk,’l)f) encounters a vertex in the explored graph G, then there may be some v, €
(g, vy) such that W(v,) # 0, with v, € GP. In such a case, 74(vy, vy) is not wholly within Gs°h,
For this reason, only the portion of 7r¢(v1€7 vy) prior to reaching a vertex in G*P is considered.
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Figure 3.1: The above figures depict how the explored graph G** and the search
graph G5 evolve in the configuration space. Vertices are represented as circles, with
arrows representing directed edges. G®*® is depicted by solid lines, while G5\ G is
depicted by dashed lines. G\ G5 is represented by dotted lines, with edges suppressed
for clarity. A vertex is given a bold outline when it is expanded, while filled circles
represent vertices with known robot-robot collisions. v is in the upper left, while v
is in the bottom right. In (a), (b), and (c), the most promising vertex in the open
list is expanded, until a collision is found. G™" is updated to reflect the new collision
sets in (d). The policy graph G? is updated in (e). In (f) a vertex is re-expanded,
having been added back to the open list when its collision set was changed. (g),
(h), and (i) see the most promising vertices in the open list expanded, until vy is
expanded, indicating that a path has been found.
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Lemma 1. If no solution exists, M* will terminate in finite time without returning

a path.

Proof. Assume no solution exists. As part of M*, A* is run on the search graph G5,
A* will explore all of G*" in finite time and conclude that no solution exists, except
if the A* search is interrupted by a modification of G". G* is only modified when
the collision set of at least one vertex in G*" is changed. Each modification adds
one or more robots to the collision set, and thus each collision set can be modified
at most n — 1 times; the first modification must add at least two robots. Therefore,
G5 can be modified at most (n — 1) % |V| times. Thus if no solution exists, M* will
always terminate in finite time.

We now show that M* will never return an invalid path containing a robot-robot
collision. A vertex v, has out-neighbors only if it is collision free, unless vy is not in
the explored graph G**. Before M* will return a path passing through vy, v, must be
added to the open list, and thus to G**. When v, which is not collision free is added
to the open list, G*" is modified to remove all out-neighbors of v, which removes any
path passing through v;, from G5®. Therefore, M* will never return a path passing
through a state at which robots collide. Thus, if no solution exists, M* will terminate

in finite time without returning a path [J. O]

Next, assume that an optimal collision-free path from v to vy exists, i.e. the joint
configuration graph G contains an optimal path 7, (vs,vy).
Lemma 2. If an optimal path exists, M* will find the optimal path in finite time if
one of two cases always hold

Case 1: The search graph G*" contains an optimal path, m,(vs, vy)

Case 2: The search graph G*" contains a path m(vs,v.) such that g (7 (vs,v.)) +

h(ve) < g(m,(vs,vy)), and 3 v, € w(vs,ve) such that V(v.) € Cp
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Case 2 implies the existence of a path which has not been explored by M* that leads
to a robot-robot collision at v., and which costs no more than 7, (vs, vy). If the path
had been explored, v, and v. would have been added to the open list and thus to the
explored graph G**P. In this case, Cj, would include all robots involved in the collision
at v., i.e. the robots in ¥ (v,).

To prove lemma 2, we proceed by showing that if case 1 holds, the optimal path
will be found unless a cheaper path containing a collision exists in the search graph
Gt i.e., case 2 holds (Lemma 3). We then show that M* will never explore a
suboptimal path to the goal as long as case 2 holds (Lemma 4), and that case 2 will
not hold after finite time (Lemma 5). We conclude by proving that either case 1 or
case 2 will always hold, demonstrating that the optimal path will be found (Lemma
7).

Lemma 3. If the search graph G*"* contains an optimal path (i.e. case 1 holds), M*

will find the optimal path, unless case 2 also holds.

Proof. 1f case 1 holds, running A* on G50 will find 7,(vs,vs) in finite time, un-
less there exists a cheaper path Tepeaper(Vs, V) C G, which we now show would
satisfies the conditions for case 2 to hold. Because 7, (vs,vs) is a minimal cost
collision-free path, Teneaper(Vs, V) must contain a robot-robot collision. Therefore
a vertex vy € Teneaper(Vs, Uf) must exist such that W (vg) # 0, and by (Equation 3.2)
9 (Teneaper (Vs, Vk)) + h(vg) < g(m,(vs,v¢)). The existence of a path through v, implies
that v, ¢ G®P, as a vertex containing robot-robot collisions has its outneighbors
removed when added to the explored graph G®*®. Therefore, C, = () by (Equation
3.4). Since ¥ (vg) Z Cy, vy fulfills the roles of both v, and v, in the definition of case

2. As a result, if case 1 holds, M* will find 7, (vs, vf), unless case 2 also holds® [J. [

#We note that if the equality g (7 (vs,v.)) + h(ve) < g(, (vs, v¢)) holds for case 2, then M* may
find the optimal path while both case 1 and case 2 hold. We gloss over this point in the main text,
as it ultimately does not change the logic of the proof.
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Lemma 4. If the search graph G**" contains an unexplored path cheaper than g(m,(vs,vy))

(i.e. case 2 holds), M* will not return a suboptimal path.

Proof. If case 2 holds, then 7(vg, v.) will be explored by A* and added to the explored
graph G®® before A* finds any path to vy that costs more than g(m,(vs,vy)) [T7].
Adding 7(vs, v.) to G=P will modify Cy. G5! will then be modified to reflect the new
limited neighbors of v, and A* will be restarted. Therefore, M* will never return a

suboptimal path as long as case 2 holds [. O

Lemma 5. The search graph G*" will cease to contain any unexplored path cheaper

g(m, (vs,v5)) (ie. case 2 will cease to hold) after finite time.

Proof. For case 2 to hold, there must be at least one vertex v, such that Cj, is a strict
subset of 1. G5! can be modified at most (n — 1) * |V| times before all collision sets
are equal to I. Therefore, after a finite number of modifications of G5 case 2 cannot
hold. A* will fully explore any finite graph in finite time, implying that the time
between any two successive modifications of G5 is finite. Therefore, case 2 will not

hold after finite time [J. O

With these auxillary results in hand, the proof of lemma 2 is as follows. If case
1 holds, then M* will find the optimal path in finite time, unless case 2 also holds
(Lemma 3). While case 2 holds, M* will not return a suboptimal path (Lemma 4),
and case 2 cannot hold after finite time (Lemma 5). Therefore, after finite time, only
case 1 will hold, implying that M* will find the optimal path in finite time.

To complete the proof of the completeness and optimality of M*, we must show
that case 1 or case 2 will always hold. To do so, we first need an auxiliary result
(Lemma 6) showing that the optimal path for some subset of robots costs no more

than the joint path taken by those robots in the optimal, joint path for the entire set
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of robots. The auxiliary result is used to demonstrate that an optimal path can be
found by combining optimal paths for disjoint subsets of robots.

Let g, (vg, vf) be the path constructed by combining the optimal path for a subset
Q) C I of robots with the individually optimal paths for the robots in I\ Q.
Lemma 6. If the joint configuration graph contains an optimal path m (vi,vs), then
VQ C I, g(mg(vk,vp)) < g(m,(vk, vf). Furthermore, if Q) C Qq, then g(mq, (v, vy)) <

9(mq, (v, vf))-

Proof. If 7, (v, vy) from an arbitrary vy to vy exists in G, then for any subset of robots

Q) there exists an optimal path 75(v{?, v?) which costs no more than the path taken

by those robots in 7, (vg, vf). Let © = I\ Q be the complement of 2 and W?(Ug, vfﬁ)
be the path for the robots in € induced by each robot obeying its individual policy.
Wﬁ(’l)kﬁ, vﬁ) costs no more than the paths taken by the robots in Q in 7, (vg, vs) by
the construction of the individual policies. A path for all robots in I, mg(vg, vy),

is then constructed by having each robot in € follow its path in W?(v,?,v?), while

each robot in Q follows its path in W?(vkﬁ, U?)

Since the individual path for each
robot in 7, (v, vf) costs no more than the path for the same robot in 7, (v, vy

),
9(mo(vk, vr)) < g(m,(ve,v5)). By the same logic, if Q1 C Qy, then g(mg, (vi, vy)) <

O

9(mq, (v, vy)) O

Lemma 7. The search graph G*" will always contain an optimal path (i.e. case 1
will hold) or an unexplored path which costs no more than the optimal path (i.e. case

2 will hold) at all points in the execution of M*.

Proof. We proceed by showing that the limited neighbors of each vertex in G5 are
sufficient to construct either the optimal path, or some unexplored, no more expensive
path. Consider the vertex v, € G*" with collision set Cj. The successor of vy in

76, (Uk, Uy), g, is a limited neighbor of vy, by the definition of the limited neighbors
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(Equation 3.2). Since C; C C) by (Equation 3.4), Lemma 6 implies

9(me, (vrs ve)) + g(me, (ve,vy)) <
(3.5)

9(me, (vr,v5)) < g(7m,(vk, vy))

We apply the above bound vertex by vertex from the initial vertex to show that a
path 7 (vs,vs) € G5 can be constructed which satisfies either case 1 or case 2. The
successor of the m’th vertex vy, in (v, vy) is the successor of vy, in mg, (v, vy). Ap-
plying (Equation 3.5) gives the bound g(7"(vs,vy)) < g(7mg, (vs,vf)) < g(m,(vs, vy)).
If 7"(vs,vf) = m,(vs,vy) then case 1 is satisfied. Otherwise, there is a vertex v, €
7" (vs,vy) such that ¥(v.) # 0. Let v, be the predecessor of v., which implies that
v, lies in 7g, (vp,vy). Then W(v.) € Cy, because by construction the robots in Cy do
not collide with one another in 7¢, (vy, vy). By (Equation 3.2), g(7"(vs, ve)) + h(ve) <
g(m" (vs,vy)) < g(m,(vs,vy)), which implies case 2 is satisfied.

There is an edge case which must be considered if case 1 does not hold. If 7" (vy, vy)
contains a vertex vy € GP with a successor v, € GP, () may not be a subset of
Cy, because no path exists from v to v, in the explored graph G***, so the bound
given by (Equation 3.5) does not apply. However, in this case the path induced by ¢
from v, must terminate at some vertex v, with ¥ (v.) # (). We construct a new path
by following 7" (v, vy) to vs, and then following 7, (vg, vf) to ve. The sum of the cost
of this path and h(v.) must be less than g(m,(vs,vs)), and ¥ (v.) € Cy, so case 2 still

holds [J. O]
Theorem 1. M* is complete and optimal.

Proof. If the joint configuration graph G does not contain an optimal path, then M*
will terminate in finite time without returning an invalid path (Lemma 1). If G does
contain an optimal path, then the search graph must always contain either the optimal

path, or an unexplored path which costs no more than the optimal path (Lemma 7),
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which implies that then M* will find the optimal path in finite time (Lemma 2). M*
will thus find the optimal path in finite time, if one exists, or terminate in finite time

if no path exists. Therefore, M* is complete and optimal [J. O

3.4 Performance Analysis

Consider M* running on a worst case problem where every robot interacts with every
other robot. Over time, the collision sets will grow until each collision set contains
every robot, at which point M* will reduce to A*. The question is then how much
additional overhead M* imposes in the most difficult problem instances compared to
A*. M* may expand each vertex up to n times; once when the collision set is empty,
and once when the collision set contains 2,...,n robots, where n is the total number
of robots. The computational cost of expanding a vertex with a given collision set
C' is proportional to the number of limited neighbors bl°!, where b is the number of
outneighbors of each vertex in the individual configuration graphs. Normalized to

the cost of a single A* expansion, b", the total cost of all M* expansions of a given

Zn: G) = Zn: (%) - 1_1(_%);1 < bf . (3.6)

i=0,i#1 i=0,

vertex is

using rules for the sum of finite and infinite geometric series. Therefore, repeated M*
expansions of a given vertex do at most a constant factor more work than a single
A* expansion of the same vertex.

Updating the collision set of a vertex takes time linear in the number robots, and
the collision set of each vertex may be updated at most (n — 1) times, and thus total
complexity of maintaining the collision sets may be O(n?|V|), where |V| is the total
number of vertices in the joint configuration graph. |V| is exponential in the number

of robots. In practice the cost of maintaining the collision set is not significant.
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3.5 Variants of M*

Several variants of M* with improved performance have been developed. Recursive
M* (rM*) breaks the collision set into independent subsets of robots that can be
planned for separately, reducing the maximum dimensionality of the search space.
Inflated M* uses an inflated heuristic function to reduce planning time, but returns
a path costing up to a specified factor more than the optimal path. ODM* and
EPEM* replace A* with Operator Decomposition (OD) [167] and Enhanced Partial
Ezpansion A* (EPEA*) [62], variants of A* tuned for multirobot path planning.
Recursive versions of ODM* and EPEM* can be created, resulting in ODrM* and
EPEM*, as well as their inflated variants. Finally, the performance of M* is sensitive
to choice of individual policies. The Meta-Agent Conflict Based Search framework
[157] can be employed to optimize the individual policies using rapid, decoupled
planning for individual robots, before applying ODrM* or EPErM* to sets of robots

requiring coupled planning.

3.5.1 Recursive M*

The M* algorithm described in 3.2 performs coupled planning for all robots in the col-
lision set, even when the collision set consists of spatially separated subsets of robots.
rM* finds an optimal, collision-free path for each such subset via a recursive call to
rM*. Such paths constrain the motion for each subset of robots in the same fashion
that the individual policies constrain the motion of individual robots. By separating
the planning for independent subsets of robots, the worst case computational cost of
rM* is exponential in the size of the largest set of mutually colliding robots, rather
than in the total number of robots found to collide with other robots.

Implementing recursive M* requires few modifications to basic M*. The colli-

sion set for v, in tM* becomes a collection of the largest disjoint sets that can be
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formed from the collisions reachable from v, in G®P. For example, if collisions in-
volving the sets of robots {1,2}, {2,3}, and {4,5} can be reached from vy, then
Cr = {{1,2,3},{4,5}}, instead of {1,2,3,4,5} as would be the case in basic M*. If
r" is not in any element of Cj, then it obeys its individual policy ¢°, as in M*. Oth-
erwise, r* follows the optimal path for the subset of robots in C}, to which it belongs,
as computed by a recursive call to rM*. The exception is if Cy = {I}, in which case
V is computed as usual for M*, using I as the collision set. This functions as the
base case of the recursive calls to rM*.

Recursive M* retains the optimality and completeness properties of M*. Each
disjoint set of colliding robots can be thought of as a single, high-dimensional meta-
agent. The recursive calls to rM* then serve to compute the individual policy for each

meta-agent. With these concepts in place, the proofs in section 3.3.2 apply to rM*.

3.5.2 Inflated M*

One problem with the basic M* implementation is that every time a new robot is
involved in a collision, it is added to the collision set of v,. Unless g(m,(vs, vy)) =
g(m?(vs,v5)), vs must then be re-expanded at a computational cost that is exponential
in the size of (. Inflating the heuristic by multiplying the heuristic by some € > 1
is known to significantly decrease the time A* requires to find a solution in many
cases [139] 25, 97, 132, [69]. Furthermore, the resultant path will cost no more than
€ g(m,(vs,vr)) [T). The logic in Section 3.3.2 can be extended to show that M* has
the same sub-optimality bound when used with an inflated heuristic.

An inflated heuristic benefits M* in two fashions. First of all, an inflated heuristic
biases the search towards the leaves of the search tree close to the goal, where a
solution is more likely to be found quickly, which is the source of benefit in inflated

A*. In addition, the vertices near the leaves of the search tree will generally have
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smaller collision sets. Therefore, an inflated heuristic will bias search to occur in a

region of the search space of low dimensionality.

3.5.3 Replacements for A*

A* is fundamentally limited for multirobot path planning because the number of out-
neighbors of a single vertex increases exponentially with the number of robots. A*
adds all out-neighbors of a vertex to the open list, even if many will never be expanded.
As a result, A* will run out of memory when dealing with systems containing even
moderate numbers of robots. OD [I67] and EPEA* [62] are variants of A* which
delay instantiating expensive neighbors, thus reducing the effective branching factor
of the graph. Replacing A* in M* with OD and EPEA* results in the ODM* and

EPEM* algorithms, respectively.

ODM*

In ODM*, A* is replaced as the underlying planner by Operator Decomposition, a
variant of A* developed explicitly for multirobot path planning. OD mitigates the
problem of growth in the number of out-neighbors by procedurally generating the
out-neighbors so that low cost neighbors are generated first, and high-cost neighbors
may never be instantiated. OD generates two types of search vertices; standard and
intermediate. A standard vertex represents the configuration of all robots in the
system. When a standard vertex is expanded, OD generates intermediate vertices
which specify all possible actions for the first robot. The cost and heuristic cost-to-go
of the intermediate vertices are updated to reflect the new position of the first robot;
then the intermediate vertices are added to the open list. When an intermediate
vertex is expanded, additional intermediate vertices specifying the action of the next

robot are generated. Standard vertices are generated once actions are assigned for the
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Figure 3.2: Operator Decomposition is used to solve a simple, 2 robot path planning
problem (a), where the robots move from vertices A1 and C1 to the goals B1 and
C0. Initially, the search tree contains a single, standard vertex { A1, C'1} (b). When
{A1,C1} is expanded, four intermediate vertices, denoted by dashed lines, are gener-
ated to represent the possible actions of the first robot. The intermediate vertex with
the lowest f-value is selected for expansion. Three vertices are created, representing
the actions of robot 2 which do not collide with the new position of robot 1. Since the
new position of all robots has been specified, these are standard vertices. The goal
vertex {B1,C0} has the lowest remaining f-value, and is expanded next, indicating
that a path has been found. [I55], adapted]
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last robot. This procedure results in the creation of standard vertices which represent
heuristically promising actions, such as each robot moving directly towards its goal,
before instantiating any less promising vertices. Typically fewer total vertices are
created, reducing the computational cost of finding a path.

Figure 3.2 illustrates the vertex expansion of operator decomposition for a problem
involving two robots. When coupled with an admissible heuristic, operator decom-
position is complete and optimal with respect to path cost. Thus, ODM* is also

guaranteed to find optimal paths.

EPEM*

In EPEM*, A* is replaced as the underlying planner by Enhanced Partial Expansion
A* a variant of A* that has been applied to single- and multi-agent planning [62].
EPEA* seeks to eliminate the generation of excess vertices, which have a f-value larger
than the cost of the optimal path and thus will never be expanded.

EPEA* sorts the open list based on the sum of the f-value of a vertex and an offset,
Af(v), which is initially set to zero. When EPEA* expands a vertex vy, it employs a
domain specific Operator Selection Function (OSF) to instantiate only those neighbors
of vy, whose f-value is equal to f(vg) +Af(vg). Af(vx) is then incremented, and vy, is
added back to the open list. As a result, no excess vertices will ever be generated.

For multirobot path planning, EPEA* uses an OSF which generates neighbors of
a vertex v in a two step process: allocating costs to specific robots and generating
neighbors. The offset of v, can be interpreted as an excess cost compared to the
heuristically optimal neighbor of v,. In the first step of expansion, EPEA* allocates
individual robots a specific amount of excess to incur. All neighbors of v, that match
the allocation of excess cost are then generated, and added to the open list. This
is more efficient than a direct search over all possible neighbors. Felner et. al. [62]

report that EPEA* outperforms A* and OD when solving dense multirobot path
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planning problems.

3.5.4 Policy Optimization

The performance of M* is very sensitive to the choice of individual policies when
many optimal paths exist for each robot. One choice of individual policies may result
in few collisions, while another choice may result in a large number of robots colliding
at a single bottleneck, preventing a solution from being found in reasonable time.
Therefore, it may be desirable to optimize the choice of individual policies prior to
starting M* search.

Meta-Agent Conflict Based Search (MA-CBS) [157] is a planning framework in-
troduced by Sharon et. al. based on their Conflict Based Search (CBS) planning
algorithm [I56], and generalizes the earlier Independence Detection (ID) algorithm
by Standley [167]. Conflict-Based Search explores a space of constraints on individual
robots, rather than the joint configuration space of the system. FEach search vertex
contains a set of constraints and the optimal path for each robot subject to the con-
straints. The constraints prohibit individual robots from occupying a specific position
at a specific time that would lead to interference with another robot.

At each step, the search vertex with the smallest total path cost is checked for
collisions between the constrained paths of the individual robots. If no collisions are
detected, then the optimal solution has been found. If a collision is found between
two robots at position ¢ and time ¢, the search tree branches. Two new vertices are
created, each with an added constraint prohibiting one of the involved robots from
occupying ¢ at time t. New paths are then computed for each of the involved robots
that obey the newly expanded set of constraints. When planning for an individual
robot, conflicts with paths of other robots are used for tie breaking: i.e. paths which

do not conflict with the paths of other robots are preferred, but no additional cost
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will be incurred to avoid such conflicts.

While the search space for constrained planning is of constant dimensionality, the
set of possible constraints grows exponentially. As a result, CBS performs poorly when
there are many alternate paths which require a large number of constraints to cover.
In such cases, it is more efficient to use coupled search to find a path for the effected
robots. MA-CBS [157] is an extension of CBS in which robots are permanently merged
into a meta-agent when the number of mutual constraints generated exceeds a merge
threshold B. Within a meta-agent, planning is conducted using a coupled planning
algorithm respecting the constraints placed on the meta-agent. Internal constraints
upon the constituent robots are removed when they are merged into a meta-agent,
although the new meta-agent inherits constraints that resulted from collisions with
agents not included in the meta-agent. MA-CBS with a given merge threshold B is
denoted as MA-CBS(B). Typically, smaller values of B work better in more open
environments with many alternate paths, resorting to coupled search earlier, while
larger values of B work better in more constrained environments. MA-CBS(0) is

equivalent to 1D [157].

Using ODrM* as the coupled planner for MA-CBS results in the MA-CBS+ODrM*
algorithm. The individual policies computed for ODrM* respect the constraints im-
posed on the meta-agent, and attempt to minimize conflicts with robots not in the
meta-agent. In this fashion, the individual policies are optimized to minimize robot-

robot conflicts.

ODrM* and MA-CBS complement each other well. MA-CBS can minimize the
total number of collisions via rapid, decoupled search, and is effective in narrow
bottlenecks which pose a problem for ODrM*, while ODrM* is more suited to open
regions than other coupled planners, as ODrM* will reject alternate, low cost paths

which cannot resolve collisions.
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Figure 3.3: Illustrative example of the computation benefit of M* compared with
A*, OD, or EPEA*. (a) Robots start at v{,v?, and v} and move to v}, v7 and v}

s§) 78
respectively. (b) EPEA™ must construct a search tree containing multiple alternate

paths before it can consider moving r! into the alcove. (c) M* does not need to
consider alternate paths for 7® before M* can consider moving 7! into the alcove.

3.6 Comparison of M* and Similar Algorithms

M* EPEA*, OD, ID and MA-CBS all exploit the same natural decomposition of
the multirobot path planning problem by exploring paths that minimize the costs
incurred by individual robots before considering more expensive paths. As a result,
there are a number of similarities in these algorithms. This section will describe
how M* differs from the other algorithms, and where M* can show a performance

improvement.

EPEA* and OD are both approaches that intelligently search the joint configura-
tion space. While EPEA* and OD can delay instantiating unpromising vertices, they
cannot identify and exclude unnecessary portions of the joint configuration space. By
tracking which robots collide where, M* can construct a search space that excludes
unnecessary regions of the joint configuration space. Consider a 3 robot example,
where r! and 72 must swap positions in a narrow corridor, while 73 is alone in an
open room (Figure 3.3a). Clearly, r* needs to wait for r! to enter the alcove, or

vice versa. However, such a path would have a greater f-value than the initial state.
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Therefore, before OD or EPEA* could consider such a path, they must first examine
all optimal alternate paths for 73, even though none of those paths could possibly re-
solve the conflict (Figure 3.3b). In the case of M*, 73 is not involved in any collision,
and thus will remain restricted to its individually optimal path (Figure 3.3c). M* can
therefore proceed immediately to considering alternate paths for the robots involved
in the collision, rather than waisting time on alternate paths for 3.

MA-CBS, ID and rM* share a common purpose: splitting the multirobot system
into independent subsets of robots. The approach rM* takes to splitting the system
is less sophisticated than that employed by ID and MA-CBS. When rM* detects
a collision between two robots, it immediately merges them to form a meta-agent,
instead of checking whether choosing a different individual policy of one of the robots
could avoid the collision, as MA-CBS or ID would do. However, rM* has much more
fine-grained control over the merging of robots. Once rM* resolves a collision between
the agents composing a meta-agent, it splits the meta-agent back into individual
robots, whereas once MA-CBS or ID generates a meta-agent, it remains merged. The
local merging of rM* will typically not reduce the peak dimensionality of the search
space, as v; accumulates all collisions and must be re-expanded if g(7,(vs,vy)) >
f(vs). However, it will reduce the number of vertices at which the search space will
have maximal dimensionality. Furthermore, the fine-grained nature of rM* allows it
to be used within the MA-CBS or ID frameworks as the coupled planner, thus gaining
the benefit of both the more sophisticated policy optimization performed by MA-CBS

and ID, and the local merging of agents that rM* provides.

3.7 M?* Results

To validate the performance of M* on systems of up to 200 robots, we turn to sim-

ulation. All simulations were implemented in python and run on a computer with
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Figure 3.4: A typical four-connected grid world with 32x32 cells for a test run includ-
ing 40 robots. Colored circles represent the initial positions of the robots, while goal
positions are marked with colored stars. Unfilled circles represent the obstacles.

an Intel Core 15-2500 processor clocked at 3.30 GHz (Turbo Boost disabled) with 8
GB of RAM. The test environment was a 32x32, four-connected grid of cells, with
a 20% probability of a given cell being marked as an obstacle, as in [167] (Figure
3.4). Unique initial and goal positions for each robot were chosen randomly within
the same connected component of the workspace. Any action by an individual robot,
including waiting, incurred a cost of one, although a robot could wait at its assigned
goal with zero cost. The existence of a wait action implies the presence of a self-loop

for each vertex v, € G, so that vy, is its own out-neighbor.

Each trial was given 5 minutes to find a solution. 100 random environments were
tested for a given number of robots. We present the percentage of trials that were
successful within 5 minutes as well as the median time required to find solutions. Run

time is plotted on a logarithmic scale.
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Figure 3.5: Results for A*, OD, EPEA* M* ODM* and EPEM* (a) and rM*,
ODrM*, and EPErM* (b). The plots on top illustrate the percentage of trials in
which a solution was found within 5 minutes, in a 32x32 four-connected grid world.
The bottom graphs the median time to solution.

3.7.1 M?*, Operator Decomposition and rM*

We start by comparing A*, OD, EPEA*, M*, EPEM*, ODM*, rM*, ODrM* and
EPErM* (Figure 3.5). The plateauing of the median time to solution plots is the
result of at least 50% of trials reaching the 5 minute time limit. Python’s CPU time
function has a resolution of one millisecond, resulting in solutions that take less than
one millisecond being reported as taking zero time, which cannot be represented on
a logarithmic plot.

As expected, A* demonstrated the worst performance, being unable to find solu-
tions for problems of 10 or more robots. A* was limited by the exponential growth

in the number of neighbors of a given vertex as the number of robots increases. OD,
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Algorithm Largest Collision Set Largs;ttigdé};leli?sgtsigbset
M* 9

ODM* 15

EPEM* 15

rM* 16 9

ODrM* 25 16

EPErM* 25 16

Table 3.4: Number of robots in the largest collision set encountered in a problem
solved by M*, ODM*, EPEM*, tM*, ODrM*, and EPErM* for systems of up to 40
robots in a 32x32 grid world. For rM*, ODrM*, and EPErM* the size of the largest
independent subset of the collision set for which coupled planning was successfully
performed is also reported.

EPEA*, M*, ODM* and EPEM* all show roughly similar performance. M* solved
the most problems with 15 robots, but decayed in performance rapidly until it under-
performed all other algorithms at 20 robots. OD generally underperformed EPEA*
M*, ODM*, and EPEM*, while EPEA* unexpectedly showed the best performance

for problems involving 20 robots.

The recursive variants of M* showed noticeable improvement over the non-recursive
approaches, and solved twice as many problems involving 20 robots as EPEA* (Fig-
ure 3.5b). Recall that rM* uses A* as the underlying planning algorithm, so that
rM* typically expands more vertices than ODrM* or EPErM*. Thus, we expected
ODrM* to solve more instances within the given time limit. ODrM* and EPErM*
solved twice as many problems involving 25 robots as basic rM*. The near identi-
cal performance of ODrM* and EPErM* can be accounted for by the similarity in
performance of OD and EPEA*.

The degree to which M* and its variants can solve problems which involve dense
interactions between many robots can be measured by the maximum size of the

collision set of v, encountered during a successful trial (Table 3.4). Recall that the
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collision set of vy accumulates all robots found to collide with another robot at any
point in the search. However, if g(7,(vs,vf) = g(my(vs,vf) then v, may not be
expanded with its largest collision set, depending on how ties are broken when vertex
f-values are compared. ODM*, ODrM*, EPEM*, and EPErM* were able to handle
larger collision sets than M* and rM*, which is to be expected because OD and

EPEA* could solve problems involving more robots than A*.

The recursive implementations solved problems in which roughly twice as many to-
tal robots were involved in collisions as the equivalent non-recursive implementation.
This is because the recursive implementations split the collision set into independent
subsets of robots, for which coupled planning is performed separately. The largest
independent subset of the collision set in the recursive implementations were equiva-
lent in size to the largest collision sets for which the non-recursive implementations
found solutions. Thus, while recursive implementations could solve problems involv-
ing more total robots, the number of robots which could interact in a single region of
the workspace, and thus require coupled planning, was determined by the underlying

planner.

3.7.2 Policy Optimization

We now present simulation results using the MA-CBS planning framework, and
demonstrate that integrating ODrM* or EPErM* provides state of the art results for
optimal multirobot path planning. MA-CBS is parametrized by a merge threshold
which must be tuned to a specific problem’s characteristics. MA-CBS+0OD, MA-
CBS+EPEA*, MA-CBS+0ODrM*, and MA-CBS+EPErM* were tested with merge
thresholds of 3, 10, 30, 100, 300, 1000 and 3000. MA-CBS+ODrM* and MA-
CBS+EPErM* performed best with a merge threshold of 1000, while MA-CBS+OD
and MA-CBS+EPEA* performed best with a merge threshold of 3000.

58



=-m CBS V-V MA-CBS(1000)+ODrM*
99 MA-CBS(3000)+OD A—A MA-CBS(1000)+EPErM*
@@ MA-CBS(3000)+EPEA*

100

Success Rate (%)
o
o)

%10 20 30 40 B0 60

Time to Solution (s)

=
o
(=

10 20 30 40 50 60
Number Robots

Policy Optimization

Figure 3.6: Results for CBS, MA-CBS(10)+0D, MA-CBS(20)+ODrM*, and MA-
CBS(30)+EPErM*. The plot on top illustrate the percentage of trials in which a
solution was found within 5 minutes, in a 32x32 four-connected grid world. The
bottom graphs the median time to solution.

The planning results for CBS, equivalent to MA-CBS(o0), MA-CBS(3000)40OD,
MA-CBS(3000)+EPEA*, MA-CBS(1000)+ODrM*, and MA-CBS(1000)+EPErM*
are given in figure 3.6. CBS outperformed MA-CBS(3000)+0D, MA-
CBS(3000)+EPEA*, which is not surprising given that the environment is very clut-
tered, which is where CBS is known to perform best [157]. The greater planning
power of M* allowed MA-CBS(1000)+ODrM* and MA-CBS(1000)+EPErM* to sub-
stantially outperform CBS, while the performance of MA-CBS(1000)+ODrM* and
MA-CBS(1000)+EPErM* were nearly identical. We note that on 8-connected grids,
where there are more alternate paths, the performance benefit of MA-CBS+ODrM*
over CBS and MA-CBS+0D becomes even more substantial [64].
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Figure 3.7: Results for A*, OD, M*, ODM*, rM* and ODrM* with a heuristic inflated
by 10% (a) and extended results to 100 robots for inflated ODM*, inflated rM*,
inflated ODrM*, and MA-CBS(20)+ODrM* without an inflated heuristic (b). The
plots on top illustrate the percentage of trials in which a solution was found within 5
minutes, in a 32x32 four-connected grid world. The bottom graphs the median time
to solution.

3.7.3 Inflated Heuristics

We tested A*, M*, EPEA* and variants of M* with a heuristic inflated by a factor
of 1.1 (Figure 3.7a). All algorithms were thus guaranteed to find a path costing no
more than 10% more than that of the optimal solution. Inflated A* was still unable
to find solutions for systems of 10 or more robots, as each vertex has ten million
neighbors. While the success rate for inflated OD, inflated EPEA* and inflated M*
all improved, M* benefited substantially more from an inflated heuristic than OD or
EPEA* did. Basic inflated M* was held back by inefficient neighbor generation for

larger collision sets, and thus performed on par with inflated EPEA*, but inflated
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ODM* and inflated EPEM* solved problems involving roughly twice as many robots.
The inflated heuristic concentrates search on the leaves of the search graph nearest
to the goal, providing a benefit to EPEA*, OD and M*. However, such leaves will
also have smaller collision sets, reducing the dimensionality of the search space for
M*, and accounting for the greater reduction in computation time for inflated ODM*
and inflated EPEM* compared to inflated OD or inflated EPEA*.

Inflated tM*, ODrM* and EPErM* show further improvements in performance,
as expected (Figure 3.7b). Inflated ODrM* and EPErM* were able to find solu-
tions more quickly, in more cases, and with a simpler implementation than MA-
CBS(1000)+ODrM*, reflecting the computational benefits of relaxing the require-

ment to find optimal cost paths, even if only slightly.

3.7.4 Comparison to Rule-Based Approaches

M* and inflated M* can find optimal or e-suboptimal paths to problems involving
many robots, but in the worst case the computational complexity of M* is still ex-
ponential in the number of robots. This raises the question of what benefits M*
conveys in practice in comparison to polynomial-time, rule based approaches which
do not provide bounds on path cost. To this end, we compared variants of M* against
a C++ implementation of Parallel Push and Swap (PPAS) graciously provided by
Sajid et al. [I5I]. The PPAS code was not optimized for performance or run time
Four variants of M* are used as points of comparison, MA-CBS(1000)+EPErM*,
which produces optimal paths, and inflated EPErM* with inflation factors of 1.1, 3,
and 10. The performance of inflated ODrM* was essentially the same as EPErM*,
so results for ODrM* are omitted. The failures of PPAS were the result of the
implementation tested crashing. While PPAS has only been shown to be complete

on trees, the observed failures are most likely the result of bugs in the provided code.
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Figure 3.8: Results for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation
factors of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top
illustrate the percentage of trials in which a solution was found within 5 minutes, in
a 32x32 four-connected grid world. The bottom graphs the median time to solution.
The failures of PPAS were due to the implementation being tested crashing.

All successful runs of PPAS terminated in under 6 seconds.

The mean path cost and mean makespan (time until all robots reach their goals)
of paths found by PPAS and M* variants are shown in figure 3.9. PPAS consistently
found paths of substantially greater cost than those found by EPErM* variants,
demonstrating the benefits of approaches which bound path cost. Note that the cost
bounds on inflated EPErM* are loose; while EPErM* (e = 10) could potentially find
paths that cost ten times the minimal cost, it generally finds substantially cheaper
paths. The results are slightly distorted by the fact that the mean cost and makespan
are only computed for trials for which a given algorithm was able to find a solution.
As a result, the mean makespan for EPErM* (e = 1.1) appears to decline for instances

involving more than 50 robots (Figure 3.9b), but this is an artifact of EPErM* (e =
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Figure 3.9: Path costs for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation
factors of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top shows
the mean cost of the paths successfully found by the algorithms. The bottom plots
show the mean makespan (time until all robots reach their goal). (a) Results for
trials of up to 40 robots. (b) Results for trials of up to 200 robots.

1.1) only solving the easier instances of those problems. However, the success rates
of PPAS and EPErM* (e = 10) are similar enough, especially up to 150 robots, for

the cost comparisons to be valid.

3.7.5 Fully Coupled Tests

In the previously discussed simulations, the environment was comparatively open,
allowing a substantial degree of decoupling between robots. To examine the perfor-
mance of M* in fully coupled environments, a series of tests were run in a 4x4 gird

world with up to 15 robots, equivalent to the 15 puzzle.

Six optimal approaches were tested, EPEM* EPErM* CBS, MA-
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Figure 3.10: Results for fully coupled tests on a 4-connected, 4x4 grid world, with (a)
optimal and (b) suboptimal and non-optimal algorithms. The plot on top illustrate
the percentage of trials in which a solution was found within 5 minutes, in a 32x32
four-connected grid world. The bottom graphs the median time to solution.

CBS(1000)+EPErM*, EPEA*, and MA-CBS(1000)+EPEA*® (Figure 3.10a). There
is a general trend that the more aggressively an algorithm exploits decoupling be-
tween robots, the worse its performance. EPErM* is out performed by EPEM*, and
EPEA* outperforms both EPEM* and CBS. MA-CBS(1000)-+EPEA* does outper-
form EPEA* for 13 robots, which we interpret as MA-CBS slightly simplifying some
problems before falling back on EPEA*.

Five e-suboptimal methods were tested; inflated EPEA*, inflated OD, inflated
EPEM*, inflated EPErM*, all with an inflation factor of € = 10. The e-suboptimal
methods were tested against PPAS, a non-optimal, rule based method. PPAS can

find solutions much faster than any of the e-suboptimal methods, but fails on all of

3The results for MA-CBS for fully coupled problems are insensitive to the merge threshold chosen
for MA-CBS

64



the 15 robot problems, because PPAS makes the assumption that there are always
at least two free vertices. The failures of PPAS at 10 robots were due to bugs in the
implementation that was tested. Inflated EPErM* performed the worst of any of the
e-suboptimal methods, due to the overhead of computing paths for disjoint subsets
of robots that were later invalidated due to collisions with other robots. Inflated OD
outperforms inflated EPEA*, which may be surprising given the performance of those
algorithms with a lower inflation factor of ¢ = 1.1 (Figure 3.7a). However EPEA*
generates all neighboring vertices of a given f-value at once, while OD iteratively
generates the neighboring vertices. High inflation factors bias search towards the
goal, causing OD to behave in a more depth-first manner, effectively generating a
single neighbor for a given state at a time. Goldenberg et al. [71] described but did
not implement optimal-generation variants of EPEA* which may mitigate the reduced
performance of EPEA* with large inflation factors. Inflated ODM* and EPEM* are
roughly a constant factor slower than inflated OD, but have similar success rates.
Note that even with a high inflation factor OD substantially underperforms inflated
EPErM* in less cluttered environments; in the 32x32 grid environment inflated OD

with € = 10 performs roughly on par with EPErM* € = 1.1.

3.7.6 Critical Densities

The median time to solution plots for M* have a character shape: the time to solu-
tion grows gradually as the number of robots increases, before hitting an inflection
point and rising sharply. The success rate typically drops sharply at or just before
the inflection point. This is particularly evident for inflated rM* (Figure 3.8). As
the dimensionality of the search space grows, the cost of exploring the search space
grows exponentially. Therefore, there should be a relatively sharp transition between

collision sets that define a search space small enough for M* to explore, and collision
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Figure 3.11: Histogram of the time to solution for inflated ODrM* with ¢ = 1.1. The
distribution is very peaked, indicating that either inflated ODrM* is generally able
to solve a problem rapidly, or it is not able to solve the problem at all in reasonable
time.

sets that induce too large of a search space. The inflection point is most likely a
result of the robots achieving a critical density at which the typical problem requires
at least one vertex with a collision set in the critical range to be expanded. Once
this point is reached, increasing planning time is unlikely to yield substantially more
solutions. The histogram of the time to solution for inflated ODrM* supports the
theory that there is a critical size of the collision set. If inflated ODrM* can find a
solution it will do so quickly, and otherwise it will time out without finding a solution

(Figure 3.11).
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Chapter 4

Subdimensional Expansion and

Probabilistic Path Planning

M* demonstrates excellent scaling with the number of agents in a multirobot sys-
tem. However, if a multirobot system is composed of individual robots for which
A* cannot quickly find paths, than M* is not appropriate for finding paths for the
multirobot system. Probabilistic planners such as Probabilistic Roadmaps (PRM)
[88] and Rapidly-Exploring Random Trees (RRT) [106] were developed to find paths
for robots with high-dimensional configuration spaces [24] and complex constraints,
which stymied conventional planners. For example, PRMs have demonstrated the
ability to find paths for the folding of proteins with more than 200 degrees of freedom
[6].

Probabilistic approaches have been applied to smaller multirobot systems by di-
rectly planning in the joint configuration space [35] 63| 152),153]. However, multirobot
systems are more challenging for probabilistic planners than a single robot with an
equivalent number of degrees of freedom because a candidate path segment must be

collision-free for all robots in the system. When the workspace is cluttered, the prob-

67



T —
r - *ok | %
| ¢
*
] o e} Q Q
(a) Individual PRM (b) Joint PRM

Figure 4.1: We show a PRM constructed in a single robot configuration space that
connects the initial configuration (box) to the goal configuration (star) for three
homogeneous robots, indicated by pattern. Circles are randomly generated samples
used to construct the PRM (a). We construct a PRM in the joint configuration space

of the three robot system by taking the tensor product of three copies of single robot
PRM (b).

ability that a given path segment is collision-free declines rapidly as the number of
robots in the system increases. For this reason, combining probabilistic planners with
multirobot path planning approaches, such as decoupled planning, can substantially
improve performance [41], [150].

In this chapter we apply subdimensional expansion to PRMs and RRTs, resulting
in the subdimensional Probabilistic Roadmap (sPRM) and subdimensional Rapidly-
Ezxploring Random Tree (sRRT) algorithms [195], respectively. sPRM and sRRT
combine the capability of probabilistic planners to find paths for robots with many
degrees of freedom with the ability of subdimensional expansion to construct a low-
dimensional search space for multirobot systems, permitting paths to be found for

large teams of complex robots.

4.1 sPRM: Subdimensional Expansion with PRMs

A PRM is a graph which provides a sparse description of the configuration which can

be constructed in a relatively small amount of time considering the dimensionality of
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the configuration space. A PRM is constructed by drawing random samples, called
milestones, from the collision-free configuration space of the system. The milestones
comprise the vertices of the PRM. A local planner is employed to find simple paths
between pairs of nearby milestones. If the path between a pair of such milestones
is collision-free, then an edge is added to the PRM connecting the two milestones.
A number of approaches have been developed to ensure that sufficient samples are
drawn from confined regions of the configuration space, such as narrow passages, to
ensure that the PRM will be connected 26|, [79] 198, 5], 52]. Once construction of the
PRM is completed, a path connecting two milestones in the PRM can be found using
a graph search algorithm, such as A* [88].

Path planning with PRMs thus poses two problems; how to construct a PRM
which covers the configuration space of the system of interest, and how to find a
path in the PRM once its construction is completed. Constructing a PRM in the
joint configuration space of a multirobot system is difficult, as two milestones cannot
be connected if a single robot collides with an obstacle on the path generated by
the local planner, so the probability that two milestones can be connected declines
rapidly as the number of robots increases. Svestka and Overmars [I78] showed that
a PRM covering the joint configuration space, termed the joint PRM in this thesis,
of a multirobot system can be computed efficiently by taking the Cartesian product
of PRMs constructed in the configuration space of each robot (Figure 4.1). Unfortu-
nately, the number of vertices in the joint PRM, grows exponentially with the number
of robots, which makes finding a path in the joint PRM difficult. Svestka and Over-
mars [I78] employed a hierarchical subgraph decomposition of the joint PRM to find
a path, which only permitted a single robot to move at any time, and only considered
systems of up to 5 robots. In sPRM, a joint PRM is constructed according to the
method of Svestka and Overmars [I78], then M* is used to efficiently find a path for

the multirobot system in the joint PRM.

69



sPRM follows the lead of Svestka and Overmars [I78] by constructing an individual
PRM G in the configuration space Q' of each robot r*. The initial and goal configu-
rations of the robot, ¢’ and q;} are used as milestones in addition to random samples
(Figure 4.1a). Since the PRM is constructed for a single robot, collision checking only
considers robot-obstacle collisions. Homogeneous robots can share copies of a single
PRM, in which case the initial and goal configurations of all of the homogeneous
robots are used as milestones. Construction of the individual PRM is completed once
each initial configuration lies in the same connected component as its associated goal
configuration.

Just as A* is used to find a path in a single robot PRM, M* (Section 3) is used to
find a collision-free path for the multirobot system. The joint PRM G which covers
the joint configuration space is defined as the direct product® of the individual PRMs
(Figure 4.1b), but is not explicitly constructed. Instead, M* incrementally constructs
a low-dimensional search graph G*" during the course of searching for a path, as
described in section 3.3.1. Edges are only checked for robot-robot collisions when
explored by M*, providing some of the benefits of lazy collision checking described
by Bohlin and Kavraki [24]. Furthermore, the joint PRM is free of robot-obstacle
collisions by construction, so the collision checker only has to check for robot-robot
collisions. In this manner, planning to avoid robot-obstacle collisions is decoupled
from planning to avoid robot-robot collisions.

Svestka and Overmars [I78] proved that if a collision-free path for the multirobot
system exists, the probability that the joint PRM contains a collision-free path goes to
1 as the number of milestones used to construct the individual PRMs goes to infinity.
M* is complete 3.3.2, and thus will find a collision-free path in finite time, if such a

path is contained in the joint PRM. Therefore, we can conclude that the probability

Here we diverge from Svestka and Overmars [I78] who formed the joint PRM using the Cartesian
product. The Cartesian product allows a single robot to move at a time, while the direct product
allows multiple robots to move simultaneously
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that sPRM will find a collision-free path goes to 1 as the number milestones used
in the individual robot PRMs goes to infinity, a property known as probabilistic

completeness.

4.2 sRRT: Subdimensional Expansion with RRT's

RRT's were introduced by LaValle and Kuffner as an efficient single-query planner for
high dimensional systems [106]. RRTs construct a search tree rooted at the initial
configuration of the system. The tree is extended in a three step process. First, a
random sample is drawn from the configuration space. A local planner then attempts
to extend a path from the nearest vertex in the search tree towards the random
sample. Finally, the local path is tested for collisions. If no collisions are found, the
final configuration of the local path, which may not be the same as the random sample
depending on the local planner, is added to the search tree. Because the search graph
is a tree, a path from the initial configuration to the goal can be easily retrieved once
a configuration sufficiently close to the goal is added to the tree.

sRRT uses the subdimensional expansion framework to guide the construction of
an RRT for multirobot systems. sRRT starts by computing the individual policy
for each robot r¢ by growing an RRT tree T°, denoted a policy tree, from the goal
configuration ¢ of 7* in Q°. Since the policy tree is grown backwards from the goal
configuration, the parent pi of ¢i in 7* is the next step on the path defined by ¢*

from ¢! to the goal.

&' (qr.) = .- (4.1)

If g, & 7", T"is first grown until the policy tree is connected to g.. In practice, it is
best to connect ¢i to T* using bidirectional search: attempting to make a connection

between T* and a tree grown from ¢} as in RRT-Connect [101].
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Figure 4.2: (a) A random sample ¢; is projected onto the search space in the Voronoi
region of the vertex qp. A three robot configuration space is visualized by showing
the coordinates of each robot side by side. ¢, gives the location of the ith robot in g.
The arrow points along the individual policy from g to the next configuration ¢(qx).
The circles show the random sample ¢, before any projection. (b) Cj = 0, so each
robot is restricted to its individual policy, resulting in the projected sample ¢.. (c)
Cy = {r!,r?*}. Therefore, only robot 73 is restricted to its individual policy, resulting
in the projected sample ¢”
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Path planning for the full system is performed by growing a tree 7; forwards in the
joint configuration space, from a root vertex at the initial system configuration ¢,. The
expansion of 77 is restricted to the search space @Q*" determined by subdimensional
expansion. The search space is constructed by identifying each vertex ¢, € Ty with a
local search space Q5" = {q | ¢' = ¢*(¢.)Vi & Ci}, which is the set of configurations
which can be reached from g, when the robots not in C} obey their individual policy.
The choice of search space causes each robot to flow along its policy tree towards
the goal, while allowing robots involved in robot-robot collisions to depart from the

policy tree to find a path around the collision.

To grow T, random samples must be drawn from Q*". sRRT generates samples
¢, in Q" by first drawing a random sample ¢, from the joint configuration space,
then projecting ¢, onto Q. Let ¢, € T; be the nearest vertex to ¢,. ¢, can be
projected onto Q™™ by replacing the coordinates for each robot not in Cj, with the
coordinate for that robot’s next step along its individual policy from g

§ q e Gy
=9 ' (4.2)
¢'(qr) 1" ¢ Ck
where ¢/ is the coordinate for the i’th robot in ¢, (Figure 4.2). ¢, can be thought of

as determining how each robot in the collision set deviates from its individual policy.

Once a sample is generated, the local planner finds a path from g, towards ¢,
which is then checked for robot-robot and robot-obstacle collisions. If 7% is found to
be involved in a robot-robot collision, 7% is added to C, then recursively added to
the collision set of the parent vertex of g, in a manner analogous to the backprop
function in M* (Algorithm 1). As in M* growing the collision sets increases the

dimensionality of the search space, to ensure that a collision-free path can be found.
We note that sSRRT bears a resemblance to bidirectional algorithms such as RRT-
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Connect [I01]. RRT-Connect attempts to connect a forward tree grown from the
initial configuration to a back tree grown from the goal configuration of a system.
7T; in sRRT resembles the forward tree of RRT-Connect, while the policy trees as a
group resembles the back tree. However, the back tree in RRT-Connect and the policy
trees in sSRRT serve different purposes. The back tree in RRT-Connect is grown in
the configuration space of the full system, and is intended to assist finding paths in
environments where planning from the goal is easier than planning from the initial
configuration. The policy trees are grown in the configuration spaces of individual
robots, and are intended to decouple planning to avoid robot-obstacle collisions from
planning to avoid robot-robot collisions. The policy trees can quickly find a path for
each robot to its goal configuration which avoids robot-obstacle collisions, because
the dimensionality of the individual robot configuration space is much smaller than
the dimensionality of the joint configuration space of the multirobot system. The
policy trees guide the construction of 7; towards the goal configuration, so that only
robot-robot collisions must be resolved. The projection defined by (Equation 4.2)
ensures that 7; only explores new paths for robots that would otherwise interact,
minimizing the dimensionality of the search space, and thus the computational cost

of finding a path.

4.3 Simulation Results: sPRM and sRRT

sRRT and sPRM were tested in simulation on teams of kinematic three link robots.
Each robot has a five-dimensional configuration space (z,y, 0, a1, as), with (z,y,0) €
SE(2) specifying the position and orientation of the central link, and oy, ag € [—7/2, 7/2]
specifying the angle of each joint (Figure 4.3). Each link has length 2. The robots
are permitted to translate and rotate freely.

10 random test environments were created, each 90x90 and containing 25 square
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Figure 4.3: Depiction of the three link robot used to test sSRRT and sPRM

obstacles with sides of length 2. The initial and goal configurations were chosen
randomly, with each test case run 10 times. We present the percentage of trials that
were successful within 5 minutes as well as the median time required to find solutions.
Run time is plotted on a logarithmic scale. We compare sRRT with RRT-Connect
[T0T] and sPRM using inflated ODrM* with an inflation factor of 10 (Figure 4.4).
sPRM had the highest success rate, followed by sRRT and RRT-Connect.

4.4 Conclusions

The greater effectiveness of sSPRM compared to sRRT and RRT-Connect for systems
consisting of large numbers of robots can be attributed to three factors. In sPRM,
robot-robot coordination is conducted on a discrete graph, while in SRRT coordination
is performed in a continuous space, which is generally more difficult. Furthermore,
the graph used by sPRM is known to be free of robot-obstacle collisions, decoupling
coordination from obstacle avoidance, while SRRT must consider both robot-robot
and robot-obstacle paths when coordinating robots. sPRM also shares more com-

putation between robots. In the case of homogeneous robots, a PRM grown in the
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Figure 4.4: Results for RRT-Connect, sSRRT and sPRM. The plots on top illustrate
the percentage of trials in which a solution was found within 5 minutes. The bottom
plot shows median time to solution.

configuration space of one robot can be used to generate individual policies for all
robots, while sSRRT must grow a separate policy tree for each robot. Also, when
sPRM checks whether two robots can traverse a given pair of edges without collision,
the result can be cached for use whenever that pair of edges are traversed, regardless

of which robots are involved.

For problems involving lower numbers of robots, sSPRM takes comparatively more
time to find a solution than the RRT based approaches, because of the necessity
of constructing a sufficiently dense roadmap prior to calling ODrM*. While sRRT
and RRT-Connect continue to construct new paths for individual robots throughout
planning, the set of all possible joint paths that will be considered by sPRM is fixed
once sPRM stops work on the individual robot roadmaps and calls ODrM*. While

sPRM could call ODrM* immediately after the initial configuration of each robot is
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connected to its goal in the individual robot PRMs, a denser roadmap is desirable.
The initial configuration and goal configuration in the joint PRM are not necessarily
connected once the initial and goal configurations are connected in the single robot
PRMs;, as the single robot PRMs do not consider robot-robot collisions. Determining
that no solution exists for a multirobot system in the joint PRM is an expensive
operation, even using inflated ODrM*. Therefore, it is better to spend the time to
construct a denser joint PRM that will be connected, rather than spending a long
time determining that a sparse joint PRM is disconnected and in need of extension.

Furthermore a sparse, but connected roadmap, may contain only one of multiple
paths through a given field of obstacles. Such bottlenecks result in many robots
interacting in a small area, which forces ODrM* to operate in a high-dimensional
search space, and significantly increases the cost of finding a path for the multirobot
system. A denser roadmap, containing multiple paths through a given region of space,
will tend to spread out the individual robots, thus reducing the computational cost

of finding a path.
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Chapter 5

Constraint Manifold Subsearch

Many interesting problems, such as automated assembly or observation of multiple
targets, involve tasks where robots may temporarily come together to form teams.
Handling the dynamic formation and dissolution of these robot teams requires solv-
ing two problems: scheduling and assigning robots to teams, and coordinating the
motions of many robots as independent agents and as parts of varied teams. In this
chapter, the assignment of robots to tasks and the order in which tasks must be
executed are assumed to be provided a priori, and the focus will be on finding high-
quality, collision-free paths for large numbers of robots that can dynamically form

teams. We term the result the Cooperative Path Planning (CPP) problem.

In this chapter, we introduce an algorithm for solving CPP problems called Con-
straint Manifold Subsearch (CMS) [194], based on the M* MPP algorithm (Chap-
ter 3). CMS operates by temporarily merging the agents in a team into a single
meta-agent whose configuration space is the constraint manifold of the task, i.e. the
subspace of the team configuration space that satisfies the constraints of the task.
CMS is complete and guaranteed to find the optimal solution. Alternatively, CMS

can accept e-suboptimality in return for greatly reduced planning time. Following
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the example of tM*, we show that planning time can be further reduced by splitting
the CPP problem into independent subproblems, leading to the recursive Constraint

Manifold Subsearch (rCMS) algorithm.

5.1 Prior Work

Solving the CPP problem requires solving two qualitatively different problems: co-
ordinating the simultaneous motion of many teams of robots [64, 194] [62, 157, 167]
and finding paths for the robots within a team that satisfy the constraints of the task
being executed. While there has been a large amount of work in formation control
[13), [16, 17, [18, 19, B39} 44 57, 107, 109 121 [122], 145, 127, 166, 193], 203] and coop-
erative manipulation [4, 37, 53, [66, O3] 01, 147, 202], little work has been done in the
context of path planning with the dynamic formation and dissolution of teams. We
review some of the notable exceptions which have inspired our work here.

Ayanian and Kumar [10], Desaraju and How [54], and Bhattacharya et al. [22]
developed CPP planners that could plan for systems where multiple teams form and
persist for significant durations. Ayanian and Kumar [10] solved problems where
robots must remain in close proximity to the other robots in its team by searching
the prepares graph of controllers in a sequential composition framework [31], and
later extended the work to consider dynamic formation and dissolution of teams
[8], but this algorithm did not scale well to larger numbers of robots or consider
the dependencies between teams introduced by subsequent teams sharing robots.
Bhattacharya et al. [22] and Desaraju and How [54] both developed CPP algorithms
that operate incrementally by adjusting the path of one robot at a time to better
match the constraints imposed by the tasks. Desaraju and How [54] developed DM-
RRT, a decentralized algorithm where a single robot was allowed to replan its path

to better match the task constraints. DM-RRT scales well with increasing numbers
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Goal

Start

Figure 5.1: A cooperative task 77 is defined by a set of robots R’ that will perform
the task, an initial joint configuration ¢/ at which the robots can start execution of
the task, a joint goal configuration q; at which the task is considered complete, and
a set of inter-robot task constraints €’ (red, dashed arrows) which must be satisfied
during execution.

of robots, but guarantees neither completeness nor optimality. Bhattacharya et al.
[22] repeatedly replanned paths for individual robots while gradually increasing the
cost of violating task constraints. The resulting approach can be shown to eventually
converge to the optimal path, but does not scale well with increasing numbers of

robots.

5.2 Problem Definition

The objective of the CPP problem is to find a high quality, collision-free path for a set
of n robots 7%, i € {1,2,...,n}, such that the robots complete a set of m cooperative
tasks 77, j € {1,2,...,m}. Each task 77 is represented by a tuple (Rj,qg,qfc, (’:j)
where R7 is the set of robots assigned to perform the task, ¢/ is the joint configuration

of the robots in R’ at which the task execution can begin, qfc is the joint configuration
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of robots at which the task can be completed, and €7 is a set of task constraints that
the robots in R7 must satisfy during task execution (Figure 5.1). We use 77 to denote
both the task and the team of robots that performs the task. To simplify notation,
robots are assumed to always be part of a team. If a robot is operating independently

of other robots then it is assigned to a singleton team with no constraints.

Each robot r® has an ordered task list that contains the tasks assigned to the
robot, such as delivering a large load or driving a rivet, in the order of execution.
The robot may have to form a team with a different set of robots to perform each
task. The task lists must be consistent, i.e. the ordering of the tasks for the entire

system cannot induce any cycles.

When a team is at its goal configuration it can take an explicit transition action
to complete its task and allow its constituent robots to form new teams for the
next tasks in their task lists. If the forming teams, T™, created by the transition
action contain robots from multiple teams, termed the dissolving team T4, then the

transition action must be taken simultaneously by all of the dissolving teams.

CMS seeks to minimize the sum of the costs of the paths taken by each team,
where the cost of a team’s path does not depend on the path of any other team. CMS
assumes that a team incurs a non-negative cost for each action. CMS also assumes
that 7% can wait at its goal configuration at zero cost if it is unable to perform the
transition action due to one or more of the other associated dissolving teams not
being at their goal configuration. All solutions to a given problem will contain the
same transition actions, which therefore incur zero cost Finally, CMS assumes that

robots incur zero cost for waiting at the goal configuration of their final task.
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is assigned the task list [r1], r? is
, and 7% is assigned to [7%,7,7°]. Note that ¢} = ¢}, so 7° is
represented by a single vertex in V& (blue), and has no corresponding vertex in V'™

(red). The transition vertices are the gray squares.

Figure 5.2: Example of a task graph. Robot r

assigned to [12, 7%, 79]

5.2.1 The Task Graph

In the MPP problem a robot r¢ only impacts the path taken by 7 if 7/ must alter
its path to avoid a potential collision with r*. In the CPP problem, the dependencies
between teams are more complex, as a team can only form after an earlier set of teams
complete their task, and a team can only complete its task once the other dissolving
teams are at their goal configuration. We encode the dependencies between teams in
a task graph, a common tool in the task scheduling community [74, [80].

The task graph G5t = {V'm V&l V& [stl s a directed tripartite graph with three
types of vertices. Team 7' is represented by the vertex 77 € V'™ before 7% reaches its
goal configuration and by Tgil € V&l after reaching its goal configuration for the first
time. If ¢} = ¢}, for instance because 7* is a single robot that must wait for another
team to arrive to form its next team, then the task graph contains 7/, but not 7/,,. The
transition vertices v,. € V'™ represent transition actions. Let v, € V'™ U Ve U VT
denote an arbitrary vertex in the task graph.

i

In the sequel, 7° may represent 7/, , Tq1» OF the team throughout the execution of
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its task, depending on context. This notation, while ambiguous, will substantially
simplify the later description of CMS by removing the need to constantly refer to

whether a given team has reached its goal configuration.

The edges in the task graph are formed as follows. Consider a team 7°. If ¢¢ = qu,
then it is represented by a single vertex Tgil € Ve as the team starts at its goal
configuration. Otherwise, the team is represented by two vertices; 77, € V'™ and
T;l € Ve with an edge connecting 7/ to T;l. Assuming 7% is not the final task for
its constituent robots, 77, is connected by an edge to the transition vertex v,, for
which 78 € T4, Similarly, unless 7% is the first task (including singleton tasks) for
its constituent robot, an edge connects the transition vertex for which 7% € 7™ to

'Z: . . . l .
7., if it exists, or Tl otherwise.

There is a natural partial ordering on vertices of the task graph wherein a vertex
vl € G is dominated by vl € G, denoted v?,, < vl . if there is a path in G
from vl to vl or vl = vl . Two vertices are incomparable if there is no path
between them in G. A team 7¢ is dominated by a vertex vf , if the vertex in V'™ or
Vel corresponding to 7% is dominated by vf . Finally, a team or transition vertex is
dominated by a set of task graph vertices if it is dominated by at least one element of
the set. The partial ordering has a fairly simple intuitive meaning. If 70 < 77,4 # j
then 7! must complete its task before 77 can form, while incomparable teams can
coexist. If vf,, is a transition vertex, then all teams dominated by v , must finish

their tasks before the transition corresponding to v, can occur.

The path taken by 7¢ from its initial configuration to its goal configuration directly
depends only upon the paths of the teams with which 7% potentially collides. However,
the teams with which 7¢ potentially collides depend upon when 7¢ forms and when it
completes its task. As a result, the path taken by 7¢ is affected by the path taken by

77 in three cases.
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1.7 <7i#]
2. CMS finds a potential collision between 7¢ and 77

3. The successor of 7% and 77 in the task graph is the same transition vertex

In case 1, 77 < 7% implies that 79 must dissolve before 7¢ can form. Changing when
7t forms will effect its position relative to the other teams. As a result, the optimal
path may require 77 to take a short, expensive path so that 7¢ can complete its task
before a potential collision with a third team could occur. Case 2 is straight forward,
as if 7 and 77 potentially collide, then 7° or 77 must alter their path to avoid the

potential collision.

Case 3 implies that 7¢ and 77 must take a common transition action to finish their
tasks, which can only be done when all the associated dissolving teams including 7°
and 77 are at their goal configurations. If 7% collides with a third robot before 7°
reaches its goal configuration, then 7¢ could not have taken a transition action to
avoid the collision regardless of the configuration of 77, so altering the path of 77
would have no impact on resolving the collision. However, if 7¢ had ever reached its
goal configuration before colliding with a third robot, then there is at least one step
at which 7% could have taken a transition action, and thus altering the path of 77 may

be required to resolve the collision at minimal cost.

Consider an environment containing a crevasse that can only be crossed if teams
7! and 72 combine to form 72. Furthermore, 72 has two possible paths: a long, cheap
path around a sand dune; and a short, expensive path over the sand dune (Figure
5.3). If 71 potentially collides with 7* before 7! reaches its goal configuration (Figure
5.3a), then 7! never had a chance to cross the crevasse before the collision no matter
what 72 did. Therefore the potential collision between 7' and 7* can be resolved
without including 72 in the coupled planning. Now alter the problem so that 7! is

already at its goal configuration, and the potential collision between 7! and 74 occurs
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(a) (b)

Figure 5.3: Teams 7! and 72 must combine to form 73 to cross a crevasse (gray). 72
has two possible paths: a long, cheap path (green arrow) around a sand dune (tan); or
a short, expensive path (red arrow) across the dune. (a) If 7* collides with 7! before
7! reaches its goal configuration q}, then the collision can be resolved without altering
the path of 72. (b) If 7* collides with 7! after 7! had reached its goal configuration,
then the optimal path may require 72 to take its shorter, more expensive path so that
7! and 72 can merge to form 73 and cross the crevasse before the potential collision
between 7! and 7.

before 72 would reach its goal configuration while following the long, cheap path, but

after 72 would reach its goal along the short, expensive path. The individual policies

2 1

will always send 72 along the cheaper path. If altering the paths of 7! and 7% is
sufficiently expensive, then the optimal path would be for 72 to take the short and
expensive path, allowing 7! and 72 to form 72 and cross the crevasse before 74 would
potentially collide with 7!. Thus resolving a potential collision between 7! and 74
requires coupling planning with 72, but only if 7' had reached its goal configuration

before the potential collision.

5.3 Planning on Constraint Manifolds

At its core, CMS takes an existing multirobot path planning algorithm and modifies

its search space to quickly find a path that satisfies the task constraints. More specif-
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Figure 5.4: Certain cooperative tasks may be incompatible with the joint configu-
ration graph of the robots executing the task. (a) A regular grid is an appropriate
discretization of the configuration graph of a fully-actuated planar robot. The arrows
show the actions permitted by the abstraction: horizontal and vertical translation.
(b) A team of three robots can translate a common load, represented by the ellipse,
with the translation actions afforded by the discretization. (c) The red arrows indi-
cate the necessary actions of the robots to rotate the load, but such actions are not
afforded by a grid discretization.

ically, CMS plans for each team in the constraint manifold' of the associated task,
the subspace of the joint configuration space of the constituent robots that satisfies
the task constraints.

The CPP problem can be naively solved by conventional MPP algorithms if the
action set is augmented with the actions needed to form or dissolve teams. Violations
of the task constraints can then be treated simply as a robot-robot collision. For
instance, if a pair of robots is carrying a rigid body and one robot moves too far
away from the other, the multirobot path planning algorithm would treat that state
as being invalid just as if the first robot had run into the second.

Such an approach would face two serious problems. First, the actions afforded to
a team by the joint configuration graph may not be sufficient to complete its assigned
task. Figure 5.4 shows a simple example of a joint configuration graph that only

allows horizontal and vertical translations, preventing the robot team from performing

! Constraint manifold is a term of convenience: CMS can solve problems where the task constraint
is satisfied on a subspace that is not a manifold.
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a rotation. The second problem is that the constraint manifold of a task is typically
of lower dimensionality than the team configuration space in which it is embedded.
For instance, the constraint manifold for ten planar robots carrying a rigid body is
a 3 dimensional space, rather than a 20 or 30 dimensional space. As a result, most
configurations in the team configuration space will violate task constraints. Planning
a path for the team would thus require expensive, coupled planning for all of the
robots in the team, and would be equivalent to constructing the constraint manifold
by exhaustive search.

The constraint manifold for a number of interesting tasks can be exactly com-
puted. For instance, the constraint manifold for a team of planar robots carrying
a rigid body is isomorphic to SE(2) and can be parameterized by the position and
orientation of the load. Cohen et al. [42] showed that the constraint manifold for
dual-arm manipulation by a PR-2 robot is a simple 6 dimensional subspace of the full
14 dimensional configuration space. CMS exploits such exact descriptions of the con-
straint manifold by restricting robots executing a cooperative task to the constraint
manifold.

CMS restricts a team of robots to the constraint manifold of a task by temporarily
replacing the robots with a single meta-agent whose configuration space is the associ-
ated task’s constraint manifold. Let ¥; : M? — @’ be the embedding that maps the
constraint manifold M? to the joint configuration space @’ of the robots in a team
. M. = Vi (ql) is the position of the team in the constraint manifold where the

%

robots start executing task 7¢, and Mol

= \Ifi_l(qjc) is the position of the team in
the constraint manifold where the task can be completed.

For the purpose of planning, the constraint manifold associated with each task is
discretized. The constraint manifold M® of team 7 is represented by the weighted

directed graph G% = {Vi, E'}, termed the manifold graph. Each vertex in the

vertex set Vi, represents a configuration on the constraint manifold, while each edge
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in the edge set F’, represents valid transitions between configurations. The weight

of an edge represents the cost of the action associated with the edge.

5.4 Constraint Manifold Subsearch

CMS is an extension of M* (Chapter 3) to solve the CPP problem. The following
changes to M* are necessary to track task completion and reason about the com-
plex robot-robot interactions in the CPP problem. The joint configuration graph
is replaced with the task augmented joint configuration graph G®"¢, that tracks the
state of task execution and contains additional edges corresponding to team disso-
lution/formation events. Secondly, individual policies are computed for each team,
rather than for each robot. The heuristic function and the limited neighbors are
modified to account for transition actions. Finally, the collision set is replaced with
the conflict set and the coupled set which capture the more complex dependencies

between teams of robots.

5.4.1 The task augmented joint configuration graph

The graph explored by CMS must track the progress the system makes in execut-
ing tasks, to determine the feasible actions of each robot and the optimal behavior.
Therefore, CMS constructs and searches G*"¢ which tracks the active teams and their
positions. Each vertex in G*'¢ represents a set of ordered pairs (7%, v%,) which con-
tains each active team and the vertex in its manifold graph that represents the team’s
current configuration. Edges correspond to motion of the teams and changes in the
content of the active teams.

G*"¢ is the union of one active graph G**(T;>*) for every possible set of active

teams T2 and a transition graph G that captures possible transitions between
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* Joint configuration graph that represents the joint configu-

h h -
Search grap ration space

CMS Task augmented joint configuration graph that represents
the joint configuration space and the state of task execution

M* Cost for robots to reach their goals from their current

Heuristic ..
position

CMS Cost for the active teams to reach their goal configurations
and for all teams that dominate the active teams to complete
their tasks

& The robots that collide at v, or a successor of v; in the

Collisi t : .
OTHsIon 5 search tree and must consider alternative paths at vy

CMS 1. Conflict set: The teams that collide at v or a successor
of v, in the search tree
2. Coupled set: The active teams whose path impact the
teams in the conflict set, and thus must consider alternate
paths at vy

Table 5.1: Differences between M* and CMS

sets of active teams, i.e.

Gaus — U Gact (ﬁact) U Gtrans. (5 1)

act
T

An active graph G*°*(7,2*) describes the joint configuration space of a particular
set of active teams. G?°*(7,2°") is defined as the direct product of the manifold graphs

corresponding to teams in 7,2,

Gact Tact H Gz . (52)

T c Tact

assuming that each vertex v), in the manifold graph G%, is first replaced by the

ordered pair (7,v’,) to match the format of G*8. The cost of an edge in G**(T7;**)
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is the sum of the edge costs in the corresponding manifold graphs. Note that an
active graph does not contain any edge which takes a team to its goal configuration

for the first time, as such an action would alter the active teams?.

Such edges are
part of the transition graph instead.

The transition graph G*#" describes transition events where teams dissolve and
new teams form. The vertex set of G is the union of vertices in each active graph
and the edges in G"" connect different active graph components. An edge is added
to the transition graph from a vertex vy in two cases. In the first case, there is an
active team 7/, € T that has never reached its goal configuration and for which
there is an edge from v} to its goal configuration. The edge thus represents a transition
from 7 to T;l. Such an action incurs the same cost as traversing the corresponding
edge in the manifold graph of 7/,,. The second case is when the dissolving teams of
a transition node in the task graph are all at their goal configuration. Those teams
can take the transition action to form a new set of teams, resulting in a new set
of active teams. A single edge in the transition graph may represent multiple such
team transitions, while the teams that do not take the transition action move in their
manifold graphs as normal. Combining the active graphs and the transition graph to
form task augmented joint configuration graph produces a single graph that captures

all possible actions and sets of active teams in a CPP problem.

5.4.2 Algorithmic description of CMS

In this section, we describe CMS as a variant M* that can solve the CPP problem.
Recall that M* maintains an open list of vertices sorted by a lower bound on the

cost of any path passing through that vertex. In every planning step, M* expands

2Recall that we distinguish between a team that has never reached its goal configuration and one
that has reached its goal configuration at least once due to changes in dependencies between teams
(Section 5.2.1)
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the cheapest vertex v on the open list and adds its limited neighbors to the open
list. The limited neighbors are generated by considering all possible actions for the
robots in the collision set C}, of vy, while the robots not in the collision set take the
action specified by their individual policy. The process is repeated until the goal
vertex is expanded, at which point an optimal path can be recovered. To solve the
CPP problem, CMS searches the task augmented joint configuration graph while
altering how the individual policies and the heuristic function are computed, and
CMS replaces the collision sets with the conflict set and the coupled set to capture the
more complicated dependencies between teams of robots. To minimize duplication
this section assumes a good understanding of M*, which is described in detail in
chapter 3.

M* computes a single individual policy for each robot. In a similar manner, CMS
computes an individual policy ¢; for each team 7° that maps the configuration of 7¢ to
the action that would move 7¢ along an optimal path leading to its goal configuration
if there were no other teams. If the team is at its goal configuration the individual
policy is to take the team transition action, if the other dissolving teams are at their
goal configurations, or to otherwise remain in place.

CMS modifies the sum of cost-to-go heuristic used by M* to account for the cost
of sequentially performing multiple cooperative tasks. More specifically, let the cost
of executing a task 7 be the cost of following the individual policy ¢; of the team 7°
from the start configuration to the goal configuration of 7¢. Let the cost of finishing
7% at a vertex vy, be the cost of following ¢; from the configuration of 7¢ at v, to the
goal configuration of 7¢. The cost-to-go heuristic used by CMS is then the sum of
the cost of completing the tasks of the active teams and the cost of executing the
individual policies of all tasks that have not been started.

In M* the collision set of a vertex defines the set of robots for which planning must

be locally coupled, i.e. the robots that are allowed to explore alternative actions to
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their individual policies. CMS defines collisions in terms of teams. Furthermore, the
active teams at a state preceding the collision may not include the colliding teams,

but the preceding teams can still influence the paths of the teams that collide.

To account for dependencies between successive teams, CMS breaks the collision
set into two components: the conflict set, which contains the teams that have collided,
and the coupled set, which describes the teams that must consider alternatives to the
individual policy to avoid the collision. The conflict set Cj of a vertex vy in the
task augmented joint configuration graph is the set of teams that collide at v, or
some successor state in the search tree, keeping in mind that 7}, is distinct from 77;.
If a new collision is found at v, then the resulting conflict set is added to all the
vertices in the backpropagation set of v, in the same fashion that the collision set
is backpropagated in M*. Any teams in the conflict set that are dominated by other
teams in the conflict set are removed. Note that C, may contain teams that are not

active at vy.

The coupled set T', is the subset of the active teams 7,2" at vy which can influence
the path of the colliding teams in Cy. Let successor (Cy,) C V& J V'™ denote the set
of the successors in the task graph of the teams in C}. If a team has no successors,

then it is treated as its own successor. I';, is then defined as
I, = {Ti € T Fv,,q € successor (C) s.t. 78 < vtask} , (5.3)

If a team in the conflict set had not reached its goal configuration prior to the collision
that added it to the conflict set 77 € V' the successor will be in V& and will
have the same set of dominated teams as 7/,. However, if the team had reached
its goal configuration prior to the collision Tgl € Ve then its successor will be a
transition vertex, which dominates all of the dissolving teams associated with the

transition. This reflects the fact that the trajectory of a robot that has reached its
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goal configuration potentially depends on the trajectories of all the dissolving teams
associated with its next transition, and thus indirectly on their predecessors (Section
5.2.1). Vertices in G*'¢ are returned to the open list whenever their coupled set
changes, in the same fashion that M* returns previously expanded nodes to the open
list when their coupled sets change.

Consider the case of the task graph given in figure 5.2. If teams 7! and 72 were

to collide before 7!

and 72 reached their goal configuration, then the conflict set
would be {7} 72 }. If CMS were to backtrack to v, to consider an alternate path,
then the coupled set would be the teams dominated by {Tgll, ngl}, which is given by
I = {7}, 72.}. However, if the collision were to occur later, after 72 had reached
its goal configuration, and thus where the active teams were {7;,,,72,7.,}, then the
conflict set would be {7}, 75}. If CMS then backtracked to v, the coupled set would
be the teams dominated by {7}, vf,}, which are {7}, 70,75, }. 73, would be added
to the coupled set because 7'921 might be able to avoid the collision with 7! by taking

the team formation action earlier, so 73

might need to take a more expensive, but
shorter, path.

In M* the limited neighbors of a vertex in the joint configuration graph are deter-
mined by two constructs: the individual policies which determine the default action
for the robots, and the collision set which determines which robots must consider
actions beyond those generated by the individual policies. In a similar manner, the
limited neighbors in CMS of a vertex v, € G*"¢ are determined by the individual
policies of the active teams and the coupled set. The teams in the coupled set are
allowed to take any action permitted by their manifold graph as well as the transition
action, if applicable, while the rest of the active teams are restricted to the action
generated by their individual policies. Note that if the conflict set and the coupled

set are empty there is only one limited neighbor.

Note that a collision between two single robot teams could eventually result in
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Figure 5.5: Initial and goal configurations of the teams in the example of CMS. (a)
The three robots start as members of singleton teams with the same identifier. The
initial configuration of 7 overlaps the start and goal configurations of 72 and 73, and
so is omitted for clarity. The goal configuration of 72 and 72 are the same as the
start configuration, so those teams reach their goal configuration immediately. 72
and 73 combine to form 7%, which occupies two spaces (b). 7! is assigned to move
to the bottom right corner, while 74 is assigned to move up, until its right hand side
occupies B3. (c) Task graph associated with the CPP problem.

coupled planning for all robots in the system at some predecessor vertex, especially
if there are tasks with overlapping set of assigned robots. In such cases finding an
optimal solution would be computationally very expensive. Inflating the heuristic
function a la inflated M* (Section 3.5.2) biases search towards the final state of the
system, which provides a soft limit on how far back in the search CMS will look
for an alternate path around collisions, limiting the effective size of the coupled set.
However, inflated CMS is e-suboptimal and may return a path that costs up the €

times the cost of the optimal path, where € is the inflation factor of the heuristic.

In practice, CMS is based on Operator Decomposition M* (ODM*) (Section 3.5.3),
a variant of M* which replaces A* with Operator Decomposition (OD) [167] and which

differs from M* only in implementation details.
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(b) Search tree after expansion.

Figure 5.6: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step one, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step one is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed.
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(b) Search tree after expansion.

Figure 5.7: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step two, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step two is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a
collision blocking the edge from their predecessor.
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(b) Search tree after expansion.

Figure 5.8: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step three, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step three is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a

collision blocking the edge from their predecessor.
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Figure 5.9: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step four, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step four is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a
collision blocking the edge from their predecessor.
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5.4.3 Example

We now present a simple example of how CMS operates. Consider a set of three robots
r!, 72, and r3. Each robot starts as the sole member of a singleton team, denoted 71,
72, and 73 respectively (Figure 5.5a). Teams 72 and 72 are assigned to immediately
combine to form 7%, so their initial states are also their goal states (Figure 5.5b). The
initial state of the system is therefore [(7,,, B3), (73, A1), (75, B1)]. 7' is assigned to
move to the bottom-right corner while 7*, which occupies two squares because it is
composed of two robots, moves vertically. The goal state of the system as a whole is
denoted [(7y,C1), (75, B3)]. The corresponding task graph is given in Figure 5.5¢.

When there are multiple choices, the individual policies and tie-breaking between

vertices on the open list are chosen to produce an informative but short example.

When CMS expands the initial state [(71,, B3), (73, A1), (15, B1)] the conflict set
and the coupled set are empty, because CMS has not found any collisions. Therefore,
all teams follow their individual policy (Figure 5.6). 7'92[ and T;’l immediately take the

transition action to form 7} . 71 moves down, towards its goal. The single limited

tm-

neighbor defined by the individual policies is [(7},,, B2), (7,1, B1)], which is added to

the open list as it is free of collisions.

CMS expands [(7},, B2), (711, B1)] in the second step (Figure 5.7). The coupled
set is still empty, so both teams obey their individual policies; 7} continues to move

down while 7}, moves up. The resulting limited neighbor is [(7},, B1), (7.}, B2)].

tm
The collision checking code indicates that 7!, and 7,1 would collide head-on if they
were to attempt to make that move. Therefore, {7} 77 } is added to the conflict
set of the preceding states in the search tree (Figure 5.7b), but the conflict set of
[(rL., B1), (7} , B2)] is not set, as the teams never actually reached that state. The

coupled set is defined in terms of the conflict set, so when the conflict set changes, so

does the coupled set, and thus the limited neighbors of a vertex. Because their coupled
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sets have changed, [(7},, B2), (7, B1)] and [(7,, B3), (13, A1), (7, B1)] are placed

back on the open list so that CMS can explore their new limited neighbors. The
limited neighbor [(7,, B1), (7 , B2)] is discarded, as it cannot be reached directly
from [(7} , B2), (3  B1)].

The third step sees CMS expand [(7} , B2), (1, B1)] a second time (Figure 5.8).
In this case, all the active teams are in the coupled set, so CMS must generate all
possible neighbors. Several of the neighbors feature collisions between 7}, and 77} .
The conflict sets of the predecessor states already contain 7} and 7} so no backprop-
agation is necessary, and the neighbors with collisions can be discarded immediately.

In the fourth step, CMS expands [(7,,, C2)(7},, B2)] (Figure 5.9). CMS has not
yet explored a path from [(7} ,C2)(7{ , B2)], so the conflict set and coupled set
are once again empty. The single limited neighbor is [(Tgll, 1), (7941, B3)}, which is
collision free, and thus added to the open list. [(Tgll, C1), (T;l, BB)} is the goal state
of the system, and has the lowest f-value of any vertex in the open list. Therefore,
CMS will expand the goal state in the fifth step of planning, indicating that CMS

has found an optimal, collision free solution to the CPP problem.

Under a different choice of tie breaking for vertices in the open

list  [(74,, B3), (13, Al), (15, B1)]  could have been re-expanded — be-

gb

fore [(7},, B2), (7} , B1)]. If it had been, the limited neighbors of

[(Ttlm,B?)),(ngl,Al),(Tsl,Bl)} would have included all possible joint actions for

1 2
Tims T,

e and

and 73

&, including joint actions where 77, and 7., combine to form 7,

tm>

joint actions where team formation is delayed.

5.5 Recursive Constraint Manifold Subsearch

CMS couples planning for all teams in the coupled set, even when resolving multi-

ple disjoint collisions. Recursive Constraint Manifold Subsearch (rCMS), like rM*,
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resolves collisions by identifying and solving independent subproblems. Solving each
subproblem requires coupling fewer teams. Since the cost of planning is exponential in
the number of coupled teams, rCMS can result in substantial reductions in planning
time.

In rCMS, the conflict set is a set of conflict set elements, where each conflict set
element initially contains a single set of mutually colliding teams. If the coupled
sets defined by two conflict set elements are not disjoint, the conflict set elements
are merged, and any team dominated by other teams in the conflict set element is
removed.

A subproblem is defined by a conflict set element C?, and is responsible for finding
a path that avoids the collision that produced C?. To this end, let the resolve set
Tres (C*) denote the set of teams upon whom the paths of the teams in C* depend,
i.e. the teams that contain a robot that later forms part of a team in C?, or teams

which a team in C* depends upon to take the transition action®.
Tres (C) = {77|77 < successor (C}) V17 < Cp}. (5.4)

where vl < vl implies vi,, < vl A vl # vl . The subproblem itself is a
copy of the full CPP problem where any team not in 7,.s (C?) is disabled. A disabled
team cannot collide with other teams, move, or incur cost, which implies that the
contribution of a disabled team to the f-value is constant. As a result, the disabled
teams have no influence on the paths of the teams in the resolve set. The subproblem
is solved once every team is either disabled or is the final team for its constituent

robots and is at its goal configuration. The solution is then the paths taken by the

robots in the resolve set, with disabled teams ignored.

3Recall that each team 7 may be represented by two task graph vertices; one before it has reached
its goal set 7,,, € V'™ and the other after it has reached its goal set at least once 7, € Vel Unless
otherwise specified, 7° may refer to 7/, or 77,.
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A subproblem defined by a conflict set element C}, can be queried from an arbitrary
vk in the task augmented joint configuration graph. Any team in the resolve set will
behave normally, while the other teams will be placed at their position in v, and
then disabled. Thus, the solution to the subproblem from v, depends only upon the
teams in the intersection of the active teams and the resolve set, which is precisely
the coupled set associated with C%. As a result, the subproblems associated with the
conflict set elements at v, can be solved separately.

Each rCMS planner has an associated resolve set containing the teams that will
not be disabled. The resolve set of the top-level rCMS planner contains all of the
teams in the task graph. When a rCMS planner expands a vertex v, € G*"& it
checks how many conflict set elements C}y contains. If C} contains no conflict set
elements or a single conflict set element whose coupled set contains all the active
teams that are not disabled, then the limited neighbors are computed as normal for
CMS. Otherwise, the planner defines a subproblem for each conflict set element C,
and computes a solution with a rCMS subplanner whose resolve set is Tes (CL). A
single limited neighbor is then generated wherein each team in the coupled set takes
the first action in the solution to the appropriate subproblem. Teams in the resolve
set that are not in the coupled set of any conflict set element follow their individual
policies. All other teams are disabled and cannot take any actions. If any subproblem
has no solution, then v, has no limited neighbors. Otherwise, the resulting limited
neighbor is guaranteed to either lie on the optimal path, or a path that contains a

collision that would modify at least one conflict set element when the path is explored.

5.6 Completeness and Optimality

The proof that CMS is complete and will return minimal cost paths follows the same

basic form as the proof for M* (Section 3.3.2). M* can be treated as alternating
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between running A* on a search graph and extending the search graph. Lemma 1
shows that if no solution exists, M* will terminate in finite time without returning
a solution. Lemma 2 shows that M* will return the optimal path in finite time if
the search graph always contains either the optimal path or an unexplored path to a
collision that is no more expensive then the optimal path. Lemmas 3-5 prove lemma
2. Lemma 7 proves that the conditions assumed by lemma 2 always hold, supported
by an auxiliary result that combining the optimal path for a subset of robots with
the joint policy path for the complement produces a path no more expensive then the
optimal path (Lemma 6). Taken together, these lemmas prove that M* is complete

and will return the optimal path (Theorem 1).

Lemmas 1-5 all hold for CMS with minor alteration; the collision set must be
replaced by the coupled set, and robots must be replaced by teams. Lemma 6 is
not directly applicable to CMS as the task constraints mean that it is not possible
to compute an optimal path for a subset of the robots. We therefore show that the
paths generated by combining a solution for a subproblem defined by the conflict set
with the joint policy path for the teams not in the subproblem produces a path that
costs no more than the optimal path. With this result in hand, a modified version
of lemma (Lemma 7) holds, proving that CMS is complete and will return optimal

paths.

The following proof relies on the joint policy path costing no more than the optimal
path, which is trivial in M*. However, in CMS this holds for the individual policies
as defined only if the teams are able to wait at their goal configuration at zero cost.

We therefore provide the following lemma.

Lemma 8. If the task augmented joint configuration graph contains a solution, then

the joint policy path m4(vi,vy) costs no more than the optimal path, g(m,(vk,vs)) <

g(m.(vk, vy))-
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Proof. By construction, the individual policy for each team generates the cheapest
path for a team from any configuration in its manifold graph to its goal configuration.
Therefore, the joint policy path could only cost more than the optimal path if there
were coordination costs incurred due to the timing of each team completing its task.
However, waiting at the goal configuration is assumed to incur a team zero cost
until all teams required to form the next set of teams are in position (Section 5.2).
Therefore, the joint policy path can incur no coordination costs, and thus costs no

more than the optimal path. O]

Consider a subproblem defined for a conflict set, rather than the conflict set el-
ements used by rCMS (Section 5.5). Such a subproblem may couple planning for
teams involved in completely independent collisions, but is otherwise similar to those
used in rCMS. We now show that a solution for a subproblem can be used to con-
struct a path that costs no more than the optimal path and contains no collisions
between the teams in the resolve set of the subproblem. For a given conflict set Cf,
let 7, (vk,vy) be the path from vy in the task augmented joint configuration graph
to vy constructed by taking the solution for the subproblem induced by Cj for the
teams in the subproblem, and having all other teams follow their individual policies.
Also, (Y, is said to be dominated by C,, C), < C, if every element of C} is dominated
by an element of Cj.

Lemma 9. If the task augmented joint configuration graph contains an optimal
solution m, (v, vy) from some vertex vy in the task augmented joint configuration
graph, then for any conflict set Cy a path mg, (vy,vy) can be constructed such that
g (7, (ve,v5)) < g(m, (g, vy)). Furthermore, if Cy < Cy, then g (n(, (vi,vf)) <

g (7¢, (e, vy)).

Proof. 1f the full problem has an optimal solution, then a solution for the subproblem

can be constructed by extracting the paths taken by the teams in the resolve set.
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Therefore, the optimal solution for a subproblem costs no more than the path taken by
the teams in the resolve set in the optimal solution for the full problem. The individual
policies induce minimal cost paths for all teams not in the subproblem. Because the
cost of a path is the sum of the costs of the paths of the individual teams, and no
coordination costs can be incurred (Lemma 8), g (W’Ck (Vs vf)) < g (m, (vg,vy)).

If every element of C} < C, then the teams in the subproblem associated with
Cy are a subset of the teams in the subproblem associated with C,. Therefore by the

logic in the previous paragraph, g (7'('/Ck (Vg vf)) <y (W’CZ (U, vf)) ]

Lemma 10. The search graph G*" will always contain an optimal path (i.e. case 1
of lemma 2 will hold) or an unexplored path which costs no more than the optimal

path (i.e. case 2 of lemma 2 will hold) at all points in the execution of CMS.

Proof. By construction, if v is the successor of vy on mg, (v, vy), then Cp < Cy
(Section 5.4). With the result of lemma 9, the proof then follows by analogy to the

proof of lemma 7. []
Theorem 2. CMS is complete and optimal.

Proof. 1f the task augmented joint configuration graph GG does not contain an opti-
mal path, then CMS will terminate in finite time without returning an invalid path
(Lemma 1 with slight modification). If G does contain an optimal path, then the
search graph must always contain either the optimal path, or an unexplored path
which costs no more than the optimal path (Lemma 10), which implies that then
CMS will find the optimal path in finite time (Lemma 2 with slight modification).
CMS will thus find the optimal path in finite time, if one exists, or terminate in finite

time if no path exists. Therefore, CMS is complete and optimal. O

Theorem 3. rCMS is complete and optimal.
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Figure 5.10: Small white squares are obstacles, while colored squares represent in-
dividual robots, and large squares represent teams. (a) The four robots that start
at the bottom must transport a large square object to the top of the corridor. (b)
However, the robots must delay starting the transport task to allow the single robot
that starts at other end of the corridor to pass. (c) Once the single robot is clear,
the transport task can be completed.

Proof. Lemma 9 holds with trivial modification when the path is constructed from
the solutions of multiple subproblem, each defined by one of the conflict set elements
of v;. Lemma 10 then holds, given the observation that if v, is a successor of v, in the
search tree, then each conflict set element in Cy is dominated by exactly one conflict

set element in Cf,. O

5.7 Results

We validate the performance of CMS and rCMS in simulation. The cooperative tasks
take the form of moving large, rigid, rectangular loads. The load must be prevented
from contacting any object aside from the robots carrying the load. The constraint
manifolds corresponding to the tasks are diffeomorphic to SE(2). When a robot is in
a singleton team it moves on an 8-connected grid where waiting as well as vertical
and horizontal movement costs 1, while diagonal movements cost v/2. A robot may
wait for zero cost at its final destination or at the start configuration of its next task

if the other robots assigned to the task are not yet in position. The manifold graphs
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Figure 5.11: Small white squares are obstacles, while colored squares represent in-
dividual robots and rectangles represent teams. Eight teams of three robots each
must pick up rectangular loads from depots on the periphery, and deliver them to
drop points between the rows of obstacles. Each team must make two such deliveries.
Path segments are shown for three time windows, where the entire path is 121 units
in duration. Please consult the uploaded video for a better depiction of the path.

for teams of multiple robots carrying a load are similar 8-connected grids where the
cost movement or waiting is multiplied by the number of robots in the team. Teams
can also take an action to rotate by +45° at cost equal to the number of constituent
robots. Actions to form or dissolve teams incur zero cost. To simplify the problem,
the loads are assumed to be removed from the workspace after being delivered by a

team.

We present the results of two specific simulation runs and a set of randomized
trials. The first simulation demonstrates that CMS handles problems where task

execution must be delayed. The second simulation is a larger, more realistic problem
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inspired by warehouse automation. All simulations were implemented in Python and
run on a Intel Core i7 processor clocked at 3.30 GHz.

In the first simulation, four robots start at one end of a corridor opposite a single
robot (Figure 5.10a). The four robots must carry a large, square object to the top
of the corridor. However, while the team is carrying the load it cannot move out
of the way of the single robot, which must reach the bottom of the environment.
Therefore, the robots must delay executing the task until the single robot has cleared
the corridor (Figure 5.10b). Furthermore, one of the robots that will carry the load
must move out of the way of the single robot. Once the single robot has cleared
the corridor, the transport task can be successfully executed (Figure 5.10c). CMS
required 0.5 seconds to compute the optimal solution to this problem, while rCMS
took 0.8 seconds. Given that there are no independent collisions, it is not surprising
that rtCMS takes slightly longer, as rCMS has more overhead.

The second simulation consists of eight teams of three robots each, that must
pick up long rectangular loads from depots on the periphery of the workspace, and
deliver them to positions between rows of obstacles (Figure 5.11). The robots may
move independently when not carrying a load. Each team must deliver two loads
before returning to their initial positions. Neither CMS nor rCMS can solve the
problem optimally in under 5 minutes. Thus to compute a solution in reasonable
time, an inflation factor of 1.2 was used. CMS took 20 seconds to compute the
solution while rCMS took 6 seconds. In this problem, there are multiple independent
sets of interacting teams, leading to rCMS outperforming CMS.

To investigate how CMS and rCMS scale with the number of robots and tasks,
we generated randomized 80x80 grid worlds. Approximately 20% obstacle coverage
was generated by randomly placing 320 2x2 obstacles with overlaps permitted. As in
the simulated warehouse, tasks consisted of three robots carrying a long rectangular

load between randomly chosen positions, with a given robot always teaming with the
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Figure 5.12: Typical random environment with 20% obstacle coverage. The empty
squares are obstacles. The colored squares are individual robots, and the long rect-
angles teams of three robots carrying a heavy load. The configuration of teams is
taken from halfway through a path found by inflated rC'M S with ¢ = 3 for a problem
involving 102 robots in 34 teams.
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Figure 5.13: Comparison of CMS and rCMS performance on randomly generated
80x80 worlds. All trials used an inflation factor of 3. The top plot shows the percent-
age of trials for which a solution was found within 20 minutes, while the bottom plot
gives the median time until a solution was found.

same robots. All tasks are feasible in isolation, and robots can always move from the
end position of one task to the start configuration of the next tasks in the absence
of other teams. When a robot was not actively carrying a load it was free to move
independently. Randomized trials were generated for between 1 and 40 teams, with
50 such trials generated for each number of teams (Figure 5.12). CMS and rCMS
were both run with an inflation factor of 3. Each trial was given 5 minutes to find
a solution before the trial was marked as a failure (Figure 5.13). rCMS dramatically
outperformed CMS with the success rate of rCMS on problems involving 3 to 5 tasks
per robot equivalent to the performance of CMS with only a single task per robot
(Figure 5.13).

We then tested the impact of varying the inflation factor of rCMS (Figure 5.14),

with each robot assigned 3 tasks. As expected, rCMS was unable to solve anything
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Figure 5.14: Performance of rCMS with varying inflation factors. Each team was
assigned 3 tasks, in worlds with 20% obstacle coverage. The top plot shows the
percentage of trials for which a solution was found within 5 minutes, while the bottom
plot gives the median time until a solution was found.

but the simplest problems optimally (¢ = 1). When e = 1 almost any collision will
force re-expansion of the root vertex of the search tree, where the coupled set has
maximal size. Setting e = 1.1 sets a very soft limit to backtracking; to prevent
incurring one extra unit of cost, rCMS would be willing to backtrack approximately
10/n steps in the search tree, where n is the number of robots that have not reached
their final goal. When the inflation factor is increased to e = 3, rCMS will come close
to greedily minimizing the heuristic value, primarily backtracking to resolve dead-
ends rather than reduce path cost. rCMS would have to incur approximately 3 x n
extra cost before it would be willing to backtrack one step. As a result, there is a
substantial improvement in success rate, and rCMS is able to solve some problems

involving 102 robots in 34 teams, where as with ¢ = 1.1 rCMS was only able to
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Figure 5.15: Performance of rCMS with varying obstacle densities in randomly gen-
erated 80x80 worlds. Inflated rCMS was run with ¢ = 3 and three tasks per robot.
The top plot shows the percentage of trials for which a solution was found within 5
minutes, while the bottom plot gives the median time until a solution was found.

solve systems with 75 robots in 25 teams. Increasing € to 10 results in little change
in performance, as rCMS is already operating in a close to greedy manner. These
results track closely the observed behavior of rM* (Figure 3.8).

rCMS was then tested in environments with 10%, 20%, and 30% obstacle coverage
with € = 3 and 3 tasks per robot(Figure 5.15)*. There was less variation in run time
than anticipated, as M* has previously been observed to suffer when confronted with
narrow bottlenecks through which bidrectional traffic flows. However, the difficulty
increase from 10% to 20% obstacle coverage is noticeably smaller than the difficulty
increase from 20% to 30% obstacle coverage, which may be due to the formation of

bottlenecks.

4Attempts to generate random worlds with 40% obstacle density failed as the probability of
randomly chosen task start and goal locations falling within the same connected component was too
low.
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Figure 5.16: Histogram of time to solution for rCMS with ¢ = 3 and 20% obstacle
coverage and three tasks per robot in a 80x80 world (a) and in a 40x40 world (b).

In M*, the median time to solution typically grows gradually as the number of
robots increases, before hitting an inflection point and growing rapidly (Section 3.7).
We interpreted this behavior as the system hitting a critical density of robots that
forced the dimensionality of the search space high enough that M* no longer could
find solutions. Only the weakest versions of CMS (CMS and rCMS with e = 1 and
e = 1.1) showed inflection points in the tested environments. This suggests that
the environments were too large for the more powerful planners to hit critical density
before timing out, and suggests that increasing the time limit may permit a significant
number of additional problems to be solved. The 30% obstacle density case shows

weak evidence of an inflection point (Figure 5.15), and being the test point with the
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highest robot density, supports this interpretation. Furthermore, the histogram of
time to solution for rCMS with € = 3 (Figure 5.16a) shows that the distribution of
times overlaps with the time limit when the success rate has significantly dropped,
whereas in inflated ODrM* there is always a clear separation between the time to
solution for feasible problems and unfeasible problems (Figure 3.11). This further
suggests that rCMS with larger inflation values encounters problems that simply take
longer to solve, rather than problems where the majority exceed a critical density.
When rCMS was run on a 40x40 world with a quarter the area of the standard
80x80 world there was a stronger separation between successful and unsuccessful

runs, suggesting that in smaller worlds rCMS is more likely to hit a critical density.

5.8 Conclusion and Future Work

We presented the Constraint Manifold Subsearch, a new algorithm for solving the
cooperative path planning problem. CMS can compute optimal or e-suboptimal paths
for systems with large numbers of robots that can perform cooperative tasks. We
also presented rCMS, a variant of CMS that decouples planning for disjoint sets of
interacting teams, and show that rCMS significantly outperforms CMS.

There are a number of avenues for future work. CMS has been implemented for
only a single cooperative task: multiple mobile robots carrying a single object. In
the future, we will pursue techniques for automatically constructing the constraint
manifold [21, 161, 42, 171] to apply CMS to more types of tasks. Of special inter-
est is the task of cooperatively carrying an object through an environment that is
sufficiently cluttered that robots must disconnect and reconnect to the object clear
obstacles [I12], potentially resting the load on the ground temporarily.

To simplify the problem, we assumed that actions of teams do not impact the

environment, even when the teams move large objects. We believe that this assump-
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tion can be removed by treating environmental features that may be manipulated by
robots as dummy teams that contain no robots. CMS will then naturally account for
dependencies between the teams that manipulate the environmental features and the
teams that may be impeded by the environmental features.

Finally, CMS currently assumes that each team can wait at its goal configuration
for zero cost, which is necessary to properly decouple planning between teams. We
intend to generalize CMS to allow robots to incur cost at goal configurations. We
believe that a proper analysis of lower bounds on arrival times of different teams at
their goal configurations can reduce coupling, especially when combined with inflation

and other manipulation of the heuristic function.
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Chapter 6

Planning With Uncertainty

Robots will not precisely follow even the best of plans due to imperfect control and
actuation, as well as unknown environmental features and noise. There is thus a need
for plans which can be executed even in the face of significant uncertainty. We term
the problem of finding paths for multiple robots in the face of uncertain dynamics
the Multirobot Path Planning with Uncertainty (MPPU) problem. Models for uncer-
tain systems fall into two broad categories: non-deterministic and probabilistic. The
dynamics of a non-deterministic system describe the set of states the system could
occupy at a given time, but give no indication of the likelihood of any given state.
As such, non-deterministic models are useful for systems whose dynamics can be
bounded, but for which a detailed model is not available or not reliable [59] 104 [114].
However, non-deterministic models force a conservative approach, as they cannot dif-
ferentiate between a very low probability collision, which could be safely neglected,
and a high probability collision which must be avoided. Probabilistic models maintain
a belief state for the system which is a probability distribution over the system’s con-
figuration space. Probabilistic models require a more detailed dynamics model, but

admit constraints that can accept a low probability of failure, which may be neces-
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sary to achieve a high-quality path, or any path at all. Although probabilistic models
are a subset of non-deterministic models, algorithms designed to solve probabilistic
systems can be used to solve non-deterministic problems!, while algorithms intended
for non-deterministic problems may fail on probabilistic problems. Therefore, our
primary focus in this chapter will be on probabilistic systems.

The most general approach to planning with uncertainty is to cast the problem as
a Partially Observable Markov Decision Process (POMDP) [83], 102, [140]. Solving the
POMDP returns a policy that provides the optimal action for any state-observation
pair. While POMDPs have been successfully applied to the MPPU problem [184) 123],
solving the full POMDPs is prohibitively expensive for all but the smallest problems
[129].

MPPU algorithms seek to approximate the full POMDP formulation while mini-
mizing computational cost and maximizing the quality of the resulting plan. Three
basic approaches to the MPPU problem are dynamic planning, interaction regions,
and belief space planning.

Dynamic replanning approaches assume that uncertainty is insignificant over short
periods of time, and the uncertainty in the results of any single action have only
local consequences. Under these conditions uncertainty can be handled by taking
sensor measurements to observe the result of taking a small number of actions, then
replanning without explicitly accounting for uncertainty based on the observed state
of the system. Several early approaches for single robots in dynamic environments
computed a velocity that would take the robot towards the goal while maximizing the
time the robot could maintain that velocity without colliding with a obstacle [67, [162].
D* and similar algorithms based on RRTs [27, 63], 02, 110l 124], 169] were developed

to allow for rapid, global replanning for single robots in an unknown or partially

ITo adapt a probabilistic algorithm to a non-deterministic system, assign a uniform probability
distribution to the feasible states of the non-deterministic system and set thresholds to not accept
any probability of failure
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known world. Bruce and Veloso [28] applied a replanning approach to multirobot
systems, combining separate global path planning with one-step look-ahead velocity
selection. Safety was guaranteed by requiring that each robot be able to come to a
safe stop by breaking with maximal effort immediately after finishing its next planned
action. Dynamic replanning approaches will fail when the uncertainty associated with
a single action is significant, or can lead to two qualitatively different results with
lasting consequences.

An alternate approach specific to multirobot systems is to identify a limited set of
interaction regions where robots may interact, and thus robots only require coordi-
nation when in the interaction region. In reservation based approaches, the planner
reserves the interaction regions for specific robots, and requires other robots to wait
safely outside the interaction region until the robot that has the region reserved has
passed through [55], 65, 128, 196, 201]. Reservation based approaches generally do
not consider uncertainty in the path of single robots, and may lead to robots waiting
for prolonged periods of time if a robot with a reservation for an interaction region is
delayed.

Melo and Veloso [119] exploited interaction regions to produce a simplified version
of the full POMDP formulation, called Decentralized Sparse-Interaction Markov De-
cision Process (DEC-SIMDP). They constructed a separate POMDP for each robot
r®. The focal robot 7* could observe its full state, but could only observe the state of
another robot when both 7 and the other robot were in the same interaction region.
All robots aside from 7 were assumed to obey a fixed policy generated by solving
either single agent MDP or a multiagent MDP for all robots aside from 7. As a
result, the policy of r* only directly depended upon the position of the other robots
when in the interaction regions, substantially the computational cost of computing a
policy.

Solving a DEC-SIMDP produces a policy and as a result can handle bimodal dis-
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tributions, such as when the robot may be in one of two different passages requiring
different paths. The policy will also base its commanded action upon sensor measure-
ments received during execution, and as a result will not cause a robot to wait outside
an interaction region for a robot that was significantly delayed. However, like reser-
vation based systems DEC-SIMDPs are only applicable to environments containing
a low number of small, well defined interaction regions. This is most likely to be the
case for structured environments like road networks, hallways, or warehouses.

A final approach is to plan paths in the belief space of the system. The belief
space of a system is the space of probability distributions over the configuration
space of the system. The belief state of a single robot can be represented as a
Gaussian. An extended Kalman filter is often used to propagate the Gaussian belief
state along a given path and account for expected measurements. Planning can be
done using A* or RRTs [72, [141]. Extensions account for non-maximal likelihood
measurements [I189], the delay between receiving an updated position measurement
and the robot correcting for error [29], and the truncation of the belief state due to
possible collisions with obstacles [I31], [I73]. Other approaches allow for non-Gaussian
belief spaces [118, [138]. van den Berg et al. [I89] used a priority planner (Section
1.2.5) to perform belief space planning for a multirobot system, but did not account
for the impact of interactions between robots on the belief states of the robots. Belief
space path planning is more efficient than solving the full POMDP because belief
space planning computes a single nominal trajectory in belief space, rather than a
full control policy. As a result the paths produced by belief space planning will not
react to sensor measurements received during execution, unlike the policy generated
by solving a POMDP or DEC-SIMDP. Thus if a belief space plan calls for 7! to wait
for 2 to pass through a bottleneck, r! will wait for r? even if r? was delayed and r!
could safely navigate the bottleneck. However, belief space planning does not require

well defined interaction regions, and thus is applicable to cluttered environments
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where interaction regions are either ill-defined or too numerous for reservation or
DEC-SIMDP based approaches.

In this chapter, we analyze the MPPU problem and show that it only approxi-
mately has the direct product structure relied upon by most MPP algorithms. We
then present Uncertainty M* (UM*), an extension of M* to handle the MPPU prob-
lem. UM* uses subdimensional expansion to efficiently explore the joint belief space
of a multirobot system. Because the MPPU problem lacks a direct product struc-
ture, UM* is not complete or optimal. However, unlike decoupled algorithms (Section
1.2.5) which may fail to find solutions for realistic problems, UM* will only fail to
find solutions in contrived cases. We introduce a non-Gaussian belief space represen-
tation that is appropriate for MPPU. UM™* is then compared in simulation to several
alternate approaches to MPPU and is shown to work well when complete plans are

required.

6.1 Multirobot Path Planning with Uncertainty

The MPPU problem seeks to find paths for systems of multiple robots whose location
and dynamics are uncertain. The system is described by joint belief states b : ) —
R=Y in the joint belief space B of probability distributions over the joint configuration
space of the system. The objective of the MPPU problem is to find an optimal path
T, (bs, bf) for a system of n robots r';i € I = {1,...,n} from an initial joint belief
state? b, to some final belief b ; whose probability density is sufficiently concentrated in
the goal region. The cumulative probability that each robot collides with other robots

by) <

cumulative (

along the path leading to b, must be below a threshold value, i.e. P!
0ol Vi € I. To simplify the problem, we assume that if two robots collide both

are removed from the workspace, so each robot can collide only once. Otherwise a

2If the robots start perfectly localized, then b, is a delta function
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Symbol

Meaning

col’

Q' = Qo U{col'}

B = {b 1 Q — ]RZO}
beB

B ={b": Q" — R}
b e B

P(;iumulative (b) = bl (COli)

6001
UV:Q—P()

An auxiliary state added to the configuration space of
robot 7% to represent that robot having collided with
another robot or obstacle

The configuration space of a robot 7 is formed by taking
the normal configuration space of the robot Q¢ and
adding a configuration to represent r* having collided

Joint belief space of the multirobot system
Joint belief of the full multirobot system
Belief space for robot r¢

Belief for robot r%. If b is a joint belief, then b denotes
the marginal probability of the state 7% in b

Cumulative probability of r* colliding with another
robot along the path leading to b

maximum acceptable cumulative collision probability

Collision function that returns the set of robots that
collide at a given joint configuration

Table 6.1: Uncertainty M* notation

detailed model of the collision dynamics would be required. A path is optimal if

it minimizes a cost function g (m (b,, b)) = >, " (7" (b%,b%)). The cost function is

chosen so that the cost of a robot performing a given action is independent of the

probability of the robot having collided prior to taking said action.

A probability distribution over the configuration space of a robot r* does not

capture the probability that r* has collided with another robot and is ill defined if the

robot may have been removed from the workspace. Therefore for the purpose of the

MPPU problem the configuration space Q* of r* is augmented by an additional state,

col’, which represents r* having collided with another robot. The system as a whole

has the joint configuration space @ = [, Q". The joint belief space of the system is
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then the space of probability distributions

B:{b:Q—>R2°|/qb(q)dq:1}. (6.1)

The belief state of a single robot b* : Q° — R=? is the marginal distribution of the

state of 7% in a given joint belief b. The cumulative probability of r* having collided

with another robot along any path leading to b is then P (b) = b" (col®).

cumulative

Each robot r* can take a set of actions A*. The local belief dynamics D : Q*x A" —
B! gives the belief state of r¢ after it takes an action while perfectly localized at some

position, subject to

| D (da) g =1 (6:2)
q,€Q"
1 g, =col

D' (col',a’) (q7) = 4 ' R (6.3)
0 ¢ €@\ {cl'}

The belief dynamics Dyn’ : B* x A" — B’ of r that describe the evolution of a belief

over time, neglecting other robots, are given by
Dyni (bi’ai) _ / _b" (qz) Di (qi’ai) dq’ (6.4)
qzeQz

If there were no collisions then the joint belief dynamics for the system as a whole

would be

Dyn BxA—B (6.5)

nocol °

Dynnocol (bk7 ak) (qe) = /bk(Q) H DZ (qi’ a?c) (qé) (66)

The collision free joint belief dynamics must be corrected to account for robot-robot
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collisions. Let ¥ : @) — P (I) map from a position in the joint configuration space to
the robots that would collide at that point®. Now let ¢ : Q — ( map a configuration
gr to a new configuration similar to ¢; where every robot r¢ that collides at g is

moved to col’

) Ti \II ¢
¢W%+H:% # o (6.7)

i |col' 7' €W (q)

Next define a kernel that maps the probability mass at a configuration ¢ to ¢ (q)

K:QxQ—B (6.8)

K (qr, qe) = 6 (g — ¢ (qr)) (6.9)

where ¢ is the Dirac delta function and K maps a configuration ¢, to a belief that
is a delta function centered at ¢ (q¢). The joint belief dynamics for the system as a

whole can now be written

Dyn:Bx A —=B (6.10)

Dyn (b, ag) (g¢) > / K (g1, ) Dytyoes: (b ) (g) dg (6.11)

Joint belief dynamics of the form of 6.10 have several important properties. The
belief dynamics of a given robot 7 are independent from the belief dynamics of any
robot with which it does not collide. The joint belief dynamics are not the Cartesian
product of the individual robot belief dynamics. Requiring that the belief dynamics
depend on local dynamics (Equation 6.5) ensures that the behavior of the robot
depends only upon its state, and not upon its belief, which is non-physical. Finally,
the belief dynamics are conservative, so the preimage of any open set of a belief must

contain at least as much probability mass as the open set.

3P (I) denotes the power set of I, i.e. the set of all subsets of T
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Note that according to the above definitions, a robot could potentially be said
to collide with itself. Collisions between the robot and the environment which may

occur if a robot has imperfect localization can be represented as a self-collision.

6.1.1 Structure of the MPPU problem

The MPP problem as defined in this thesis has a direct product structure where both
the joint configuration space and the joint dynamics are the Cartesian product? of the
single robot configuration spaces and dynamics respectively. In M*, this assumption
was embodied by the fact that the joint configuration graph is the direct product
of the configuration graphs of the individual robots (Section 3.1), with collisions
effectively setting the cost of some vertices to be infinite (impassable). The direct
product structure means that if a robot can reach some individual configuration as
part of a team, it can reach that configuration by itself or as part of any subteam.
As a result, if no solution exists for a MPP problem involving a set of robots 2,
then no solution exists for a problem involving a superset of the robots ' O Q.
This permits MPP algorithms to resolve collisions by altering the paths of only those
robots directly involved in the collision.

The MPPU problem lacks the direct product structure of the MPP problem, as
collision checking couples the dynamics of the individual robots. Consider a single
robot 7! in an obstacle-free environment. Since no robot-robot collisions are possible,
r! will never reach a belief where b' (col') > 0. However, if a second robot r? is added,
then collisions can occur, and r' may reach a belief with b' (col') > 0. Therefore,
the reachable configuration space of a robot or system of robots may actually expand

when additional robots are added.

The above concern may seem esoteric, but it is possible to construct a system

A f:A—-Xandg: B— Y, then fxg: Ax B— X xY and (f x g)(a,b) — (f(a),g(b))
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(a)

Figure 6.1: (a) A three robot problem with a collision threshold of ., = 0.59. Each
robot has only a single path. There is a 20% chance of a collision if states e and h are
occupied simultaneously, and a 50% chance of collision if states ¢ and f are occupied

simultaneously. There is no solution, as P2 . .. (bf) = 0.6. In (b) a fourth robot

is added with two paths: an expensive path passing through j and a cheap path
passing through k. There is a 20% chance of collision if states g and j are occupied
simultaneously. The only solution is when r* chooses the more expensive path, at
which point P2 (bf) = (.58, just below the threshold value.

cumulative

where a robot must go out of its way to collide with a second robot for a solution
to exist. Consider a system of three robots with a collision threshold of d., = 0.59,
i.e. there can be at most a 59% chance of a given robot colliding with other robots
(Figure 6.1a). Each robot has only one path it can follow, i.e. the action set for each
robot at every configuration contains a single element. There is a 20% chance of a
collision between r? and r® when they simultaneously occupy states e and h. If r?
does not collide with 73, then there is a 50% chance of a collision between r? and r!
while occupying states ¢ and f. As a result, r? has the highest cumulative probability
of collision, at P2 ... (bf) = 0.6, which is above the collision threshold of 0.59.

Therefore the problem as stated has no solution.

Now consider adding a fourth robot r* to the problem (Figure 6.1b). r* has two
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possible paths: an expensive path passing through state 57 and a cheap path passing
through state k. If r* takes the cheaper path, it will not collide with any other robot,
and thus r? will violate the constraint on cumulative collision probability. However,
if * takes the more expensive path, there is a 20% probability at state j that it will
collide with r3. Because r® might collide with r*, there is now only a 16% chance that
r® will collide with r? at state h. Propagating the beliefs forward, the cumulative
probability of collision of r? at the end of the path will now be 0.58, which is below
the threshold. Therefore to a resolve an interaction between robots r!, 72 and 73,
it is necessary for r* to choose an expensive path containing a possible collision
over a cheaper, collision-free path. This is fundamentally a consequence of the joint

configuration space not being a direct product.

As a result, most complete MPP algorithms will either be inapplicable to the
MPPU problem, or lose completeness guarantees. EPEA* and OD are exceptions
as they perform exhaustive search of the entire joint configuration space, but will be
very inefficient. That said, completeness will only be lost in very unusual cases, where
a robot must choose to collide with another robot, to reduce the probability that the
second robot will collide with a third robot. Such situations are unlikely to appear
in realistic problems, unlike priority planners cannot reposition robots in a dead-end

corridor, a realistic problem.

The paradoxical requirement that robots deliberately collide with one another to
reduce the probability that yet another robot collides is a result of having n seperate
constraints, and trading slack in one or more constraint to satisfy another. Now
consider an alternate formulation of the MPPU problem subject to a single constraint

on the total expected number of collisions

Z Pciumulative (b) < 5001 (612)
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The joint belief dynamics are locally conservative, which implies that if a given amount
of probability mass is to be moved out of a state in collision, an equal or greater
amount of probability mass must be moved in an earlier belief. A robot r¢ can
only change the belief state of r/ by colliding with it or another robot. Thus any
attempt by ¢ to prevent a collision between two other robots will result in an increase
in the expected number of collisions. Therefore, if a solution exists for a team of
robots, then there is a solution for any subteam and constraint violations can be
resolved by altering the paths of only those robots directly involved in the violation.
However, the single constraint means that disjoint sets of colliding robots cannot be
considered separately, as all contribute to the same constraint. Intuitively, there is
no principled mechanism for partitioning the permitted number of expected collisions
between subproblems. This rules out approaches such as rM* and MA-CBS, which
are known to dramatically increase planning performance (Section 3.7).

MPPU is fundamentally different from the MPP problem because the belief dy-
namics for the robots are inherently coupled, removing the direct product structure
of the MPP problem. Without the direct product structure, the MPPU problem
is harder to decompose into tractable subproblems, which makes designing efficient,

provably correct and optimal algorithms for MPPU significantly more difficult.

6.2 Uncertainty M*

In this section we introduce UM*, a variant of M* (Chapter 3) adapted to solve MPPU
problems. UM* differs from M* in that UM* searches the joint belief graph that
describes the joint belief space, and computes collision sets by considering constraint
violations.

The joint belief graph G = {V, E'} is a discretized representation of the joint belief

space and the joint belief dynamics. Each vertex v, € V represents a belief state
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b, € B. An edge ey, € E that connects v, to vy is associated with an action a,, € A
such that Dyn (b, a,,) = b,. The joint belief graph for a specific MPPU problem is
implicitly defined by the initial belief b, and the action set. The joint belief graph as
a whole is implicitly defined by repeated application of actions. The belief graphs for
single robots are constructed in a similar manner, and used to compute the individual
policies.

In M* collisions were treated as occurring at vertices based on the position of the
robots in the joint configuration space. However in UM* the belief dynamics are such
that it is impossible for two robots to collide at a given belief (Section 6.1); those
robots would be moved to the special col state instead. Thus it is more natural to
describe a collision as part of a transition from one belief to the next, i.e. as occurring
at an edge. All of the proofs for M* still hold under these conditions (Section 3.1).

The second modification is to the calculation of the collision set. In M* replanning
is triggered by the exploration of a vertex where two or more robots were in collision.
In UM* replanning is triggered when the probability of a robot colliding is high
enough to violate the collision probability constraint. UM* splits the collision set C,
into two components: the threshold robots Ci*h and the associated robots C5°°°. The
threshold robots are those robots whose cumulative collision probability exceeds the
threshold value at v;, or some successor of v;, in the search tree. The associated robots
are those robots which have a non-zero probability of colliding with a threshold robot

at some edge in the subset of the search tree rooted at v;. The robots in C*hresh

are
known to violate their collision constraint, so UM* must find an alternate path that
reduces the likelihood of collision for the threshold robots. Doing so requires changing
the paths of the threshold robots or the paths of the robots with which they collide,
i.e. the associated robots. The associated robots have slack in their constraints as

otherwise they would be threshold robots. As a result alternate paths for the robots

that collide only with robots in C}*°° do not need to be considered. While altering
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the path of such a robot could alter the belief state of a robot in C}*°¢, and thus
indirectly the belief state of a threshold robot, the same holds true for every robot in
the system, even if it never collided with another robot (Section 6.1.1). Furthermore,
such second-order interactions are much weaker, and thus can be neglected in the
interest of efficiency. With Cy = Cfhresh | J C#sso¢ the limited neighbors of vy in UM*

are computed in the same fashion as in M* (Equation 3.3).

The threshold robots and associated robots are computed in a similar fashion to
how M* computes the collision set. If a set of robots exceeds the collision probability
threshold at vy, they are added to the threshold robots CiM*h. Then Cfeh and
Cp°¢ are added to the threshold robots and associated robots, respectively, of each
vertex v, in the backpropagation set of vg. Furthermore, any robots that have a
non-zero probability of colliding with a robot in C:™" on the edge ey connecting
vp to vy, are added to CFssc. If Chresh or C255°¢ were changed, v, repeats the process
(Algorithm 3).

UM* can be implemented using the inflated and recursive variants of M* (Sec-
tion 3.5). rM* is substantially more efficient than M* (Section 3.7) with minimal
drawbacks. Therefore, UM* is based on rM* throughout this chapter.

UM* notionally plans over a joint belief graph which represents the joint belief
space. However, unless the joint beliefs have a very simple representation such as a
Gaussian, the size of the representation of a single joint belief grows exponentially in
the number of robots. To simplify the representation, the belief distribution for each

robot is assumed to be independent,
b(g) =]V (a)- (6.13)

Note that the belief dynamics still properly account for robot-robot collisions. If r*

has a chance of colliding with 7/ at some position v, then the subsequent belief of 7
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Algorithm 3 Pseudocode for collision set backpropagation in UM*

Require: vy, Cfhresh Cassoc gpen

{vy- vertex in the backpropagation set of v}
{Cfhresh_ threshold collision set of vy}
{Cp°c- associated collision set of vy}
{open- the open list for M*}
C}tghresh — O]t{hresh U Cghresh
Cassoc ¢ (Cassoc |y 2oy robots that potentially collide with robots in CiM™*sh on
€k
if Cihresh or C#sso¢ changed then
if —(v; € open) A C changed then
open.insert(vg) {If the collision set changed, v, must be re-expanded}
for v,, € v;.back_set do
{Propagate changes to predecessors of vy}
backprop (v, Cirrest, C255°¢ open)

will have a lower density at v}, than if 77 were not potentially there.

6.3 Constrained M*

rM* gains a significant performance advantage over M* (Figure 3.7) by breaking a
problem into independent subproblems. When each robot has an individual con-
straint on the probability that it collides with another robot the constraints on any
given subproblem are simply the union of the constraints of the constituent robots®.
However, a constraint on the total expected number of collisions is a global constraint
on the system as a whole; there is no obvious way to determine a separate threshold
for each subproblem.

Stentz [I70] showed that a single robot path that obeys a single constraint could
be generated by treating the constraint as a weighted penalty cost. Specifically, let the
constraint be of the form ¢ () < d, where ¢ is a non-decreasing function. Then let the

new cost function ¢’ (r) = g () +we (7) be the sum of the path cost and a weighted

5Ignoring that the full MPPU is not the direct product of the problems for individual robots, and
thus robots not involved in a given collision can take actions that adjust the probability of collisions
between the robots involved in a collision
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Algorithm 4 Pseudocode for UM*

{Define default values for vertices}
for all v, € V do
vg.cost < MAXCOST
vi.back_set < ()
C[zhresh — @
CZSSOC — @
{Initialize search}
vg.cost <+ 0
{Open list is sorted by f-value}
open < {vs}
while open.empty() == False do
vy < open.pop() {Get cheapest vertex}
if Succ (b,,) then
{A solution has been found. Reconstruct the optimal path by following the
back pointers}
return back_track(vy)
for v, € V™" do
{Add vy, to the back propagation list}
ve.back_set.append(vy)
{Compute threshold robots}
CghreSh = CghreSh Uil F ciumulative (bg) > deor}
{Update collision sets, and add vertices whose collision set changed back to
open (Algorithm 3)}
backprop(vy,, Cieh €850 open)
{If v, doesn’t violate constraints, and vy is the cheapest path to v,, update
costs and add to open list}
if P e (0p) > 0caVi € T and vy.cost+g(ey) < vp.cost then
{vy, is the cheapest route to vy}
vg.cost < vg.cost+g(ex)
{Track the best path to v,}
ve.back_ptr < vy,
open.insert(vy)
return No path exists
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penalty term related to violations of the constraint. The optimal, constrained path
is found by finding the path that minimizes ¢’ while performing binary search on
w. If the path that minimizes ¢’ violates the constraint w is increased, otherwise
w is decreased. Stentz [I70] proved that this process will converge on the optimal
solution for problems with a single constraint and developed algorithms based on
A* and D*, called Constrained A* (CA*) and Constrained D* (CD*) respectively.
CD* is valuable because this process requires repeated global planning, where the
environment changes slightly between each iteration. Using D* substantially reduces
the planning time compared to A*. Later work led to the K2 algorithm [135] that
could find a high quality solution for a single robot with multiple constraints, but K2
is not readily extensible to MPPU.

UM* can be readily adapted to use the penalty cost approach, using the sum
of the probabilities that individual robots collide with other robots at each step as
the penalty term. The resulting algorithm, called Constrained M* (CM*), can solve
problems where the constraint is on the probability that each robot collides with
other robots and when the constraint is on the total number of expected collisions.
In either case, CM* uses a single weight, so CM* is a purely heuristic method when
dealing with multiple single robot constraints. The benefit is that CM* can run
the recursive implementation of M* while subject to an expected total number of
collisions constraint. The global adjustments to the cost function allow balancing of
the minimization of robot-robot collisions with the additional cost incurred to avoid
collisions across all subproblems. CM* assumes that the search has converged when
two successive valid paths have the same cost, neglecting the penalty term. As with
UM*, CM* is assumed to be based on rM* throughout the remainder of the chapter.

Unfortunately there is no D* equivalent for M*. As a result, only the individ-
ual policies can be shared between iterations of CM* and everything else must be

replanned from scratch.
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6.4 Belief Representation for MPPU

In most of the work on single robot belief space planning, the belief state of the system
is represented by Gaussian distributions [29, [72], 131, T4T], 173], 189]. In these works
the primary source of uncertainty is imperfect localization, and the main challenge
is obstacle avoidance. We are interested in problems where the individual robots are
highly capable, and the primary challenge arises from the presence of many robots.
We therefore assume that each robot has perfect localization and can accurately track
a trajectory in the workspace, but synchronization between robots is imperfect. For
such a system, spatial Gaussian beliefs do not provide a good representation, because
they cannot conform to the path actually tracked by the robots. Instead, the belief
state of the robots are represented as a distribution over position along the planned
trajectory, directly modeling uncertainty due to synchronization errors (Figure 6.2b).
Such a representation allows for useful planning when the size of the distribution is

large compared to the size of environmental features.

Modeling position as a distribution over position in the planned trajectory poses a
problem during planning, when the final trajectory is not yet known. If a robot were
allowed to be either ahead or behind schedule the distribution would depend on parts
of the path that have not been computed (Figure 6.3a), and the full distribution is
needed for proper collision checking. Therefore, we model the nominal position of a
robot as being as far along the path as physically possible. All uncertainty can then
be modeled as delays, which would place the robot somewhere on the path leading
to its nominal position (Figure 6.3b). As a result, the belief distribution of the robot

is fully defined throughout planning.
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(a) Spatial Uncertainty (b) Temporal Uncertainty

Figure 6.2: (a) Gaussian beliefs over robot positions (red and blue shaded regions)
are commonly used when planning for single robots with uncertainty. However, spa-
tial Gaussians do not accurately reflect the belief distribution when uncertainty is
dominated by synchronization issues between multiple robots, and robots can accu-
rately track spatial trajectories (corridors outlined in red and blue). As a result, a
spatial Gaussian belief may predict collisions that are not possible. (b) Expressing
uncertainty as a belief over position along the planned path produces beliefs that
better represent the synchronization problems of multirobot path planning.

6.4.1 Multirobot Systems with Finite Probability of Delay

Consider a system of n robots r® indexed by the set I = {1,...,n}. Each robot
moves on a configuration graph G = {V* E'} (Section 3.1). The set of actions
available to a robot when at a vertex vi corresponds to the edges leading to the
out-neighbors. A collision function (V% : E* x E9 — {0,1}) returns one if robots 7*
and 7 would collide if they simultaneously traverse a given pair of edges and zero
otherwise. At each time step, there is a Pyelay probability that the robot will delay
at its current location rather than taking the planned action. During execution, each
robot counts the number of unplanned delay actions it takes, and will subsequently
skip an equal number of planned delay actions. Thus planned delay actions serve as

an indirect synchronization action. Every action a robot plans to take incurs cost 1
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(a) Plan time belief with expected posi- (b) Plan time belief with most advanced
tion position

Figure 6.3: For planning with uncertainty, the belief of the robots position is de-
scribed as a distribution over position along the trajectory (red shading). (a) If the
nominal position of the robot is the expected position, then the portion of the belief
corresponding to moving faster than expected depends upon part of the trajectory
which has not yet been computed. (b) By recasting the nominal position as the
most advanced possible state, and recasting all uncertainty as delay, the belief can
be described purely in terms of the portion of the trajectory which has already been
planned.

except waiting at the goal configuration of the robot which incurs no cost.

The belief state b of r is represented by two sequences: pos; : {1,...,m} — V'
and prob} : {1,...,m} — [0,1]. pos; is the sequence of positions that 7’ would have
passed through if it never was unexpectedly delayed and prob}, contains the probabil-
ities that r* occupies each state in posi. The position furthest along the path is given
by posi, (1), which r occupies with probability probj, (1). The probability that r* has
collided with another robot is given implicitly by P uiative (0k) = 12202, prob}, (5).
Tracking the full joint probability would be computationally impractical, so the belief

distributions for each robot are assumed to be independent. Therefore, b = [, b".
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The belief dynamics for r? are written

Dyn’ ((posj, prob}) , ek, ) — (posh, proby) (6.14)
[posy|| = m (6.15)
. {v;,pos};(l),...,posﬁ'c (m)} xFy
pos; = (6.16)
pos,, x = y (planned delay)

where (pos};, probz) represents the belief state of r* and efcy is associated with a specific

action that takes 7* from v}, to v}. If the action is not a planned delay (x # y),

;

(1 — Pyetay) proby, (1) w=1

probj (w) = (1 — Paelay) proby, (w) + Paelayproby, (w — 1) 1< w <m (6.17)

\PdelayprObZ (w—1) w=m-+1
If the action is a planned delay, (z = y),
( i i

proby, (1) + (1 — Phelay) Proby, (w + 1) w=1

proby (w) = $ Pyeayprobi (w) + (1 — Pieay) probi (w+1) 1<w<m  (6.18)

\Pdelayprobz (w) w=m

The joint belief dynamics differs from the product of the individual robot belief
dynamics in that the joint belief dynamics includes collision checking, which depends
on the probability that robots traverse each edge. Consider the case of 7' taking
action a’ from the belief b}, and let b, = Dyn’ ((posy, prob}) ,a').® Assuming that

the action was not a planned delay, the probability of 7* traversing edge €3, is given

6The action is specified directly instead of in terms of an edge to reduce overlap in notation
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Y (1= Pacay) probj. (j) = #y
j
pos (j)=v}

P (e, by, a') = S posi)=v, (6.19)
Z PdelayprObz (J) r=1Yy

J
\ Posy, (7)=vs

If the action was a planned delay, then

Y. (1= Puay) proby (j) T#y
J
' ' ' pos};(‘j-&-l):p;
P (e;ylsz al) — posy(j)=vy (620)
Z PdelayprobﬁC (7) + (pos?C (1) = v;) prob, (1) z=y
JFL
\ pos, (j)=v,

where pos;, (1) = v’ evaluates to 1 if true and 0 if false.

Now consider the case where the system takes a joint action a starting at b, which
would place the system at b, if there were no collisions. The probability that r* would

not collide with another robot if it traversed e* € E* is

Prrce (ei|bk,a) = H <1 — Z pi (ei,ej) P (ej|bi,aj)> (6.21)

J#i eleFRI

The joint belief dynamics, including collision checking, can now be written

Dyn (b, @) = Dyn ((posy, proby) , €4,) — b, = (pos,, proby) (6.22)
ey = @ (6.23)
[posi|| = m (6.24)
| {wpos (1), posy (m) )}z #y
pos; = (6.25)
pos,, x = y (planned delay)
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If the action is not a planned delay, (x # y),

Pfree (POSé (2) 7p082 (1) |bk:> CL) (1 - Pdelay) PI"Obi; (1) w=1

Prree (pos}'c (w) ,pos}'g (w—1)|bg, a) (1 — Pyelay) pro‘bfg (w) +

probj (w) = . . .
Prree (pos}g (w—1),pos; (w—1) b, a) Pyelayproby, (w — 1)

l<w<m

Prree (POSZ (w - 1) apOS%‘c (w - 1) |bka a) PdelayprObz: (w - 1) w=m+1
(6.26)

where P (posi, (w), post, (w — 1) |b,, a) is the probability that r traverses the edge
connecting pos;, (w) to posk, (w — 1) without colliding with another robot. If the action

is a planned delay, (z = y),

Prree (pos}; (1) ,pos}AC (1) |by, a) prob}; (1)+ wel
Prree (pos}f (2), posy, (1) |by, a) (1 — Pyelay) proby, (2)
proby (w) = ¢ Ppec (pos}; (w) , post, (w) |by, a) Pdelayprobi: (w) + l<w<m
Prree (pos}; (w+1) ,pos}; (w) |bg, a) (1 — Pelay) prob}; (w+1)
karee (posf‘€ (w) ,pos}lC (w) |by, a) Pdelayprobﬁ€ (w) w=m
(6.27)

As defined, the support of the belief of 7* will cover the entire path taken by 7,
even though the probability mass at many states will be infinitesimal. Therefore,
states at the front and back of the distribution are removed if the probability mass
at those states are less than some threshold value P,yn.. After states are pruned, the
remaining belief is re-normalized to preserve the total probability mass of the belief.
Pprune must be chosen carefully, as it sets how much probability mass can “leak” out
of the belief at each step (Figure 6.4). If P,une = 0.01 then after 30 steps, there may
be a 30% chance that a robot will have “leaked” out of the support of the belief,
and into the untracked tail. This can lead to UM* significantly underestimating the
probability of collision (Figure 6.4). In the validation experiments, Ppume = 0.001

led to accurate estimation of the collision probability, and setting Pyrune = 0.0001 did
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Figure 6.4: Scatter plots showing the accuracy of the plans computed by UM* based
on the minimum density at which elements of the belief state will be pruned. Each
dot represents a single robot. The x-axis gives the probability of collision computed
for that robot by UM*. The y-axis gives the observed probability of collision after
running 100 realizations of each plan. If UM* was perfectly accurate all points would
lie on the red line. If UM* is too aggressive at pruning the belief state (a) UM*
will substantially underestimate the probability of collision. Reducing the pruning
threshold to 0.001% produces accurate results for the tested environment (b), and
further reductions do not leader to improve accuracy (c).

7. Large belief distributions

not noticeably improve collision probability prediction
cause a significant increase in the cost of performing collision checking, which can

significantly harm performance (Figure 6.13).

6.5 Results

UM* was tested in simulated environments for the problem described in the previous
section (Section 6.4.1). Each trial took place in a 32x32 four-connected grid of cells,
with a 20% probability of a given cell being marked as an obstacle (Figure 6.5).
Unique initial and goal positions for each robot were chosen randomly within the
same connected component of the workspace. Any action by an individual robot,

including waiting, incurred a cost of one, although a robot could wait at its assigned

If a robot has a 10% probability of colliding, the standard deviation of the estimated collision
probability from 100 trials would be w =3%
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Figure 6.5: Typical step in a 40-robot plan computed by UM*. The gray circles are
Colored stars denote the goal configuration of robots.
represent the planning-time belief state as to where the robots would be. The color
of more probable states are more saturated. The colored circles denote the actual
position of the robots in one realization of the plan.

obstacles.
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goal with zero cost. Unless otherwise stated, Pjelay = 0.1, dco1 = 0.1, and the heuristics

used by M* and UM* were inflated by a factor of ¢ = 3.

Each trial was given 5 minutes to find a solution. 100 random environments were
tested for a given number of robots. We present the percentage of trials that were
successful within 5 minutes as well as the median time required to find solutions. Run

time is plotted on a logarithmic scale.

6.5.1 Comparison to Alternate Approaches

The first question is whether explicitly planning for uncertainty provides a significant
benefit. We therefore compare UM* to three alternative approaches to solving the
MPPU problem: running rM* without accounting for uncertainty, running rM* where
robots are penalized for passing close to one another, and online replanning during

plan execution.

Comparison with rM*

UM* was first compared to rM*, where rM* assumes that robots never take unplanned
delay actions® (Figure 6.6). As expected, the probability that a robot will collide
with other robots is much higher when following a path generated by rM* then
when following a path generated by UM*, with a significant number of robots being
guaranteed to collide with other robots (Figure 6.6a). However, the improvement in
safety comes at a heavy cost. UM* can only solve approximately 20% of problems
containing 40 robots, while rM* has a similar success rate for problems containing

180 robots.
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Figure 6.6: Comparison between UM* and rM*, where rM* ignores the probabilistic
dynamics. Each robot has a 10% chance of delaying rather than taking its planned
action. The heuristics of UM* and rM* are inflated by 3. (a) Every trial solved by
both UM* and rM* was executed 100 times to compute the collision probability of
each robot, and are plotted in a histogram on a per-robot basis. The percentage of
trials that were solved successfully in under five minutes and the median time to find
solutions are plotted in (b).
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Figure 6.9: Comparison of different values of 7p,q. For each form of padding, trials
that were solved at two different values of r,,q were identified, and each solution was
executed 100 times to estimate the probability that each individual robot would collide
with another robot. The histogram shows how many robots had a given probability
of collision. (b) Linear padding with 7,,q4 = 4 was only able to solve problems where
linear padding with r,,qa = 2 had lower probability of collision (Figure 6.8c). The
effect for constant padding (a) is not as noticeable

Comparison with padded rM*

One standard way of handling uncertainty in sensing or execution is to inflate the
size of the robots to encourage paths with greater clearance. To this end, we tested
rM* with two forms of padding. In constant padding, a pair of robots r* and 77 incur
an extra penalty cost gpaq if the distance between r* and 77 is less than or equal to a
padding radius rp,q. In linear padding, the penalty cost incurred by r* and 7/ varies
linearly from gp.q if 77 is coincident with 7% to 0 if the distance between r* and r7 is
greater than or equal to 7paq. TM™* adds any robot that incurs a non-zero penalty cost
to the collision set. Several values for the penalty cost were tested, gpaa € {3, 10, 30}.
A value of gpaqa = 10 worked best; gpaa = 3 failed to prevent robot-robot collisions,
and gpaa = 30 did not substantially reduce collisions compared to gpaq = 10.

When 7,0 was small (rp,q = 1 for constant padding, and rp,q = 2 for linear
padding) the success rate for padded rM* was on par with UM* and the time to

solution was noticeably lower (Figure 6.7). However, such minor padding resulted

8Recall that UM* is implemented on top of rM*
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in high likelihood of robot-robot collisions (Figures 6.8a, 6.8c). Doubling rp.q sub-
stantially reduced the probability of robot-robot collisions (Figures 6.8b, 6.8d), but
significantly reduced the number of solved problems. Furthermore, the collision prob-
abilities can be misleading, as padded rM* will fail more on harder problems, where
robot-robot collisions are more likely (Figure 6.9). This effect explains most of the
reduction in collision probability for linear padding with rp,q = 4 (Figure 6.9b), but
is not as significant for constant padding with r,,q = 2 (Figure 6.9a).

The tested environment contains many features that are only one or two cells
wide, but the support of the belief for a single robot can exceed 7 cells in length
(Figure 6.5). Thus if robot-robot collisions are to be avoided, the padding region
around the robots must be large compared to the features of the environment through
which the robots must navigate. Robots would have difficultly passing one another
in corridors, and may even interfere with one another while on opposite sides of
impassable obstacles. Properly accounting for the true uncertainty in robot dynamics
is thus important when dealing with belief states with support large compared to the

size of environmental features.

Receding Horizon Planning

Another approach to dealing with uncertainty is receding horizon planning, where
planning is run to some depth instead of planning all the way to the goal. In the
implementation tested here, the robots execute half of the computed plan before
replanning. Thus, if the horizon is 4 steps away, the robots will take two actions,
then a new receding horizon path will be computed. UM*, rM*, and padded rM*
were tested in receding horizon planning. There are two important details. Each
invocation of the planner is independent, so the UM™* planner will only constrain the
probability of robots colliding within a single limited depth plan, not over the course

of the entire path to the goal. rM* also behaves slightly differently in a receding
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most similar histograms in this chapter, the results for all trials are plotted, not just
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horizon context, as the subplanners invoked by rM* share the same receding horizon.
As a result, the subplanners are not complete which can cause tM* to improperly
conclude that no solution exists. In that circumstance, rM* returns the path to the
node with the lowest heuristic value that rM* has expanded.

Receding horizon planning is inherently an online approach and the robot dy-
namics are non-deterministic. Therefore receding horizon planning was run on 100
randomly generated problems containing 40 robots, with each trial run 10 times.
Each trial was given 30 seconds total of planning time. If all robots that had not
collided with other robots had not reached their goal before the budgeted planning
time was exhausted the trial was counted as a failure. UM* was run with the collision
threshold set to d., = 0.075 to approximately match the safety of paths generated by
padded rM*. In all other respects the environments were the same as in other trials.

As would be expected, rM* and padded rM* perform the best with short planning
horizons, which maximizes information about where the robots actually are (Figure
6.10), and minimizes the support of the belief states, which permits minimal padding.
UM* benefits from a longer planning horizon. If the planning horizon is too short
UM* is prone to live-locks, where the robots oscillate back and forth. As expected,
UM* and padded rM* produce safer paths than simple rM*, although they are both
more prone to timing out. With the collision threshold tuned so that the safety of
paths generated by UM* and padded rM* were approximately equal safety, padded
rM* was able to solve 800 trials while UM* was only able to solve 600 trials, showing
the benefits of padded rM* for comparatively short planning horizons.

UM* has a substantial advantage over more heuristic approaches when the support
of the belief of each robot is large, as happens when planning a full solution to a MPPU
problem. When the support of the belief of individual robots is comparable in size
to typical environmental features, then accurately accounting for the true belief both

makes finding solutions easier
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Figure 6.11: (a)Comparison of performance of UM* with differing collision thresholds.
All trials were run with Pyeay = 0.1 and € = 3. The top figure gives the percentage of
trials that were solved successfully in under five minutes and the bottom plot gives
the median time to find solutions. (b) Median path cost for paths found by UM* with
varying collision thresholds. Only considers trials which were solved for all values of
collision threshold.

6.5.2 Scaling of UM*

With the benefits of UM* established, we wish to investigate how UM* scales with
its two principle tuning parameters: the collision threshold d., and the heuristic
inflation factor e. The collision threshold trades off path safety for path quality, and
the heuristic inflation factor trades path quality for planning time. A third parameter,
the pruning threshold P, e, trades accuracy in the belief representation for reduced
planning time.

UM* was tested with a selection of collision thresholds, d., € {0,0.03,0.1,0.3}
with Pyelsy = 0.1 and € = 3 (Figure 6.11). When 6§, = 0, UM* is equivalent to

padding the robot to exactly cover the support of its belief. UM* had the lowest
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success rate when ., = 0, indicating that avoiding all overlap requires expensive
detours. Although the difference is small, a collision threshold of 0.1 produced the
best success rate. The similarity to Pgelay is likely not coincidental. Assume that
two robots start fully localized with 7* occupying the position v, that r/ would like
to occupy. If ' takes a step away from v, while 77 steps into vy, then b'(vg) = 0.1
and ¥ (vy) = 0.9, which leads to a probability of collision of 0.09, just under the
threshold. Setting dco1 = Pielay thus allows robots to pass close to one another, but
quickly detects beliefs that will deeply interpenetrate one another. When 9., = 0.3,
UM* could get stuck in deep local minima when robots cross paths, where the beliefs
could overlap for multiple planning steps before violating the constraint. Finding a
path out of such a local minima would be difficult.

As expected, ., = 0.3 produces the lowest path costs while §.,; = 0 produces the
highest cost paths. These results match the degree to which the collision threshold
constrains the paths. The difference in path costs is approximately 10%. The path
costs are only significant between 6., = 0 and d., # 0. The results for 30 or more
robots must be taken with caution, as only eight 30 robot trials were solved for all
collision thresholds, and there was only a single 35 and 40 robot problem that was
solved for all collision thresholds.

The other tuning parameter is the inflation factor e (Figure 6.12). UM* performs
similarly for ¢ = 1 and e = 1.1, which suggests that preventing constraint violations
is more expensive for UM* than for M*, where setting ¢ = 1.1 substantially increased
performance (Figure 3.7). Going from € = 1.1 to ¢ = 2 leads to a substantial increase
in performance, while further increase of the inflation factor sees rapidly decreasing
gains (Figure 6.12a), matching the behavior of rM* (Figure 3.8). The cost bounds
imposed by the heuristic inflation factors are very loose. The difference in median
path cost between € = 2 and € = 10 is less than 10%, again matching the behavior of

rM* (Figure 3.9).
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Figure 6.12: (a) Comparison of performance of UM* with differing heuristic inflation
factors. All trials were run with Pyey = 0.1 and 6. = 0.1. The top figure gives
the percentage of trials that were solved successfully in under five minutes and the
bottom plot gives the median time to find solutions. (b) Median path cost for paths
found by UM* with varying heuristic inflation factors. Only considers trials which
were solved for all values of the inflation factor.

As expected, lower values of the pruning threshold Ppune led to lower success rates
and longer planning times (Figure 6.13). A lower value of P,une leads to larger support
for the belief state of each robot, complicating collision checking, but improving the
accuracy of the belief representation. In these tests, Pyue = 0.001 led to good

accuracy, with smaller values providing no improvement (Figure 6.4).

6.5.3 CM*

CM* was tested with two different constraints; the probability of collision for each
robot being below a threshold and the total expected number of collisions being under

a threshold. For the single robot constraint, the threshold was set at d.,; = 0.1. For
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Figure 6.13: Comparison of the performance of UM* with different pruning thresholds
Pprune for the underlying belief. P,ryne wWas tested at 0.01, 0.001, and 0.0001. The top
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and the bottom plot gives the median time to find solutions.

the expected number of collisions threshold the threshold was set at 0.1 times the
number of robots in the problem. UM* subject to the constraint that each robot has
a probability of collision of less than d., = 0.1 was used as a point of comparison
(Figure 6.14), because the recursive implementation of UM* cannot operate under
the expected number of collisions constraint, and the recursive implementation is nec-
essary for efficient computation. CM* was tested with initial penalty costs 100 and
1000 times the probability of robot-robot collisions. UM* consistently outperforms
CM* (Figure 6.14a). The performance of CMS subject to the single robot constraint
and the expected number of collisions constraints were nearly identical. Furthermore,
the probability that a robot collides when following a CMS path subject to the in-
dividual and expected number of collisions are nearly identical (Figure 6.14b) are
nearly identical, and skewed to collision probabilities well below the constraint. This

suggests that to find a solution the penalty costs are being set sufficiently high to
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avoid nearly all collisions.

6.6 Summary and Conclusions

In this chapter, we showed that the MPPU problem lacks the direct product structure
upon which most MPP algorithms rely. We then presented UM*, a variant of rM* for
the MPPU problem. UM* loses completeness only in cases which require a robot that
does not normally collide with any other robot to deliberately collide with another
robot. We then gave a non-Gaussian belief space representation that is appropriate
for multirobot systems when individual robots can localize themselves well, but have
little ability to synchronize their actions with other robots. We then compared UM*
with several heuristic approaches to MPPU. UM* works well when a complete plan
for the system is required; when continuous, short horizon replanning is feasible UM*
is outperformed by a simple padding approach. We then tested UM* against CM*,

a variant inspired by CD*, and showed that CM* underperforms UM*.
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Figure 6.14: Comparison of UM* and CM*. UM* and CM* were tested with a single
robot collision threshold of 0.1. CM* was also tested with a constraint that the total
expected number of collisions be no more than 0.1 times the number of robots. CM*
was tested with the initial penalty cost being 100 and 1000 times the probability of
collision. The heuristic inflation factor was 3, and Pyeay = 0.1. (a) Comparison of
performance of UM* and CM*. The top figure gives the percentage of trials that
were solved successfully in under five minutes and the bottom plot gives the median
time to find solutions. (b) Histogram of robot collision probability. For every trial
solved by UM* and all versions of CM* the resulting plans were executed 100 times to
estimate true robot-robot collision probabilities. The histogram shows the probability
that a robot will collide with other robots, with each robot in each trial being counted
separately. Note that the domain of the plot extends only to a 50% probability of
collision, instead of the 100% used in most similar plots.
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Chapter 7

Multirobot Sequential Composition

Conventional path planning algorithms compute a single trajectory in the configura-
tion space of the system. However, perturbations and process uncertainties can force
the system to depart from the planned trajectory. Running a trajectory-tracking con-
troller can provide robustness to small perturbations. However, because the planner
only considers a single trajectory, there is no guarantee that the trajectory-tracking
controller will avoid collisions while recovering from larger perturbations (Figure
7.1a). Sequential composition seeks to produce paths that are robust to perturba-
tions by planning not in the configuration space of the system, but rather over a set
of controllers [20], 311 [43], 125], 126, 179]. The resulting plan is a sequence of controllers,
chosen such that the goal set of each controller lies in the domain of attraction of the
succeeding controller (Figure 7.1b), defining a plan over a “thick” region of the con-
figuration space, instead of a single “thin” trajectory. As long as the system remains
within the domains of the planned controllers safety is guaranteed. Furthermore, the
system can readily detect when it is subject to a large enough perturbation that the
original sequence of controllers can no longer guarantee safety and then compute a

new plan.

157



N\

<4

N

(a) Path planning (b) Sequential composition

Figure 7.1: (a) Conventional path planning algorithms compute a plan consisting
of a single trajectory in configuration space (black arrow). While a trajectory con-
troller can compensate for small disturbances, large disturbances during execution
(red arrow) can cause the tracking controller to run into an obstacle. (b) Sequential
composition planners [31], 43] compute a plan consisting of a sequence of controllers ,
chosen so that the goal set of each controller is a subset of the domain of attraction of
the subsequent controller. In this example the initial path is yellow, purple, blue. The
planned controllers guarantee safety as long as perturbations are not large enough to
force the system out of their domains. Perturbations large enough to force the robot
out of the domain of attractions of the controllers are easily detected, and can be
compensated for by selecting a different sequence of controllers

Computing a sequential composition plan is a multi-step affair. First, a set of
controllers with well defined domains must be deployed in the environment. The
domain of a controller is an invariant subset! of the domain of attraction of the
controller that lies entirely within the free configuration space. Controllers should
be deployed so that the union of their domains cover as large a fraction of the free
configuration space as possible.

The second step is to describe how the controllers can be sequenced. Controller
A is said to prepare controller B, denoted A = B, if the goal set of A is a subset
of the domain of B. A single controller can prepare multiple controllers. Once a

robot reaches the goal set of its current controller, it will be in the domain of all

Hf a robot starts in the domain of a controller it will remain within the domain of the controller.
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Figure 7.2: (a) An example of a controller deployment where A = C, B = C, C > D
and C' = E. (b) The associated prepares graph.

the prepared controllers, and can choose which to execute next according to a pre-
computed policy. The prepares graph is a directed graph that captures the prepares
relationship between controllers (Figure 7.2). Each controller is represented as a
vertex in the prepares graph whose out-neighbors are the prepared controllers. Thus
a feasible sequence of controllers can be computed by finding a path in the prepares

graph.

Prior work on sequential composition has primarily focused on combined control
and path planning for single robots, where the prepares graph is sufficiently small that
a policy over the entire prepares graph can be computed [20], B1, 43|, 125, 126, [179].
The result is a control policy defined over a much larger fraction of the free configu-
ration space than would be possible for a single conventional controller. Ayanian and
Kumar [9] applied sequential composition to MPP by constructing controllers directly
in the joint configuration space of the system [10] [I1], producing a prepares graph
which grew exponentially with the number of robots. Ayanian and Kumar [9] used
A* to find a path in the prepares graph, which limited the approach to small numbers

of robots. While not using the language of sequential composition, Ulusoy et al. [185]

159



describe an approach for using Linear Temporal Logic (LTL) solvers to coordinate
robots executing single robot primitives, explicitly allowing for the primitives to be
controllers. They also introduced region automata to handle primitives with different
durations. However, the computational cost of the LTL solver limited the approach
to a system of 2 robots.

In this chapter, we apply M* to multirobot sequential composition to facilitate
robust planning for systems containing large numbers of robots. Our basic approach
is to compute a prepares graph for each robot, then take the direct product to define
a joint prepares graph for the system as a whole. M* can then be used to find a path
in the joint prepares graph which assigns a sequence of single robot controllers to
each robot. However, the time a robot takes to execute a controller varies with the
geometry of the domain of the controller and random perturbations. We introduce
the time augmented joint prepares graph, an adaptation of region automata [I85],
which captures differences in average execution time for different controllers. We deal
with stochastic variations in execution time using UM* to explicitly reason about

uncertainty (Chapter 6).

7.1 M* for multirobot sequential composition

Consider system of n robots r, i € {1,...}. Robot 7% has a configuration space Q"
and dynamics F': Q' x U' — TQ¢, where U* is the space of control inputs of 7 and
Tespace® is the tangent bundle of Q' that contains the configuration velocities. A
controller for r* is a mapping C}, : Q° — Di where Di C Q.. is the domain of the
controller in the free configuration space. The flow of the controller (I)c,i QxR — Q°
maps the configuration ¢' of  at time zero to the configuration it would occupy
De: (¢*,t) at time ¢ under the influence of controller C}.

Each controller C}, has a goal set G. C Di. The flow of valid controller takes every
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point in its domain to the goal set in finite time
Vq' € D, 3T >0 5.t Oy (¢, T) € G'AVEE[0,T] ¢y (¢',t) €Dy, (T.1)

Note that by this definition r* executing C}, may leave D, but only by passing through
Gi.

Finally, we say that controller C; prepares Cj, k # ¢, if G C D}, denoted C}, = C;.
C; prepares itself only if G! is an invariant set, i.e. once r reaches G. it will never
leave G! without executing a different controller. We term the controllers that prepare
a given controller C; the preparing controllers of C;. The prepares relations between
a set of controllers € for a robot r® are described by the prepares graph G?, where
the vertex set of G* is €'. An edge connects C}, to C} if and only if C}, > Cj.

The joint prepares graph of the multirobot system is the direct product of the
individual prepares graphs G = [[;; G', with vertex set V and edge set E. Each
vertex v; in G is associated with a tuple of controllers (C},...,Cy), which assigns
' to execute Ci. Let vy be associated with a tuple of controllers that stabilize the

robots at their ultimate goal states.

Specifying the vertex v, that represents the initial state of the system requires
care. Assume the robots start at an initial joint configuration g, € (). Each robot
may start in the domain of multiple controllers. Thus, the system could start from
one of exponentially many vertices in the joint prepares graph, all of which would have
to be added to the open list of M*. To allow M* to efficiently construct the optimal
set of initial controllers, we define an initial vertex vy that is associated with a tuple
of dummy controllers (C mmy: - - - s Citummy) - Clrummy Prepares every controller Cj, € €'
for which ¢ € Di. M* can then intelligently select the proper set of controllers to

execute first.

M* can then be used to compute a path in the joint prepares graph that describes
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the sequence of controllers to be executed by each robot.

7.2 Synchronization Issues

The construction of the joint prepares graph embodies an assumption that each robot
will transition from one controller to its successor at the same time, which would imply
that every controller takes the same amount of time to be executed by each robot.
However, differences in controller geometry and execution errors ensure that the time
required to traverse a controller, termed the duration of a controller, not only differs
between controllers, but is actually a random variable. There are several reasons for

differences in duration

1. Controllers have domains of different shapes and command different velocities,

and thus require different amounts of time to traverse (Figure 7.3a).

2. The goal set of different preparing controllers will be at different distances from
the goal set of the controller. Therefore, the duration of a controller will depend

upon the preparing controller (Figure 7.3b).

3. The time a robot requires to execute a controller from different configurations
within the goal set of the same preparing controller will be different (Figure

7.3¢).

4. A robot will take different amounts of time to execute the same controller from
the same starting point due to environmental perturbations, noise in position

estimates, and other stochastic influences (Figure 7.3d).

Reasons 1 and 2 are deterministic in that their contribution to the duration is due
solely upon the geometry of the controller and its preparing controllers?. In the next

section, we specialize region automata [I85] for sequential composition, producing

2 Assuming that the goal set of each controller is small
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V..

(a) Different controller geometries ) Different preparing controller
(c) Different positions in goal set of ) Different path due to noise and mod-
preparing controller ehng errors

Figure 7.3: Larger controllers will typically have longer durations than smaller con-
trollers (a). The duration of a single controller will depend on the preparing controller
(b) and where in the goal set of the preparing controller the robot starts executing
the controller (c). Finally, perturbations of the trajectory during execution ensure
that the duration will not be exactly the same even if the robot starts twice in exactly
the same spot (d)
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the time augmented joint prepares graph which accounts for geometric variations in

duration.

Reasons 3 and 4 are inherently stochastic. Reason 3 is inherent to the fact that
sequential composition reasons about controllers, rather than specific robot configu-
rations, while 4 is inherent to non-ideal robots. We address stochastic uncertainty by
planning paths for the system using UM™* (Chapter 6), which explicitly reasons about

uncertainty.

7.3 Time Augmented Prepares Graph

The time augmented joint prepares graph is intended to account for deterministic
differences in the duration of controllers (Section 7.2). To do so, the time augmented
joint prepares graph tracks how long each robot has spent in each controller, and
only assigns new controllers to robots in the order that they complete their assigned
controllers. To this end, we define the nominal duration t,om : € x € — RT over
the set of all deployed controllers € for 7%, where t,,, (C,C;) is the time that r* is
expected to require to execute controller C; € € when prepared by C;. The time
augmented joint prepares graph is equivalent to the region automata of [I85], but

specialized for sequential composition.

A vertex v, in the time augmented joint prepares graph is a set of ordered pairs
(Ci, ti), where Ci € € is the controller assigned to %, and ¢ is the expected time-to-go
before the robot will complete executing Ci. The neighbors of v, assign new controllers
to the robots that will finish their current controllers first, and update the time-to-
go for the robots that will take longer to finish executing their assigned controllers.

More specifically, denote the minimal time-to-go for any robot as §t; = min; ;. The
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neighbors of v, are then

Vi = (C!  tuom (CE,CL)) ti =6t A CL=Cl
neighbors(v,) = < vy Z ( o ( ?) k ¢ g : (7.2)
U; = (Ci,t}c — 5tk) t?c > §tk

An example of the time augmented joint prepares graph is given in figure 7.4. The
controllers for robot ! have the prepares relation A = B, and the controllers for 72
have the relation C' = D = F (Figure 7.4a). Controllers A, B, and F have a nominal
duration of 2 units. Controllers C' and D have a nominal duration of 1 unit. The
resulting joint prepares graph is given by (A,C) — (B, D) — (B, E) (Figure 7.4b).
The transition (A,C) — (B, D) is not feasible, because A takes longer to execute
than C. The time augmented joint prepares graph avoids such problems. The initial
vertex v; is given by ((4,2),(C,1)). Robot r? will finish executing C' in 1 unit of
time, while 7! requires 2 units of time to execute A. Therefore §t; = 1. According to
equation 7.2, the neighbor of vy is vy = ((4, 1), (D, 1)). Controller D is expected to be
executed by 72 in 1 unit of time. Controller A requires 2 units of time to be executed,
but ! has already executed A for 1 unit of time. Therefore, ! has a time-to-go of
1 unit. Thus, dty = 1, with ' and r? finishing their current controllers at the same

time. Therefore, the out-neighbor of v, is v3 = ((B, 2), (E,2)).

From the algorithmic point of view, M* can plan paths in the time augmented
joint prepares graph without modification. However, the existing implementations of
M* assume that the graph describing the full system is the product of single robot
graphs, which is not the case for and the time augmented joint prepares graph or
region automata [I85]. An alternative to the time augmented joint prepares graph
that can be used directly by existing M* implementations is the Approximate Time
Augmented Joint Prepares Graph (ATAJPG), which represents the execution of con-

trollers using a fixed temporal resolution. The ATAJPG is the direct product of single
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Slngle robot controllers

) Joint prepares graph

- - — -
) Time augmented joint prepares graph

Figure 7.4: (a) Robots r' and r? have different controller sets and prepares graphs.
The larger controllers A, B, and E have a nominal duration of 2, while the smaller
controllers C' and D can be executed in 1 time unit. (b) The joint prepares graph is
the direct product of the single robot prepares graphs, and thus ignores differences in
nominal duration of the controllers. The transition (A,C) — (B, D) is not realistic,
because A takes longer to execute than C. (c) The time augmented joint prepares
graph is formed by augmenting each controller with a time-to-go.
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Figure 7.5: Example of the approximate time augmented prepares graph with a time
resolution of 1. The nominal duration of controller C'is 5 when prepared by controller
A and 3 when prepared by controller B.

robot approzimate time augmented prepares graphs, in which each controller is repre-
sented by a number of vertices determined by its largest nominal duration, recalling
that the nominal duration of a controller depends upon its preparing controller. If
a controller has a maximal nominal duration of 5 seconds and the time resolution is
1 second, then the controller is represented in the approximate time augmented pre-
pares graph by 5 vertices (Figure 7.5). The vertices representing a single controller
are arranged in a chain, and annotated with the time to go. The last vertex associ-
ated with controller C; (smallest time to go) is connected to the vertices representing
controllers Cf, Ci. > C; with a time-to-go equal to t,om, (C, CL).

The advantage of the ATAJPG is that it is a drop-in replacement for the joint
prepares graph in M* implementations. The disadvantage is that the ATAJPG will
be up to a constant factor larger than the time augmented joint prepares graph,
where the constant factor is the maximal number of vertices used to represent a
single controller. The extra vertices correspond to situations where no robot is at the

last vertex representing its current controller, and thus have only a single successor
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Figure 7.6: Parallax Scribbler robot as used in experiments (a). To simplify control
design, the body frame was placed at the front of the robot (b). The scribbler can
then be treated as a fully actuated robot in position with heading left uncontrolled.

in the ATAJPG. The extra vertices do not contribute to the branching factor of the
graph, so running M* on the ATAJPG should take a constant factor more time then

running M* on the time augmented joint prepares graph.

7.4 Implementation

Sequential composition addresses issues of control in the face of uncertain dynamics
and environmental noise, which makes experimental validation particularly useful.
Logistical constraints limited the number of physical robots that could be run simul-
taneously and the size of the workspace. Experiments were therefore run in a mixed
reality framework, combining physical and simulated robots to increase the number

of agents and the size of the workspace.
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7.4.1 Scribbler robots

Parallax Scribbler robots provided by Manuela Veloso served as the test bed. The
Scribbler robot is a differential drive robot that is nearly circular in shape (Figure
7.6a), with a radius of 7.2 cm. FEach Scribbler robot was equipped with a Parani
SD100 Bluetooth serial adapter providing a 9600 baud serial connection to an offboard
computer. The Scribbler robots have minimal onboard computation and no odometry
sensors, requiring offboard localization and control. Each robot was programmed to

obey motor speed commands received over the Bluetooth link.

The Scribbler robots showed a significant variation in performance due to their
age. However, the four best robots had similar performance, with a maximum speed of
0.3 meters per second (m/s), and a maximal angular velocity of 3.5 radians per second
(rad/s). Note that an ideal differential drive robot with the radius and maximal linear
velocity of the Scribblers would have a maximal angular velocity of 4.2 rad/s. The
Scribblers were observed to have difficulty turning counterclockwise, presumably due
to asymmetries in the drive train, which may account for the reduced average angular

velocity.

According to the unicycle model, a differential drive robot can directly control
its angular & and longitudinal &, velocities. The main emphasis of this thesis is on
planning for multiple robots, so to simplify controller design we follow [10] and place
the body frame at the front of the robot, instead of directly between the wheels as in
the unicycle model (Figure 7.6b). With the offset body frame the Scribbler can be
treated as a fully-actuated planar robot, leaving 6 uncontrolled. The kinematics of

the robot are then given by

&, 1 1] |w
. = Pwheel (7 3)
gy 1 -1 W9
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Figure 7.7: Control of a differential drive robot can be simplified by placing the body
frame at the front of the robot, and only controlling x and y. However, this means
that when the body frame of the robot is at a given position, the robot might occupy
any points in a circle that is twice the diameter of the robot.

where pypeer 18 the radius of a wheel and w; and ws are the angular velocities of the
left and right wheels, respectively. A velocity field defined in the world frame can be

converted into a controller for the robot by

w 1 11 cos(0) sin(0)| |v.(z,y)

- (7.4)
wy Pwheel |1 1| | —sin(0) cos(0)| |v, (z,y)

where v, (z,y) (respectively v, (z,y)) is the commanded world velocity in the = (re-
spectively y) direction when the body frame of the robot is at (z,y, ). The downside
of this model is that the robot extends up to 2 radii from the origin of the body frame
and does not actively control 6, effectively doubling the required clearance to avoid

collisions [10] (Figure 7.7).
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Positions| |Motor Commands

Reality Simulation

Figure 7.8: Architecture for experiments.

7.4.2 Architecture

The limited sensing and computational resources of the Scribbler robots required the
use of a centralized localization and control scheme. Furthermore, limitations in the
size of the test environment and the number of available robots led to a mixed-reality
approach, utilizing both real and simulated robots. The high level architecture con-
sisted of a robot manager and a control manager (Figure 7.8). The robot manager
provided the control manager with estimates of the position of each robot, and con-
verted the world frame velocity commands of the control manager into motor com-
mands. The control manager was responsible for planning, determining the active

controller for each robot and computing commands of each robot’s active controller.

The robot manager was a wrapper around two sub-components: the physical
robot manager and the sim manager, responsible for communicating with the real

and simulated robots respectively. The physical robot manager was responsible for
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establishing serial communications over Bluetooth with each robot, sending motor
controls to the robots via Bluetooth, and running computer vision to localize the
robots using an overhead camera. An Aruco tag was placed on the top of each robot
(Figure 7.6a) to allow an overhead camera to localize the robots using the Aruco
computer vision library [68]. In the lab, localization was precise to within 1 mm and
1/100 of a radian, which when combined with the relatively low performance of the
Scribblers meant no filtering was necessary. The sim manager interfaced directly with
the simulator, reading out the position of the robots and passing in commanded motor
speeds. The robot manager hid whether a given robot was physical or simulated from
the control manager: the interface for providing position estimates and receiving
commanded world frame velocities was the same in either case.

The control manager computed a joint path for the multirobot system using M*
or UM* when explicitly considering uncertainty. The joint path was split into sepa-
rate paths for each individual robot, and executed separately. The control manager
supported optional synchronization when running a plan computed by M* by slowing
down robots which are ahead of other robots by ¢”, where o is the synchronization

factor and n is the number of steps in the plan the robot is ahead of the slowest robot.

7.4.3 Controller Design

Controllers were defined on convex, polygonal domains in the workspace following the
work of Habets and Van Schuppen [76]. An affine vector field over a triangular domain
is fully defined by the value of the field at the vertices of the triangle. A continuous,
piecewise-affine field can be generated over a convex polygon by triangulating the
polygon and specifying the value of the field at each vertex of the polygon. For the
vector field to define a valid controller for use in sequential composition, the trajectory

of any particle that flows along the vector field starting from within the domain must
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Figure 7.9: Example of controller design. The goal face is the face furthest to the
right. The gray lines indicate the internal triangulation of the polygonal domain.

leave the polygon through a specified goal face after finite time, and must not leave

the domain of the controller through any other face.

Consider the case of designing a controller whose domain is a convex m-gon, where
v denotes the coordinates of the kth vertex. Let n; denote the outward-pointing
unit normal vector for the face connecting vertex vy to vii1, where all arithmetic is
mod m. Without loss of generality, assume that the goal face is face 0. The piece-wise
affine vector field defined on a triangulation of the polygon is a valid controller if the

value of the vector field uy at each vertex vy satisfies Habets and Van Schuppen [76]

fl() U, > 0
ke {0,1} (7.5)
N (o 1)%m " U < 0
flo s, > 0
flk - Ug S 0

Roughly, every u; must have a component pointing out of the goal face, and an inward
component relative to every adjacent non-goal face [76]. We choose uy by running a

linear program that finds the unit vector that satisfies (Equation 7.5) and maximizes
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the objective function

Ny — N2k—1)%m

) PR O,bm—1
[ — D2p—1)%m| woie{lm=1

V—Vk

|V — vl { }

where v denotes the centroid of the polygon. At vertices not adjacent to the exit face,
the objective function rewards controllers that move a robot towards the centroid of
the domain as quickly as possible. At vertices adjacent to the exit face, the objective
function balances the need to move robots near the adjacent non-exit face into the
interior of the polygon with the need to move robots out through the exit face. We also
choose to rescale the resulting piecewise-affine vector field to have constant magnitude

(Figure 7.9).

Goal controllers stabilize a robot at the centroid of the domain using linear at-
tractive fields with magnitude proportional to the distance from the centroid. Goal
controllers also provide the robots with the ability to wait in place. Normally a robot
r* will transition from Cj, to the next controller in its plan Cj,, as soon as r' enters
D; . ,. However, this would effectively prevent a robot from executing a goal controller
multiple times in a row to wait for prolonged period of time, as this would imply that
Di = D 41, so the robot would immediately skip over any repetitions of the goal
controller in the plan. Instead, each goal controller is explicitly assigned a nominal
duration. When a robot begins executing a goal controller it starts a clock and will
not transition to the next controller in its plan until it has spent time at least equal
to the nominal duration in its current controller. If the next step in the plan calls
for the robot to wait again at the same goal controller, the robot resets its clock and

waits for another fixed period of time.
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Figure 7.10: Consider a controller defined in square A whose goal face is shared with
square B. The controller in A prepares every controller whose domain is B except for
the controller in B whose goal face is shared by square A.

7.5 Experiments

We mounted a 720p webcam on the ceiling of the lab, which allowed Scribblers to
be localized in a region 1.6x1.2 meters. Controllers were deployed in the visible
region by covering the workspace with squares 0.15 meters on a side, slightly more
than one Scribbler diameter. Up to five controllers were deployed in each square,
four controllers each using a different face of the square as a goal face, and one goal
controller which allows the robot to wait in place, which is especially important if the
square contains the robot’s goal configuration. Controllers were only constructed if
they would prepare at least one other controller, i.e. the goal face of the controller
must be shared with at least one other square. A controller prepares every controller in
the square that shares its goal face, except for the controller which would immediately
return the robot to its starting square (Figure 7.10). The simulated robots occupied
a space twice as large, centered on the visible region. All controllers except goal
controllers were set to command a constant speed of 0.12 m/s.

Controllers are deemed to interfere if they share a vertex. This guarantees a
clearance of two Scribbler radii between the origins of the body frames of the robots.
To guarantee that no collisions occur a clearance of four radii would be required.

Unfortunately, the workspace for the physical robots is not large enough to require a
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Figure 7.11: Course used to calibrate the robots and simulation. The physical and
simulated robots were each driven through 10 laps of the course. Each box is the
domain of one or more controller in the calibration path. The arrows represent the
vector field of the active controller.

ATC

|
I

B

Figure 7.12: Controller C' is labeled as a straight controller when prepared by con-
troller A and as a turn controller when prepared by controller B.

four radii clearance. From a practical standpoint, we have never observed a collision
between robots that were executing controllers that did not share a vertex.

To calibrate the simulation and estimate the duration of each controller we ran
every physical robot and the simulated robot through 10 laps of a calibration course
(Figure 7.11). Controllers were divided into two categories depending on the relative
geometry of the controller and its preparing controller: straight and turn. A controller
is labeled a straight controller if its goal face is parallel to the goal face of its preparing
controller, and is otherwise labeled as a turn controller (Figure 7.12). Note that the

same controller may be assigned both labels when prepared by different controllers.
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Figure 7.13: Histogram of the time required for a physical and simulated robot to
execute a turn or a straight controller

The physical robots took 0.85 £ 0.12 seconds to execute a straight controller, and
0.87 £ 0.16 seconds. Covering 0.15 meters in 0.88 seconds suggests that the physical
robots were traveling at an average of 0.17 m/s, instead of the commanded 0.12 m/s.
We therefore sped up the simulated robots by a factor of 1.4, which led the simulated
robots to executing a straight controller in an average of 0.88 4 0.03 seconds and a
turn controller in an average of 0.59 + 0.10 seconds. The simulated robots were able
to execute the turn controllers in less time because they were able to cut the corner to
a degree dependent upon their position when entering the controller, explaining the
increased variance. The physical robots were able to cut the corner on turn controllers

as well, explaining the lower minimal time to execute a turn controller compared to
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a straight controller. However, the physical robots are much less responsive than the
simulated robots, and so tended to overshoot while executing the diagonal section of

the path, leading to a very high variance.

M* and ATAJPG

We choose to use a time resolution of 0.3 seconds for the ATAJPG, and set the nominal
duration of each controller to the mean duration for robots with the same duration,
recalling that the nominal duration of a controller depends upon its preparing con-
troller, and round to the nearest whole number of vertices. The nominal duration for
physical robots executing straight and turn controllers and for the simulated robots
executing straight controllers was 0.9 seconds, and so these controllers were repre-
sented by three vertices. The simulated robot took approximately 0.6 seconds to

execute a turn controller, and so those were represented by two vertices.

UM*

To combine sequential composition and planning with uncertainty, we used UM* and
the delay model from section 6.4.1. We used a constant delay probability, with spe-
cialized delay probabilities for different controllers left as future work. For the delay
model from section 6.4.1 to work, the nominal duration must be the minimal time in
which a controller can be executed, which for the physical robots is approximately 0.6
seconds for both the straight and turn controllers (Figure 7.13). The delay probability
must be chosen so that the resulting belief distribution for controller execution time
will best match the observed distribution of controller durations. Assume a controller
is represented by n vertices in the joint prepares graph or ATAJPG, where each vertex
represents d; seconds of controller execution. We wish to find the probability that a
robot will take & steps to execute the controller, for a duration of kd;, when the robot

has a Pgelay probability of delaying at each step. This is equivalent to the probability
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that the robot delays k£ — n times in the first £ — 1 steps, followed by not delaying at

the final step, which is given by

k-1

P (k)= P (1= Paciay)" " (1 = Paciay) (7.8)
k—n
k-1

= Ploay (1= Pactay)” (7.9)
k—n

Equation 7.9 is the negative binomial distribution which has a mean value [137]

- n
k=—"— 7.10
1- Pdelay ( )

Given a fixed nominal duration t,,,,, n = t”é%. Therefore, for a fixed mean duration

t_: ]2’(515

tnom
kS, = | —%  |§ 11
! (1—Pdelay> ' (7 )

n tnom
= ——7— 7.12
1— Pdelay ( )

which is independent of the number of vertices used to represent a controller. Thus
given an observed nominal duration and mean duration, the appropriate delay prob-

ablhty Pdelay is

t— tnom

Pdelay = (713)

For straight controllers with ¢, = 0.6 and ¢ = .85, (Equation 7.13) implies Pjelay =
0.29, while for turn controllers with ¢,,,,, = 0.6 and ¢ = 0.87 Pjyelay = 0.31. Therefore

we use Pyelay = 0.3.
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UM?* and the ATAJPG

Our current UM* implementation does not support variable delay probabilities, so we
must use Pgelay = 0.3 for all controllers. As mentioned earlier, the minimum time for
a real robot to execute any controller is approximately 0.6 seconds. A simulated robot
takes a minimum of approximately 0.4 seconds, which with Pyc,y = 0.3 implies an
mean duration of 0.6 seconds which closely matches the observed value. A simulated
robot executes a straight controller in a minimum of 0.8 seconds. However, with
a fixed delay probability, this would correspond to a mean duration of 1.1 seconds,
which is well above the observed mean. For the purposes of UM* planning on the
ATAJPG we treat simulated robots as being able to execute a straight controller in
a minimum of 0.6 seconds, like the real robots. The time resolution for the ATAJPG
was set to 0.2 seconds per vertex, which meant that a simulated robot executing
a turn controller would be represented by 2 vertices, and all other controllers by 3

vertices.

7.5.1 Test Cases

UM* cannot handle as many robots as M* so we tested two problems, one involving
six robots and the other eight robots (Figure 7.14). The initial and goal configurations
of the robots were defined by two rectangles; the inner rectangle lying entirely within
the field of view of the camera, and the outer rectangle surrounding the inner rectangle
outside the field of view. In the eight robot case, physical robots were placed at each
vertex of the inner rectangle, and simulated robots were placed at the vertices of the
outer rectangle. The goal configuration for both types of robots was the vertex directly
opposite the robot’s starting vertex on the appropriate rectangle. This induced a
double "X’ pattern, leading to mutual interaction between all robots. In the six robot

case one physical and one simulated robot were omitted.
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CORRRN 1 (O s

(a) Eight robot problem (b) Six robot problem

Qs

Figure 7.14: Initial configuration of the eight (a) and six (b) robot problems. The
empty blue circles with a red number are the simulated robots. Robots seek to move
to the diametrically opposite position. The squares are the domains of the controllers
used in one solution to the problem.

The problems described here are difficult. Each robot effectively occupies a space
equal to two squares (as every pair of robots must be separated by an empty square).
The camera’s field of view is only 11 squares by 8 squares, and all robots seek to pass
through this region. In the context of chapter 3 this would be roughly equivalent
to solving a problem where 6 or 8 robots must pass through an area that is bHx4

(remember that each robot occupies 2 squares), which is a rather high density.

M*

We first describe the results when using M* as the planner and not explicitly consid-
ering uncertainty. We tested three conditions; planning on the joint prepares graph
with a synchronization factor of 0.3, planning on the joint prepares graph with no
synchronization, and planning on the ATAJPG with no synchronization. We ran each
condition three times, however the results for each trial were very similar so we only
plot results for the first trial. The plans generated by M* would always be safe if

executed exactly as planned by the robots. To track how closely the robots adhere
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the plan we plot the minimal distance between the centers (not body frames) of the
robots and the controller indices of each robot as a function of time. Recall that a
sequential composition plan assigns each robot a sequence of controllers. The con-
troller index of a robot is the index of the controller the robot is currently executing
within the planned sequence of controllers.

When M* plans of the joint prepares graph and robots are run with a synchro-
nization factor of 0.3 the robots remain almost perfectly synchronized (Figure 7.15a),
and as a result stay a safe distance from one another. When the synchronization is
removed, the simulated robots execute their plans significantly faster than the phys-
ical robots (Figure 7.15b). The resulting synchronization errors leads to one grazing
collision between a real and simulated robot at 7 seconds and a serious collision where
a simulated robot almost completely overlapped a real robot for several seconds start-
ing 10 seconds into the run. We believe that the difference in speed comes from the
simulated robot being able to execute turn controllers more quickly than physical
robots, and planning on the joint prepares graph implicitly assumes that the time
required to execute each controller is the same. The ATAJPG accounts for determin-
istic differences in execution time for different controllers, including whether they are
executed by real or simulated robots. As a result, even without explicit synchroniza-
tion the robots are almost as coordinated when executing a plan computed in the
ATAJPG (Figure 7.15¢) as they were when executing a plan computed on the joint
prepares graph with active synchronization (Figure 7.15a). We note that the physical
robots showed great consistency; the paths followed in all three replicates of a given
trial were nearly identical which likely contributed to the efficacy of planning on the
ATAJPG.

Running M* on the six robot test case (Figure 7.14b) produced qualitatively
similar results. When plans were generated in the joint configuration graph and no

synchronization was applied, the simulated robots moved through their plans more
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Figure 7.15: The controller index and minimum distance between any two robots for
the eight robot trial (Figure 7.14b) with M* planning. The controller index is the
index of the controller in a robot’s plan that the controller is executing at a given
time. If the robots were perfectly synchronized, they would always have the same
controller index. If robots are closer together than 2 Scribbler radii (red dashed line)
they are in collision.

183



Algorithm Robots | Planning Time (s)
M* 8 0.4
M* ATAJPG 8 4.5
M* 6 0.2
M* ATAJPG 6 0.8
UM* 6 74.9

Table 7.1: Time to compute plans for multirobot sequential composition experiments

quickly, leading to a robot-robot collision (Figure 7.16b). When path execution was
synchronized (Figure 7.16a) or planning was conducted on the ATAJPG and execution
was not synchronized (Figure 7.16¢) coordination between the robots was much better
and no collisions occurred.

The time required to compute the plan for each problem case is given in table 7.1.
The ATAJPG for M* contains approximately three times as many vertices as the joint
prepares graph, so we would expect M* to take three times as long to find a path
in the ATAJPG as the joint prepares graph. For the six robot problem, planning
on the ATAJPG took four times as long as on the joint prepares graph, which is
approximately as expected. However, planning on the ATAJPG took M* 10 times
longer than planning on the joint prepares graph for the eight robot case. This can
be explained by the fact that M* identified and avoided a significant collision while
planning on the ATAJPG that was not found when planning on the joint prepares

graph, which would have increased the planning time.

UM*

The comparatively high robot density caused significant problems for planning with
uncertainty, as UM* is significantly less able to deal with large numbers of robots
than M* (Figure 6.6a). Furthermore, the delay probability of 0.3 is significantly
higher than the delay probability used in chapter 6. Taken together, this means

that the belief distributions will be relatively larger. For UM* to solve the 6 robot
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Figure 7.16: The controller index and minimum distance between any two robots for
the six robot trial (Figure 7.14b) with M* planning. The controller index is the index
of the controller in a robot’s plan that the controller is executing at a given time. If
the robots were perfectly synchronized, they would always have the same controller
index. If robots are closer together than 2 Scribbler radii (red dashed line) they are

in collision.
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Figure 7.17: The controller index and minimum distance between any two robots for
the six robot trial with UM* planning. If the robots were perfectly synchronized,
they would always have the same controller index. If robots are closer together than
2 Scribbler radii (red dashed line) they must be in collision.

problems, the belief distributions had to be pruned aggressively, removing any state
whose probability mass was below 0.1, which is known to reduce planning accuracy
(Figure 6.4).

UM* plans a sequence of beliefs rather than a sequence of controllers, where each
belief is a probability distribution over robots. We therefore plot the index of the
current most likely belief for each robot to assess coordination between the robots
(Figure 7.17). Although the coordination was not as good as the M* results with
synchronization or with planning on the ATAJPG, the path was still safely executed,
thanks to UM* explicitly accounting for variation in execution time of controllers. The
time required to execute the path was approximately the same as the time required
to perform the M* path planned on the ATAJPG, indicating that no unreasonable
diversions were generated.

Finding a path in the joint prepares graph took UM* 75 seconds, when M* was able
to find a solution in 0.2 seconds, which indicates planning with uncertainty is much
more difficult on the chosen test case. UM failed to find a path in the ATAJPG even

when given 20 minutes. Each controller may be represented by up to three vertices in
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ATAJPG. Thus for a belief in the ATAJPG to represent the distribution of the robot
in the workspace with the same accuracy, its support must cover three times as many
vertices in the ATAJPG as in the joint prepares graph (i.e. the pruning threshold must
be a third of its value for planning in the joint prepares graph). Profiling indicates
that computing the impact of collisions on the belief distribution took about half the
planning of the planning time. Our collision checking code is quadratic in size of the
support of the belief distributions. Given that the ATAJPG is approximately three
times the size of the joint prepares graph, and collision checking would take nine times
as long, we might expect UM* to take 27 times longer to find a path in the ATAJPG,
even if no additional collisions were found. However, UM* could not find a solution
in the ATAJPG even when the pruning threshold was set at 0.1, and thus the support
of the belief contained the same number of vertices, but covered 1/3 of the area in
the workspace as planning in the joint prepares graph. Our best explanation is that
UM* search on the ATAJPG found a collision that was very hard to resolve, causing

failure of the planner.

7.6 Conclusions

In this chapter, we showed that M* can be used to enable combined planning and
control of multiple robots using the sequential composition framework. We adapted
region automata for to the multirobot sequential composition framework to address
deterministic differences in the duration of controllers, producing the time augmented
joint prepares graph. To allow direct reuse of existing implementations of M* we show
that the time augmented joint prepares graph can be approximated as the direct
product of single robot approximate time augmented prepares graphs, producing
the ATAJPG. We then describe how UM* can be applied to multirobot sequential

composition to account for stochastic differences in execution time.
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We validate our results on experiments involving up to eight agents, of which four
were physical robots and four were simulated robots. M* was able to produce plans
that could be safely executed without centralized synchronization by planning in the
ATAJPG. UM* was also able to compute plans that could be safely executed without
centralized synchronization, but only for a simplified 6 robot problem. However, UM*
was unable to find plans in the ATAJPG even in the six robot case.

The robots used in these experiments proved very consistent; each test case was
run three times and the resulting trajectories were qualitatively the same each time.
We believe this contributed significantly to the effectiveness of the M* planning in the
ATAJPG in comparison to UM*. We also suspect that as a robot executed multiple
controllers, differences in execution time tended to cancel out, and thus we believe
we overestimated the effective uncertainty in the position of the robots. If true, this

would help explain the performance of UM*.
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Chapter 8

Conclusions

The MPP problem deals with truly enormous spaces; realistic problems can be con-
structed where enumerating the possible actions that a system can take at even one
time step is not physically possible!. Such large problems can still be solved due
to the direct product structure inherent to the MPP problem. The direct product
structure arises from the fact that the joint configuration space is the product of
single robot configuration spaces, and the action set for the system as a whole is the
product of the action sets of the individual robots. Finally, the constraints are the
logical conjunction of the constraints on robots or pairs of robots. Taken together,
the direct product structure implies that a subset of robots can be identified that
are responsible for any given constraint violation, and the constraint can be resolved
by considering alternate paths for only the responsible robots. Exploiting the direct
product structure is what differentiates a true MPP algorithm from a planner that
just happens to be applied to a multirobot system.

MPP variants alter the direct product structure. The action set of the CPP prob-

lem deviates from the direct product structure at a small number of configurations,

LA 200 robot system on a four-connected grid such as those solved by inflated rM* in figure 3.8
has 5290 ~ 10139 possible actions. The universe contains at most 1023 bits of information [113]
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where the robots can form or dissolve teams. Even though the number of states with
non-product action sets is low, the necessary coupling between robots increases dra-
matically. The MPPU problem fundamentally lacks the direct problem of the MPP
problem, in that the result of a robot taking an action depends on the state and
action of all the other robots, to the extent that a robot can reach states as part of a
multirobot system it could not reach on its own. However in practice, the structure of
the MPPU problem is sufficiently close to a direct product that approaches developed
for the MPP can still be applied.

In this thesis, we developed a general framework for solving the MPP problem
called subdimensional expansion, which directly and explicitly exploits the product
structure of the MPP problem. Subdimensional expansion starts by constructing a
search space by planning for each robot individually, and then explores the search
space for a path that does not violate any constraints. When it encounters a constraint
violation, subdimensional expansion expands the search space by only considering
alternate paths for the robots which could actually resolve the constraint violation.
Both the construction of the low-dimensional search space and the identification of
a small subset of robots responsible for a given constraint violation are only feasible
due to the product structure of the MPP problem.

Subdimensional expansion is both flexible and efficient. Because subdimensional
expansion functions by defining a search space, it can be paired with the appropriate
underlying planner to allow rapid planning for robots with both many and few degrees
of freedom, and can alter its criteria for growing the search space to account for the
different dependencies between robots in variants of the MPP problem. Although
flexibility often costs efficiency, variants of M* are currently state-of-the art for finding

optimal and e-suboptimal solutions to MPP on graphs?.

2The more recent work on enhanced CBS (ECBS) [15] can outperform inflated rM* using tight
bounds, but inflated rM* performs better with loose bounds. We also anticipate that inflated rM*
can be combined with ECBS in the same way ODrM* was combined with MA-CBS.
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Appendix A

Notation

The notation in this thesis can get complex, as we deal with many similar objects
that describe different robots, or sets of robots. To make the notation more com-
prehensible, a standard format is employed. Superscripts are used to denote which
robots a given object describes, while subscripts are used to denote specific instances.

For instance, v}, refers to the k’th vertex in the configuration graph of r*.

Given an object describing the system as a whole, for instance vy in the joint
configuration graph, adding a superscript refers to the state of a specific robot. Thus
v would be the configuration graph vertex that describes the configuration of r* when

the system as a whole is the joint configuration described by wy,.

The symbols ¢ and j are reserved for short term indexing of robots, while k and ¢
are used to index specific instances of vertices in graphs, the collision set associated
with a vertex, etc. Then general rule is that subscripts are fixed within a paragraph,
but not over longer time scales. Thus if v, refers to the same vertex if it appears
twice in a single paragraph, but this does not imply that v, would still refer to that
same vertex in a later paragraph. Furthermore, if the same subscript appears next

to two different types of objects in the same paragraph, the objects are implied to be
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related. For instance, 'y, would be the collision set of vy.
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Glossary

active graph (G**()) The equivalent of the joint configuration graph when a specific
set of teams are active in CMS. Associated with a maximal incomparable subset of
Vimyyel 89-91

active team (7°2") The set of teams that are currently performing tasks. 89-94,
101, 103, 197

approximate time augmented prepares graph A variant of the prepares graph
where each controller is represented by a number of vertices corresponding to its
maximal nominal duration.. xii, 167, 187

associated robot (C**°°) The robots that potentially collide with a threshold robot
at the current vertex or some explored successor. Used in UM*. 129, 130

backpropagation set The backpropagation set of a point ¢ in the search space is
the set of all points for which the underlying planner has considered ¢ as a possible
successor. 18, 19, 22-27, 34, 93, 130, 131

collision function 31
1) (V:Q — P(I)) A mapping from a point in the joint configuration space to the
set of robots that are involved in a collision at that configuration. 6
2) (Vij : E* x E? — {0,1}) A mapping that returns one if two robots would collide
if they simultaneously traverse a specified pair of edges, and zero otherwise. 135
collision set (C) The collision set of a point ¢ is the set of robots involved in a
collision at some successor state of ¢ in the search tree of M*. xv, 18-20, 22-27,
32-35, 37-40, 42, 43, 45-48, 57, 58, 60, 61, 65, 66, 89, 90, 92-94, 104, 128-132, 146,
191-195
complete A planning algorithm is complete if it is guaranteed in finite time to either
find a solution or prove that no solution exists. 11, 14, 29, 35, 36, 38, 42, 44, 45, 47,
50, 61, 79, 103, 106, 127, 154
configuration graph (G') A graph that represents the configuration space of some
system. Each vertex represents a state in the configuration space, and edges represent
valid transitions between states. 29, 30, 33, 45, 125, 135, 191, 195
conflict set (C') One of two parts of the extension of the collision set for use in CMS.
The conflict set of a vertex v, in the task augmented joint configuration graph is
the set of vertices in the task graph that correspond to teams that collided at some
successor of v in the search tree.. 89, 90, 92-94, 96-102, 104, 105, 193, 194
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conflict set element An element of the conflict set in TCMS. Each conflict set el-
ement is a set of task graph vertices corresponding to colliding teams. The coupled
sets of each conflict set element of a given vertex in the task augmented joint config-
uration graph must be disjoint (if not, the effected conflict set elements are merged.
102, 103, 105, 107, 194, 196

constraint manifold The submanifold of a configuration space which satisfies a set
of constraints. In this work, constraint manifold is a term of convinence, and can be
used to refer to subspaces which satisfy a set of constraints, but are not manifolds..
87, 195

coupled set (I') One of two parts of the extension of the collision set for use in CMS.
The set of teams that need to perform coupled planning given a particular conflict
set. 89, 90, 92-104, 194

disabled A disabled team cannot collide with other teams, and cannot move or incur
cost, implying that its contribution to the f-value of a vertex is constant. As a result,
a disabled cannot influence the path of any other team. rCMS uses disabled robots to
form subproblems without having to form new CPP problems that contain a variable
number of robots. 102, 103, 194

dissolving team The dissolving teams of a transition action are the set of teams
that combine to form a new set of teams, the forming teams. 82, 83, 85, 92-94, 194
duration Random variable describing the time required for a robot to reach the goal
set of a controller C from the goal set of the preparing controller. 162-164, 176,
178-180, 187

explored graph (G*®) The portion of the search graph which M* has explicitly
constructed (Section 3.3.1). 36-42, 44, 195

forming team The forming teams are the teams formed by a given transition action
taken by a set of dissolving teams. 82, 194

free configuration space (Q%..) The subspace of the configuration space of robot
r* which is free of self-collisions or collisions with environment obstacles. 6, 29

individual policy (¢') Term in M*. A policy which at every point in the configura-
tion space of a robot 7 dictates the best possible action if there were no other robots.
17-21, 26, 27, 32, 33, 43, 46, 47, 51, 52, 54, 71-73, 76, 86, 89, 92-94, 100, 103-106,
129, 195, 196

individually optimal path (7)) The optimal path for robot 7* if no other robots
were present. 17, 19, 33, 36, 38, 43, 54, 196

joint belief graph A graph representing the joint belief space of a multirobot system
symbol. 128-130

joint belief space (B = {b 1 Q — R fqb (q)dg = 1}) The space of probability
distribution functions defined on the product of the joint configuration space, where

an state col® has been added to the configuration space of each robot 7¢ to denote that
robot having collided. An element of the joint belief space describes the probability of
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the robots occupying a specify set of positions and having collided with other robots
or not. 121, 122, 128, 130, 194

joint configuration graph (G) A graph representing the joint configuration space
of a multirobot system. In this work, constructed by taking the tensor product of the
configuration graphs of the constituent robots. xi, 30, 31, 36, 37, 40, 43-45, 87, 89,
90, 94, 125, 182, 191, 193, 195-197

joint configuration space (@)) The configuration space representing a multiagent
system. Constructed by taking the direct product of the configuration spaces of the
constituent agents. 3, 6-8, 11-13, 15, 16, 18-20, 30, 32, 36, 51, 53, 67-70, 73, 74, 90,
121, 122, 125, 127, 129, 159, 189, 193-195

joint policy (¢) A policy for a multirobot system where each robot obeys its indi-
vidual policy. 33

joint policy path (7T¢) The path produced when all robots follow their individual
policies. In CMS, the path produced when all teams follow their individual policies.
17, 18, 20, 33, 104, 105

joint prepares graph The tensor product of the prepares graphs associated with
individual robots of a multirobot system. Each vertex in the joint prepares graph
specifies which single-robot controller should be executed by each individual robot.
xii, xiii, 160-162, 165-167, 178, 181-187, 197

joint PRM A PRM defined in the joint configuration space of a multirobot sys-
tem. When formed from the product of single robot PRMs, can be used as the joint
configuration graph in M*. 69, 70, 77

limited neighbor (V") The neighbors of a vertex v, in the joint configuration
graph which can be reached when the robots not in the collision set of v, obey their
individual policies (Equation 3.3). 32, 33, 36-38, 42, 43, 45, 89, 92, 94, 96-101, 103,
195

manifold graph (G, ) A graph representing the constraint manifold of a team of
robots. Used in CMS. 88-91, 94, 105, 107
meta-agent A set of robots treated as a single, more complex robot. 11, 47, 52, 54

neighbor graph (G™") Construct in M*. Consists of the explored graph, the limited
neighbors of the vertices in the explored graph, and the edges connecting the vertices
in explored graph to their limited neighbors. 36, 37

nominal duration (¢,e, : € X € = RT) t,,, (Ci,C}) is the nominal time required
for robot 7 to finish executing the controller C; from the goal set of Ci, C; = Ci.
164-167, 174, 178, 179, 193

optimal A planning algorithm is optimal if it is guaranteed to find the minimal cost
path. 1, 5, 11, 29, 35, 36, 38, 42, 44, 45, 47, 50, 63, 64, 106

out-neighbor The out-neighbors of a vertex v, in a directed graph are the vertices
v; such that the directed edge from vy to v; exist.. 18, 30, 33, 36, 37, 40, 48, 55, 135,
165

195



permutation invariant multirobot path planning Multirobot path planning
where a robot must reach each goal location, but the assignment of robots to goals is
a free parameter. 6, 13, 14, 16
policy graph (G?) The subgraph representing the individually optimal paths starting
from G"Ph\ Ge*P. 36-39
policy tree (7°) A RRT grown from the goal state of a robot r® that is used to
compute the robot’s individual policy in sRRT. 71, 73, 74, 76
prepares () A controller A prepares controller B, written A > B if the goal set of
A lies within the domain of attraction of B. 158, 159, 161, 165, 167, 176, 196
prepares graph A directed graph used in sequential composition with edges pointing
from a controller, represented as a vertex, to the controllers which it prepares. 159—
161, 166, 193, 195, 196
preparing controller

Singular The controller executed by a robot before entering the current

controller

Plural The set of controllers that prepare the current controller

. 161-163, 167, 176, 178, 194

resolve set (7,.; (C")) The subset of teams that preceed the teams in a conflict set
element. These are the robots that need to be explicitly planned for to find a path
that prevents the collision(s) that produced the conflict set element. 102, 103, 105,
106

search graph (G*%) In M*, the implicitly defined subgraph of the joint configuration
graph searched by the underlying planner (Section 3.3.1). In CMS the search graph
is a subgraph of the task augmented joint configuration graph. 36, 38-44, 104, 106,
194, 196

sequential composition A combined control/planning paradigm where a set of
controllers are placed in the environment such that each controller converges to the
domain of attraction of one or more other controller. Instead of planning a trajectory
in the configuration space, planning in sequential composition returns a sequence of
controllers to execute, by searching the prepares graph. wviii, xii, xv, 4-6, 157-160,
162, 164, 168, 172, 178, 182, 184, 187, 196

subdimensional expansion An approach to generating a low dimensional search
space for multirobot path planning. xi, 2, 3, 5, 15, 17-26, 29, 121, 190, 200
e-suboptimal A path is e-suboptimal if it costs no more than e times the cost of
the optimal path. A multirobot path planner is e-suboptimal if guaranteed to find
e-suboptimal paths. xi, 3-5, 61, 64, 65, 79, 95, 115, 190

subproblem A subset of a CPP problem that can be solved independently of the
rest of the problem. Characterised by the subgraph of the task graph dominated by
a set of task graph vertices. 102-107, 194

synchronization factor Factor by which the control manager slows robots that are
running fast, raised to the power of the number of steps the robot is in front of the
slowest robot. 172, 181-183, 185
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task augmented joint configuration graph (G*"¢) An extension of the joint
configuration graph the active teams and their positions. Each vertex represents a
set of ordered pairs (7, v,). viii, 89-93, 103-106, 193, 194, 196

task constraint A set of constraints placed on the robots performing a given coop-
erative task that must be satisfied for the task to be completed successfully. 80-82,
86-88, 104

task graph (G = {V'= Vel V& pstl) A directed tripartite graph where one subset
of vertices correspond to teams that have never reached their goal, another to teams
that have reached their goal at least once, and the third to transitions between teams..
xi, 83-85, 91, 93-95, 102, 103, 193, 194, 196

task list The task list for robot 7 is an ordered list of tasks which 7 is required to
perform. 82

threshold robot (C'*h) The set of robots whose probability of collision exceeds
the permitted threshold at the current vertex or at one of the explored successors.
Used in UM*. 129, 130, 132, 193

time augmented joint prepares graph A variant of the joint prepares graph that
accounts for different nominal times of execution for single robot controllers (Figure
7.4). xii, 160, 164-168, 187

transition graph A graph used in CMS to allow exploration of team formation/dissolution
actions. 89, 91

underlying planner A multirobot path planning algorithm used to explore the
search space generated by subdimensional expansion. Typically a coupled planner
such as A* or RRT. 18-20, 29, 193, 196
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Acronyms

ATAJPG Approximate Time Augmented Joint Prepares Graph. xiii, 165, 167, 168,
178, 180-188

CA* Constrained A*. 133

CBS Conlflict Based Search [156] (Section 3.5.4). 51, 52, 59, 63, 64
CD* Constrained D*. 133, 154

CM* Constrained M*. viii, xii, 131, 133, 152-155

CMS Constraint Manifold Subsearch (Chapter 5). viii, xii, xv, 4, 5, 79, 82, 84-101,
103, 104, 106-109, 111, 114-116, 153, 193-197

CPP Cooperative Path Planning. A variant of the MPP problem where robots teams
must form cooperative teams to perform tasks. xii, 7, 79-81, 83, 87, 89, 91, 92,
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EPEA* Enhanced Partial Expansion A*. A variant of A* tailored to the MPP
problem [62, [7T] (Section 3.5.3). xi, 12, 46, 48, 50, 53, 54, 56-61, 64, 65, 127

ID Independence Detection [167]. 15, 51-54

MA-CBS Meta-Agent Conflict Based Search [I57] (Section 3.5.4). 15, 51-54, 58-64,
128

MPP Multirobot Path Planning. xii, 1, 3-8, 11, 12, 17, 20, 79, 83, 87, 121, 125, 127,
128, 154, 159, 189, 190, 199, 200

MPPU Multirobot Path Planning with Uncertainty. viii, xii, 7, 117, 118, 121, 122,
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OD Operator Decomposition. A variant of A* tailored to MPP [167] (Section 3.5.3).
Xi, 12, 46, 48, 50, 53, 54, 5661, 64, 65, 127

POMDP Partially Observable Markov Decision Process. 118-120
PRM Probabilistic Roadmap. 67-71, 75, 77, 195, 200
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RRT Rapidly-Exploring Random Tree. 67, 68, 71, 73-76, 120, 196, 197, 200

SAT Boolean Satisfiability. 12, 13

sPRM subdimensional Probabilistic Roadmap. A probabilistic MPP algorithm that
uses M* to find a path in a product graph generated from PRMs. viii, xi, 4, 5,
68-71, 74-76

sRRT subdimensional Rapidly-Exploring Random Trees. An implementation of sub-
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