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Abstract

Varied sources of error contribute to the challenge of

facial action unit detection. Previous approaches address

specific and known sources. However, many sources are un-

known. To address the ubiquity of error, we propose a Con-

fident Preserving Machine (CPM) that follows an easy-to-

hard classification strategy. During training, CPM learns

two confident classifiers. A confident positive classifier sep-

arates easily identified positive samples from all else; a con-

fident negative classifier does same for negative samples.

During testing, CPM then learns a person-specific classi-

fier using “virtual labels” provided by confident classifiers.

This step is achieved using a quasi-semi-supervised (QSS)

approach. Hard samples are typically close to the decision

boundary, and the QSS approach disambiguates them us-

ing spatio-temporal constraints. To evaluate CPM, we com-

pared it with a baseline single-margin classifier and state-

of-the-art semi-supervised learning, transfer learning, and

boosting methods in three datasets of spontaneous facial be-

havior. With few exceptions, CPM outperformed baseline

and state-of-the art methods.

1. Introduction

Facial expressions convey varied and nuanced meanings.

Small variations in timing and packaging of smiles, for in-

stance, can communicate a polite greeting, felt enjoyment,

embarrassment, or social discomfort. To analyze informa-

tion afforded by facial expression, Ekman and Friesen pro-

posed the Facial Action Coding System (FACS) [20]. FACS

describes a facial activity in terms of anatomically based

Action Units (AUs). AUs can occur alone or in combina-

tions to represent nearly all possible facial expressions. AUs

have a temporal envelope that minimally include an onset

(or start) and an offset (or stop) and may include changes

in intensity. There has been encouraging progress on facial

AU detection during the past decades, especially for posed

facial actions [11, 14, 17, 39, 44, 49].

Yet, accurate detection of spontaneous facial actions re-

mains challenging [14, 32, 33, 41]. A number of sources of
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Figure 1. The main idea of the proposed Confidence Preserving

Machine (CPM). (a) A pair of classifiers (red line and blue line),

refered as confident classifiers, are learned to cooperatively sep-

arate easy and hard samples. (b) These confident classifiers are

applied to recognize easy samples in a test subject. Then, a quasi-

semi-supervised (QSS) classifier (black dash line) is learned by

propagating predictions from the easy test samples to hard ones.

error have been identified. They include individual differ-

ences in participants (e.g., gender, ethnicity), video resolu-

tion, head yaw, and low intensity. To model these variabil-

ity, typically a highly non-linear decision boundary is nec-

essary to infer a correct AU. A highly non-linear decision

boundary typically lead to over-fitting, and it has been pre-

viously shown that existing algorithms generalize poorly to

unseen subjects [10, 40]. Standard supervised approaches,

such as SVM [21] and Boosting [23], use a single hyper-

plane to separate positive and negative samples. While these

classifiers may perform well on samples with high-intensity

AUs, frontal head pose or on particular subjects, they often

fail with various appearance changes and subtle AUs (i.e.,

low intensity). In this paper, we refer to these samples as

easy samples and hard samples, respectively.

To reduce errors occasioned above, we propose a two-

stage learning framework that combines multiple classifiers



following an “easy-to-hard” strategy. This approach, which

we refer to as a Confident Preserving Machine (CPM), is

illustrated in Fig. 1. During training, CPM learns a pair of

confident classifiers. One separates easy positive samples

from all else. The other does the same for easy negative

samples. During testing, CPM then learns a person-specific

classifier using a quasi-semi-supervised (QSS) approach to

propagate labels from easy samples to hard ones. Labels for

QSS come from the confident classifiers and are referred to

as virtual labels. In addition, we propose an iterative exten-

sion of CPM, termed as iCPM, which iterates between the

confident classifiers learning in training and the QSS classi-

fier in testing.

2. Related Work

Here we review related work in error reduction, semi-

supervised learning, and transfer learning.

Error reduction: Previous efforts to reduce detection

errors have focused on specific sources. To reduce error oc-

casioned by subtle expressions, spatio-temporal directional

features extracted by robust PCA [43] and temporal inter-

polation using {SVM,MKL,RF} classifiers [38] have been

proposed. For error involving head pose, particle filters with

multi-class dynamics [16] or variable-intensity templates

[31] have been proposed. Individual differences in partic-

ipants also have been considered. [10, 40] used a domain-

transfer approach. In many cases, however, sources of error

can be quite varied and even unknown as to their origin.

CPM seeks to minimize error from all potential sources.

Semi-supervised learning (SSL): SSL has emerged an

exciting field of incorporating unlabeled data for training.

Such techniques make different assumptions on relation-

ships between input and label space [7]. Smoothness as-

sumption enforces data with same labels to be close to each

other, and can be modeled by the prevalent graph-based

method [34]. Cluster assumption employs the clustering

behaviors of data with same labels. It has shown to be

equivalent to low-density separation [8], and can be ex-

tended to entropy minimization [26]. Manifold assumption

considers that high-dimensional data lie roughly on a low-

dimensional manifold. Instead of Euclidean distances used

in the smoothness assumption, manifold assumption con-

siders metrics of manifold. Closest to our work is the Lapla-

cian SVM (LapSVM) [3, 36], which incorporates the man-

ifold assumption as a regularization for learning an SVM.

Some other work explores the combination of the three as-

sumptions in a boosting framework [9]. Interested readers

are referred to [7, 48] for a more extensive review.

Notwithstanding the progress being made, these assump-

tions are unsuitable for AU detection, because subjects be-

have as different distributions in the feature space. Thus,

closer data are unlikely to belong to the same label, i.e.,

smoothness assumptions in SSL could be violated. On the

CPM

frame

ground
truth

Figure 2. Illustration of using CPM on identifying AU12 from a

real video. Dashed lines (light green) indicate the hard samples

due to low intensities and head pose; solid lines indicate the easy

samples for positive (light yellow) and negative (dark green) ones.

contrary, CPM applies smoothness assumption to unlabeled

test samples, where individual differences are excluded.

Transfer learning: Transfer learning also assumes dif-

ferent distributions between some training data and test

data. The information between two different domains

can be transferred by finding one or multiple intermediate

spaces that minimize their ‘mismatch’. Given each domain

represented as a linear subspace, their similarities can be

evaluated on aligned subspaces [22], or as their geodesic

distances on a Grassmann manifold [24, 25]. The discrep-

ancy between raw features can be alleviated by learning

a transformation [29, 37]. Some seeks to the idea of im-

portance reweighting to adapt one or multiple training do-

main(s) to a test domain [5, 28, 42]. Following this direc-

tion, Selective Transfer Machine (STM) [10] was proposed

to remedy individual differences in facial AU detection by

treating each subject as a domain. Recently, there have been

several studies that describe a training domain as classifier

parameters, and assume that an ideal classifier for the test

domain can be represented as a combination of the learned

classifiers [18, 19, 45]. Merging into this direction, STM

was extended by transferring from source classifiers, and

reduced training time complexity [40].

CPM differs from transfer learning in three ways. One,

most transfer learning methods emphasize individual dif-

ferences in subjects. CPM assumes that error has multi-

ple sources. Individual differences are only one. Other

sources include head pose and AU intensity. Two, CPM

includes spatial-temporal smoothness that is absent in most

transfer learning approaches. Three, CPM is more efficient,

because it avoids the selection from multiple sources do-

mains [19, 40] or re-weighting each sample [10, 42].

3. Confidence Preserving Machine (CPM)

3.1. Overview

Facial AU detection typically deals with data in the form

of videos, i.e., each subject has at least a clip of video in-

stead of a single image. Among these videos, some frames

are easier to tell an AU presence than others. Fig. 2 shows

the easy and hard frames from a particular video. Because

hard samples are intrinsically inseparable, treating easy and
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Figure 3. The proposed two-stage CPM framework: Given training

videos, the confident classifiers are first trained, and then passed

to train a QSS classifier, which makes the final prediction on a

test subject. In iterative CPM, easy test samples are selected to

iteratively augment the training set.

hard samples equally would degrade the performance of a

standard single-hyperplane classifier (e.g., SVM [21]).

To address these issues, we propose the CPM, a two-

stage framework that exploits multiple classifiers with an

easy-to-hard strategy. Fig. 3 illustrates the CPM frame-

work. The first stage, training confident classifiers, aims

to find a pair of classifiers that distinguish easy and hard

samples in training subjects. We define the easy samples as

the ones on which the predictions of the confident classi-

fiers agree with each other, and the hard samples otherwise.

Compared to standard approaches that use a single classi-

fier, each of confident classifiers focuses on predicting one

class. The confident classifiers, therefore, are able to iden-

tify whether an unseen sample is easy or not, and predict

confidently on it. In the second stage, training a QSS clas-

sifier, we first identify easy test samples by applying the

trained confident classifiers. With confident predictions on

easy test samples, a quasi semi-supervised (QSS) approach

is introduced to train a person-specific classifier. The QSS

classifier determines the label of the hard samples by prop-

agating consistently the predictions in space and time.

3.2. Train confident classifiers

The first stage in CPM is to train the confident classi-

fiers, a pair of classifiers that aims to cooperatively iden-

tify and separate easy and hard samples in the training set

{xi, yi}
n
i=1 with index D = {1, 2, . . . , n}, where yi ∈

{+1,−1} denotes a label and n is the size of training set.

In this paper, we cast the AU detection problem as a bi-

nary classification problem, although multi-label formula-

tions have been proposed (e.g., [47]). We formulate CPM in

the context of maximum margin learning extending the sup-

port vector machine (SVM), but it can be applicable to any

other supervised learning paradigm. The intuition behind

the confident classifiers is to learn two classifiers, one for

the positive class, represented by a hyperplane w+, and will

predict confidently positive samples; similarly w− is for the

negative class.We will consider easy samples E as the sub-
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Figure 4. Illustration of two relabeling strategies. Data A and B are

two synthetic data without and with noisy instances, respectively.

(a)∼(c) show the confident classifiers learned on the relabeled data

using holistic relabeling on A, holistic relabeling on B, and local-

ized relabeling on B, respectively.

set of the training samples where both classifiers make the

same prediction and hard samplesH otherwise. It is impor-

tant to note that w+ and w− will classify the easy positive

and negative samples respectively and they do not necessar-

ily need to be parallel. Mathematically speaking,
{

E = {i ∈ D|yiw
⊤
y xi > 0, ∀y ∈ {+,−}},

H = D \ E ,
(1)

where E and H denote the index sets of easy samples

and hard samples, and we denote the confident classifiers

(w+,w−), or wy .

Learning the confident classifiers can be done iteratively

by maximizing the margin as:

min
wy,E

||wy||
2 +

∑

i,j

(

ξ2i + ξ2j
)

(2)

s. t. yiw
⊤
y xi ≥ 1− ξi, ∀i ∈ E ,

η
y
jw

⊤
y xj ≥ 1− ξj , ∀j ∈ H,

where yi is the ground truth label, η
y
j is a relabel of a hard

training sample xj (explained below). ξi and ξj are non-

negative slack variables for easy samples and hard sam-

ples respectively, to take into account misclassification. The

easy samples, will preserve the original labels yi, whereas

we will relabel the hard samples as η+j for w+ and η−j for

w−, to make the classifiers as confident as possible.

We present Alg. 1 to solve (2). Because the partition of

hard samplesH and easy samples E should be learned at the

same time as confident classifiers, Alg. 1 updates H, E and

the confident classifiers (w+,w−) alternatively. Note that

we cannot guarantee a convergence of this process, thus a

maximum iteration is set. The set of hard samples is ini-

tialized as empty. In the later iterations, hard samples are

updated as those misclassified by both w+ and w−. The

relabeling strategy enables w+ and w− to preserve confi-

dent prediction in each class by adjusting the labels for hard

samples. Here, we explore two relabeling strategies:



Algorithm 1 Train confident classifiers

Input: Data {(xi, yi)}
n
i=1 and its index set D =

{1, 2, . . . , n}
Output: Confident classifiers (w+,w−), easy samples E

and hard samplesH
1: Initialization: E ← D;H ← ∅;
2: repeat

3: (w+,w−)← solve (2) with fixed E andH;

4: Update easy and hard samples (E ,H) using (1);

5: Update relabels η+j , η
−
j ∀j ∈ H;

6: until convergence or reach maximum #iteration

1) Holistic relabeling: The most straightforward strat-

egy is to relabel all hard samples as +1 when training w−,

and −1 when training w+, i.e., η
y
j = −y, ∀xj ∈ H. We

term this strategy holistic relabeling. The main advantage

of holistic relabeling is its low computational complexity.

2) Localized relabeling: Holistic relabeling may result

in some unnecessary hard samples if signal noise exists. To

gain more robustness to signal noise, we relabel an hard

sample xj as +1 only when there exists a neighboring sup-

port instance xk with positive ground truth label, and sim-

ilarly for relabeling xj as −1. We term this localized rela-

beling. Denote the set of instances with support instances as

Sy = {j ∈ H|∃k ∈ H : d(xj ,xk) ≤ r, yk = y}, where r

is a threshold and d(xj ,xk) is the distance between xj and

xk. The relabeling is formulated as

η+j =

{

−1 xj ∈ S−

yj otherwise
, η−j =

{

+1 xj ∈ S+

yj otherwise
. (3)

For simplicity, both strategies use binary labels. Note

that other relabeling strategies are directly applicable, e.g.,

weighting the relabels similar to those in DA-SVM [5], or

introducing the concepts of bags as in MIL [1]. Fig. 4 illus-

trates the two relabeling strategies on synthetic examples.

(a) and (b) illustrate the confident classifiers learned using

holistic relabeling on A and B, respectively. As can be seen,

the confident classifiers move toward the noisy instances in

(b), showing that the holistic relabeling is improper for the

presence of noise. Fig. 4(c) illustrates the result using local-

ized relabeling, which is more robust to noisy instances.

3.3. Train a quasisemisupervised (QSS) classifier

In the previous section, we have discussed how to train

the confident classifiers. As pointed out first by Chu et

al. [10], a generic classifier trained on many subjects is

unlikely to generalize well to an unseen subject because

the training and test distributions could vary due to camera

model, intra-personal variability, illumination, etc. Chu et

al. [10] showed that person-specific and personalized mod-

els outperformed existing methods. Following this motiva-

tion, in this section, we train a quasi-semi-supervised (QSS)

classifier with virtual labels provided by the confident clas-

sifiers. We term it QSS instead of semi-supervised because

the labels are not provided in ground truth.

Recall our goal is to train a person-specific classifier

ft(x) = w⊤
t x for the test subject. To obtain such classifier,

labels for the test subject are required. CPM collects such

labels from the prediction of confident classifiers w+ and

w−. Because confident classifiers are trained with many

subjects, they are likely to generalize well to easy samples.

However, on the other hand, there remains hard samples

that CPM find difficult to identify. To disambiguate the hard

samples, CPM adopts a quasi-semi-supervised (QSS) clas-

sifier that uses Laplacian similarity to enforce label smooth-

ness on spatially and temporally neighboring samples.

Suppose we are given a test video with m frames de-

noted by Xte = [x1,x2, . . . ,xm]⊤ with index Dte =
{1, 2, . . . ,m}. CPM will first identify the easy test sam-

ples Et as the ones on which both w+ and w− agrees in

the label prediction, i.e., Et = {i ∈ Dte| sign(w⊤
+xi) =

sign(w⊤
−xi)}, and ŷi = sign(w⊤

y xi) is a virtual label for

an easy test sample. Once these virtual labels are obtained,

CPM will propagate labels to the hard samples with a semi-

supervised strategy minimizing:

min
w

t

∑

i∈Et

ℓ(ŷi,w
⊤
t xi) + γs||wt||

2 + γIS(wt,X
te), (4)

where γs, γI control the importance of regularizations.

S(wt,X
te) is defined as the smoothness term that enforces

the neighboring instances in both the feature space and the

temporal space to have similar predictions:

S(wt,X
te) = (Xtewt)

⊤D⊤DXtewt, (5)

where D is a smoothness matrix that penalizes differences

in the predictions of temporally and spatially adjacent in-

stances. Specifically, Dii = 1, Dij = −
1

Zi
λijeij , |i− j| ≤

T, i 6=j; λ is a Gaussian-like weight, such that closer frames

have more similar predicted labels (see Fig. 5(a) for an il-

lustration with T =5). eij is 1 if ‖xi−xj‖2 ≤ ǫ, and 0 oth-

erwise. It excludes the smoothness between the frames that

are far away in feature space. Zi is a normalization factor

such that 1

Zi

∑i+T

j=i−T,j 6=i λijeij = 1. Dij = 0 elsewhere.

We provide more derivation details in the supplementary

material. Note that D⊤D assembles Laplacian matrix by

imposing smoothness on neighboring samples and are both

positive semi-definite. However, D⊤D considers both tem-

poral and spatial constrains with Gaussian-like weight λij

and ejected factor eij , respectively.

Fig. 5 shows the effectiveness of the smoothness term

S on 3 AUs in the BP4D dataset. To start the label prop-

agation, 2.5% frames were randomly selected from each

video as the estimated labels of easy instances. We com-

pare the prediction on the rest 97.5% frames by training a
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Figure 5. (a) an example of λ with T =5. (b)∼(d) shows the effec-

tiveness of smoothness term S on AU6 on video 2F01 11, AU12

on video 2F01 09, and AU17 on video 2F01 09, respectively.

The y-axis denotes AU occurrence (+1: presence, -1: absence).

linear SVM only using the labeled frames, and one with the

smoothness term S over all the labeled and unlabeled data.

As can be seen, compared to the ground truth, the prediction

with the smoothness term performs more consistent result

across 3 AUs. Although being rare, in some cases, it it pos-

sible that easy test samples are unavailable. Consequently,

Eq. (4) fails to learn a QSS classifier wt. In this case, we

simply assign wt =
1

2
(w+ +w−).

3.4. Iterative CPM

CPM learns in sequential fashion the confident classi-

fiers (Sec. 3.2) and the QSS classifier (Sec. 3.3). So, the

PS classifier learned in a QSS fashion depends indirectly

on the training data through the confident classifiers. How-

ever, it is likely that there is mismatch between the training

and testing [10, 40], and the confident classifiers might not

generalize well even in the easy samples. To address this

issue, we propose iterative CPM (iCPM) that jointly learns

the confident and PS classifiers.

In the iCPM, at each iteration, the easy test samples are

selected to be part of the training for the confident classi-

fiers, so the confident classifiers are trained with test data

(but no labels of test data are provided). Alg. 2 summarizes

the steps for the iCPM algorithm. Fig. 6 illustrates a syn-

thetic example. In Fig. 6, the training and test distribution

are different. In the initialized iteration (0), all training data

is labeled as easy samples, so the confident classifiers are

basically a standard SVM, and w+ and w− are the same.

This classifier achieves 97% accuracy on test data. In the

first iteration (1), we update the hard-samples (green trian-

gles) and re-train the confident classifiers. The CPC and

CNC identify easy samples (blue and red diamonds) in test

data, and the QSS classifier labels the hard samples (green

diamonds), and learns the hyperplane (black line). At the

second iteration(2), the classifier achieves 99% of accuracy.

Finally, at the third iteration, the easy and hard samples are

again updated to train (w+,w−) and QSS classifier achiev-

ing 100% of classification accuracy.

Complexity: As in standard transfer learning meth-

ods [18, 42], iCPM incorporates all the training data to

Algorithm 2 Iterative Confidence Preserving Machine

Input: labeled training data {xi, yi}
n
i=1 with index set

D = {1, 2, . . . , n}, unlabeled test data {xte
i }

m
i=1 with

index set Dte = {1, 2, . . . ,m}
Output: QSS classifier wt

1: E ← D,H ← ∅;
2: (w+,w−)← solve (2);

3: (E ,H) using (1);

4: repeat

5: Update relabels η+j , η
−
j , ∀j ∈ H;

6: (w+,w−)← solve (2) with fixed E andH;

7: Estimate virtual labels {ŷi}
m
i=1,

ŷi =











1 w⊤
y x

te
i > 0, ∀y ∈ {−1,+1},

−1 w⊤
y x

te
i < 0, ∀y ∈ {−1,+1},

0 otherwise.

8: Et = {i ∈ D
te| sign(w⊤

+x
te
i ) = sign(w⊤

−x
te
i )};

9: if ∃i, j ∈ Et, s.t. ŷi = −1, ŷj = 1 then

10: wt ← solve (4) given Xte and {ŷi}
m
i=1;

11: else

12: wt =
1

2
(w+ +w−);

13: end if

14: Update Et = {i ∈ D
te|ŷi = sign(w⊤

t x
te
i )};

15: Update (E ,H)← (1);

16: E ← E ∪ Et;
17: until convergence

compute a QSS classifier for each test clip. Despite so,

iCPM is relatively efficient in training due to the learn-

ing of linear classifiers . In Alg. 2, solving (2) with fixed

E and H and solving (4) are both linear with complexity

O(max(n, d)min(n, d)2) [6], where d is the dimension of

features; n is the number of samples in E ∪ H in (2), or the

number of test samples in (4).

3.5. Comparison with alternative methods

Besides CPM and iCPM, concepts similar to easy and

hard samples have presented in other methods. Boosting

methods learn a strong classifier after combining a set of

weak classifiers. However, it fits a classifier for completely

labeled data without coping with unlabeled data. CPM or

iCPM also seems to be like co-training [4], which alterna-

tively trains two or more classifiers so that the most confi-

dent samples from one classifier are used to train another.

But in co-training, labeled data and unlabeled data are sup-

posed to have a same distribution.

As a component of CPM, confident classifiers are sim-

ilar to SVM with reject options (RO-SVM) [2, 27], which

designs new loss functions where data in reject region have

a loss value between 0 and 1. We can think of RO-SVM

as learning two parallel hyperplanes between which lie the

hard samples. Unlike RO-SVM, hyperplanes in the pro-
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Figure 6. A toy example of iCPM. The first column illustrates two training subjects (rectangles and circles) and a test subject (diamonds).

A same color means a same class. The second, third, and forth column illustrates the initialization and two iterations in Alg. 2, respectively.

Points in blue and red colors are easy data, while those in green are hard ones.

posed confident classifiers are not necessarily paralleled.

Twin SVM (TW-SVM) [30] also has two hyperplanes,

where each plane is close to one class and far from the

other. Confident classifiers are different from TW-SVM due

to their different purposes. TW-SVM aims to make more

accurate predictions on all the samples but cannot tell hard

samples from easy ones, while confident classifiers are obli-

gated to distinguish hard and easy samples, and only predict

on easy ones.

4. Experiments

4.1. Datasets

GFT [12] are recorded when three previously unac-

quainted young adults sat around a circular table for 30-min

conversation with drinks. Moderate out-of-plane head mo-

tion and occlusion are presented in the videos which makes

the AU detection challenging. In our experiments, 50 sub-

jects are selected and each video is about 5000 frames.

BP4D [46] is a spontaneous facial expression dataset in

both 2D and 3D videos. The dataset includes 41 partici-

pants aging from 18 to 29 associating with 8 tasks, which

are covered with an interview process and a series of activ-

ities to elicit eight emotions. Frame-level ground-truth for

facial actions are obtained using the Facial Action Coding

System. In our experiments, we only use the 2D videos.

DISFA [35] recorded 27 subjects’ spontaneous expres-

sions when they were watching video clips. DISFA not only

codes the AUs, but also labels the intensities. In our exper-

iments, we use the frames with intensities equal or greater

than A-level as positive, the rest as negative. The dataset

consist of 27 videos with 4845 frames each.

4.2. Settings

All the experiments were conducted using same proto-

col for fairness. Each dataset was divided into 10 splits,

where each split designated several (5 in GFT, 4 or 5 in

BP4D, 2 or 3 in DISFA) subjects as test data and the re-

maining as training data. Each subject served as test data

once during the ten splits. 49 landmarks in the face were

tracked by IntraFace [13]. For each AU, SIFT descriptors

around the associated landmarks were extracted, e.g., the

landmarks around the mouth for AU12. The same feature

were used throughout the experiments.

We evaluated the performance using frame-based F1-

score (F1-frame), which is prevalent in binary classification

problems, and event-based F1 (F1-event) [15], which eval-

uates detection at event-level. An event is defined as a max

continuous period that an AU is present. F1-Event is simi-

lar to F1-frame but applying event-based precision EP and

recall ER, i.e., F1-event= 2EP ·ER
EP+ER

. An event-level agree-

ment holds if the overlap of two events is above a certain

threshold. Both F1-frame and F1-event were reported for

each AU and averaged over all the AUs.

4.3. Objective evaluation on CPM components

Recall that two major components in CPM are the confi-

dent classifiers and the PS classifier learned with QSSL. In

order to validate their effectiveness, we conducted compar-

isons with a baseline linear SVM [21], confident classifiers

only (Conf), and CPM (Conf+PS classifiers). In Conf, we

trained confident classifiers using Alg. 1, and then passed

them to train a PS classifier without a smoothness assump-

tion. Thus, Conf checks the effectiveness of confident clas-

sifiers when compared with a standard single-hyperplane

SVM. CPM differs from Conf by learning the PS classi-

fier with the spatial-temporal smoothness as discussed in



Table 1. Comparison on GFT. (“H” stands for an extra post-processing with HMM)

F1-frame F1-event
AU

SVM|H Ada|H Lap|H DAM MDA GFK iCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM

1 30.3|16.8 20.3|15.4 12.1|16.4 1.7 29.2 30.9 29.9 20.3|17.9 15.3|28.2 5.4| 9.7 2.1 21.3 21.6 27.1

2 25.6|18.4 14.8|21.8 26.0|19.3 5.3 25.8 29.3 25.7 20.2|21.1 12.2|30.7 18.2|16.6 4.7 21.3 22.5 24.8

6 66.2|66.4 62.1|47.3 2.7|40.7 58.0 63.8 66.1 67.3 49.1|56.8 47.5|43.4 4.4|37.5 50.0 47.0 50.2 56.8

7 70.9|72.2 69.6|50.0 24.0|50.3 66.0 66.6 72.2 72.5 50.4|59.8 50.7|44.0 21.6|48.3 41.7 49.2 52.1 60.1

10 65.5|65.5 65.5|43.7 56.7|61.2 64.9 65.4 67.5 67.0 50.2|57.8 50.2|46.6 46.5|57.5 53.1 51.6 54.3 58.1

12 74.2|75.9 73.0|54.5 64.8|69.0 72.9 71.9 72.7 75.1 56.3|65.0 54.7|59.9 54.9|64.4 61.9 52.0 54.3 65.0

14 79.6|78.1 77.7|59.2 76.7|51.2 79.5 74.0 79.8 80.7 63.8|70.8 62.3|59.9 81.5|61.2 64.6 63.7 64.8 74.7

15 34.1|17.5 20.3|20.5 19.3|13.9 1.4 31.8 31.7 43.5 28.1|20.1 17.7|41.8 15.9|20.2 2.3 25.4 26.8 32.2

17 49.2|50.6 48.2|38.6 42.5|21.2 34.6 47.4 48.9 49.1 42.9|53.1 37.1|38.5 36.4|25.9 29.6 41.4 41.3 52.3

23 28.3|29.8 19.4|20.7 27.1|25.1 2.8 26.0 26.7 35.0 27.7|35.9 16.8|36.7 9.5|19.5 4.4 26.7 27.1 25.9

24 31.9|21.0 22.3|25.8 25.7|16.9 3.0 31.8 33.0 31.6 30.3|21.8 20.8|26.4 21.7|13.9 4.9 30.0 30.5 31.8

Av. 48.7|46.6 44.8|36.1 32.8|35.0 35.5 48.5 48.6 52.5 38.6|43.7 35.0|41.5 27.3|34.1 29.0 39.1 38.9 46.3

Table 2. Comparison on BP4D. (“H” stands for an extra post-processing with HMM)

F1-frame F1-event
AU

SVM|H Ada|H Lap|H DAM MDA GFK iCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM

1 46.0|43.4 41.5|37.7 43.8|29.0 38.2 39.6 42.4 46.6 29.2|38.1 29.8|41.7 29.2|27.8 26.7 30.5 29.7 35.3

2 38.5|38.4 12.4|25.5 17.6|27.8 27.3 37.0 35.8 38.7 29.3|36.1 12.9|32.4 24.8|27.1 12.3 28.2 28.9 32.5

4 48.5|41.6 39.4|30.4 27.2|26.1 29.1 45.7 47.3 46.5 33.5|37.4 28.9|28.3 30.5|26.5 22.3 32.8 32.8 39.4

6 67.0|62.0 71.7|61.2 71.5|26.1 67.5 69.2 71.2 68.4 53.7|37.4 54.4|58.5 53.7|26.5 55.4 52.9 54.4 60.9

7 72.2|56.5 74.7|53.7 71.6|52.2 72.6 70.2 72.5 73.8 59.0|55.3 55.2|49.2 56.2|57.6 61.1 58.4 54.9 62.1

10 72.7|54.6 75.7|62.1 72.8|55.3 74.4 71.0 74.2 74.1 61.3|52.8 59.3|67.8 60.7|60.6 68.6 57.5 59.7 65.1

12 83.6|65.4 84.3|62.6 84.3|55.3 76.4 81.8 83.9 84.6 62.5|52.8 63.9|60.8 64.2|60.6 60.8 59.9 65.6 71.4

14 59.9|49.2 61.0|50.9 62.6|26.3 59.9 57.8 57.2 62.2 49.5|46.3 51.7|56.7 51.9|26.9 53.3 50.2 48.7 55.9

15 41.1|39.9 30.6|30.4 35.2|25.5 15.9 41.4 40.6 44.3 33.7|39.0 24.4|39.0 25.4|25.4 12.7 28.2 31.1 37.4

17 55.6|57.8 56.6|47.8 59.1|46.3 52.9 50.1 55.4 57.5 46.0|56.1 44.0|51.5 44.0|41.7 51.5 39.6 44.0 49.9

23 40.8|39.4 33.0|32.8 33.6|27.6 3.9 36.2 39.9 41.7 36.4|44.0 28.2|41.4 27.2|22.2 5.8 30.7 33.3 41.9

24 42.1|19.3 34.2|26.7 40.5|16.9 4.9 41.1 41.7 39.7 37.7|16.0 30.9|35.7 34.8|13.8 3.6 35.4 35.6 38.7

Av. 55.7|47.3 51.3|43.5 54.7|36.9 42.6 53.4 55.2 56.5 44.3|44.8 40.3|46.9 41.9|36.5 36.2 42.0 43.2 49.2
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Figure 7. Results on GFT, DISFA and BP4D datasets. Note that

the scales in each dataset are different for display purpose.

Sec. 3.3. In this way, CPM verifies the QSS classifier’s ef-

fectiveness on propagating labels with smoothness assump-

tions. We also conducted iCPM to validate the iterative in-

tegration in CPM.

Fig. 7 illustrates the results on GFT, BP4D and DISFA

datasets, respectively. The values of F1-frame and F1-event

were reported as the average over all AUs. Comparing

the results between SVM and Conf, confident classifiers

showed positive affects on the performance. The effective-

ness of applying smoothness assumptions was indicated by

the results between Conf and CPM. Out of the results, iCPM

outperformed CPM in most cases, validating the effective-

ness of the proposed iterative integration.

4.4. Comparisons

This section compares the proposed CPM with alterna-

tive methods, including baseline single-hyperplane classi-

fiers, semi-supervised learning (SSL), and transfer learn-

ing approaches. For baselines, we used LibLinear [21] and

Matlab toolbox for Adaboost [23]. For SSL, we imple-

mented a linear version of Laplacian SVM (Lap) [36]. Its

kernel version is computationally prohibitive because our

experiments contain more than 100,000 samples. For trans-

fer learning, we compared to state-of-the-art methods in-

cluding Geodesic Flow Kernel (GFK) [24], Domain Adap-



Table 3. Comparison on DISFA. (“H” stands for an extra post-processing with HMM)

F1-frame F1-event
AU

SVM|H Ada|H Lap|H DAM MDA GFK iCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM

1 26.5|14.4 17.1|12.4 13.1|16.2 7.9 19.0 23.2 29.5 14.5|17.6 16.1|21.2 9.6|11.6 5.4 11.6 18.1 18.7

2 24.0|15.3 20.1|10.5 6.4|12.6 13.1 9.5 16.3 24.8 10.8|17.6 17.3|17.0 11.4|11.0 12.1 16.4 17.4 19.2

4 56.1|48.5 59.8|26.4 21.1|23.4 40.4 59.3 60.3 56.8 31.6|37.2 32.5|27.7 15.9|16.2 32.4 28.6 28.3 41.8

6 40.9|34.9 31.9|22.1 22.1|19.9 19.2 21.1 41.9 41.7 30.3|29.2 28.3|25.9 23.7|13.5 22.6 30.8 30.6 36.9

9 30.5|10.9 29.3|17.4 12.1|10.9 11.9 7.6 30.3 31.5 23.4|13.2 22.7|39.9 7.8| 8.3 14.3 27.4 14.6 31.7

12 65.6|70.1 69.4|46.3 33.7|32.2 50.9 63.1 69.6 71.9 49.9|57.1 51.9|61.6 33.2|20.7 44.3 42.1 46.2 56.6

25 78.3|84.1 83.9|70.5 35.3|30.3 56.2 81.3 80.0 81.6 31.9|76.7 38.0|58.8 42.5|21.2 56.4 46.5 36.1 76.7

26 50.0|51.5 59.6|50.5 18.9|25.5 43.2 51.1 54.6 51.3 38.6|51.7 38.7|49.5 48.7|18.4 38.4 36.4 37.3 47.7

Av. 46.5|41.2 46.6|32.0 20.3|21.4 30.4 39.0 47.0 48.6 28.9|37.5 30.7|37.7 24.1|15.1 28.2 30.0 28.6 41.2

tion Machine (DAM) [18], and Multi-source Domain Adap-

tation (MDA) [42]. GFK computed the geodesic flow ker-

nel from training to test sample, and then used it as a kernel

in SVM. DAM fitted a classifier for test subject as a linear

combination of classifiers of training subjects. Note that

DAM is able to tackle with unlabeled test data. We did

not use its extended version DSM [19] because DSM re-

quires to enumerate all the possible selections of source do-

mains, which are as much as 245 in our experiment. MDA

performed unsupervised domain adaptation by re-weighting

both source domains and training instances. All meth-

ods, except for SVM and Ada, learned a specific classi-

fier for each test subject. Codes of other competitive meth-

ods were either downloaded from author’s webpage or pro-

vided by the authors. To show a more fair comparison, we

also implemented Hidden Markov Model (HMM) as a post-

processing for smoothing the prediction of SVM, Lap, and

Ada. Note that HMM was not directly applicable for DAM,

MDA, and GFK because their scores of the frame-level la-

beling output were available only for test data.

Tables 1∼3 show the results reported with the best pa-

rameters. SVM and Ada outperformed well in some AUs.

Despite this, the overall performances of Ada were worse

than iCPM, because Adaboost is a supervised method with-

out investigating unlabeled test data. Overall, Lap had

the worst performance due to its unsuitable assumption for

spontaneous facial expression detection, which enforced

the data to have similar decision values with their neigh-

bors. Such assumption was not guaranteed across training

and test subjects drawn from different distributions. Lap

achieved better results on one or two AUs in BP4D. This is

because most frames in BP4D dataset were frontal and thus

had less appearance differences.

Both DAM and MDA assumed the QSS classifier is a

linear combination of multiple source classifiers. When

positive and negative data were extremely imbalanced, e.g.,

AU1 on GFT, DAM performed poorly because each source

classifier was unreliable. MDA performed better than DAM

because MDA learned the weights for training data and

source-domains instead of using fixed weights, meanwhile,

MDA had a smooth assumption over test data. GFK per-

formed similarly to SVM, although it did not provide a way

to deal with multiple sources. Across three datasets, iCPM

consistently outperformed three transfer learning methods.

With few exceptions, iCPM consistently outperformed

the alternative methods in both metrics. Because iCPM

incorporated the spatial-temporal smoothness term (as de-

scribed in Sec. 3.3), it showed an obvious increase on F1-

event compared to F1-frame. Recall that AU detection

aims for detecting temporal events, we believe this spatial-

temporal smoothness would significantly improve the de-

tection result. Note that the experiments with HMM did not

show consistent improvements on either F1-frame or F1-

event as iCPM did. A possible explanation is that a trivial

enforcement of temporal consistency is likely to make some

frames similar to their misclassified neighbors, or over-

smooth some short events. It indicated that the performance

edge of iCPM was given by both separating easy/hard sam-

ples and its temporal-spatial smoothness.

5. Conclusion

We have presented the CPM for facial AU detection.

Unlike standard methods with assumptions on sources of

error, CPM censors hard-to-recognize samples that could

be ascribed to low intensities, head motion, or individual

differences. CPM exploits an easy-to-hard framework that

incorporates the proposed confident classifiers and a quasi

semi-supervised classifier regularized with spatial-temporal

smoothness. We also introduce iCPM, an iterative exten-

sion of CPM, that gradually adds easy test samples to update

the confident classifiers. Experiments on three spontaneous

datasets showed the effectiveness of CPM against semi-

supervised learning and transfer learning methods. Future

work includes a non-linear extension of CPM.

Acknowledgements: This publication was supported

in part by National Institutes of Health Award Number

MH096951, National Natural Science Foundation of China

(No. 61272350), National High Technology Research and

Development Program of China (No. 2013AA01A603).



References

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector ma-

chines for multiple-instance learning. In NIPS, pages 561–568, 2002.

[2] P. L. Bartlett and M. H. Wegkamp. Classification with a reject option

using a hinge loss. Journal of Machine Learning Research, 9:1823–

1840, 2008.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled exam-

ples. Journal of Machine Learning Research, 7:2399–2434, 2006.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled data with

co-training. In CoLT, pages 92–100, 1998.

[5] L. Bruzzone and M. Marconcini. Domain adaptation problems:

A dasvm classification technique and a circular validation strategy.

TPAMI, 32(5):770–787, 2010.

[6] O. Chapelle. Training a support vector machine in the primal. Neural

Computation, 19(5):1155–1178, 2007.

[7] O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised learning,

volume 2. MIT press Cambridge, 2006.

[8] O. Chapelle and A. Zien. Semi-supervised classification by low den-

sity separation. AISTATS, 2005.

[9] K. Chen and S. Wang. Semi-supervised learning via regularized

boosting working on multiple semi-supervised assumptions. TPAMI,

33(1):129–143, 2011.

[10] W.-S. Chu, F. De la Torre, and J. F. Cohn. Selective transfer machine

for personalized facial action unit detection. In CVPR, 2013.

[11] J. F. Cohn and F. De la Torre. The Oxford Handbook of Affective

Computing, chapter Automated Face Analysis for Affective Com-

puting. 2014.

[12] J. F. Cohn and M. A. Sayette. Spontaneous facial expression in a

small group can be automatically measured: An initial demonstra-

tion. Behavior Research Methods, 42(4):1079–1086, 2010.

[13] F. De la Torre, W.-S. Chu, X. Xiong, F. Vicente, X. Ding, and J. F.

Cohn. Intraface. In Automatic Face and Gesture Recognition, 2015.

[14] F. De la Torre and J. F. Cohn. Guide to Visual Analysis of Humans:

Looking at People, chapter Facial Expression Analysis. Springer,

2011.

[15] X. Ding, W.-S. Chu, F. De la Torre, J. F. Cohn, and Q. Wang. Facial

action unit event detection by cascade of tasks. In ICCV, 2013.

[16] F. Dornaika and F. Davoine. Simultaneous facial action tracking

and expression recognition in the presence of head motion. IJCV,

76(3):257–281, 2008.

[17] S. Du, Y. Tao, and A. M. Martinez. Compound facial expressions of

emotion. PNAS, 111(15):E1454–E1462, 2014.

[18] L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua. Domain adaptation

from multiple sources via auxiliary classifiers. In ICML, 2009.

[19] L. Duan, D. Xu, and S.-F. Chang. Exploiting web images for event

recognition in consumer videos: A multiple source domain adapta-

tion approach. In CVPR, 2012.

[20] P. Ekman and E. L. Rosenberg. What the face reveals: Basic and

applied studies of spontaneous expression using the Facial Action

Coding System (FACS). Oxford University Press, 1997.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Li-

blinear: A library for large linear classification. Journal of Machine

Learning Research, 9:1871–1874, 2008.

[22] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsuper-

vised visual domain adaptation using subspace alignment. In ICCV,

2013.

[23] Y. Freund and R. E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of computer

and system sciences, 55(1):119–139, 1997.

[24] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for

unsupervised domain adaptation. In CVPR, 2012.

[25] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object

recognition: An unsupervised approach. In ICCV, 2011.

[26] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy

minimization. In NIPS, 2005.

[27] Y. Grandvalet, A. Rakotomamonjy, J. Keshet, and S. Canu. Support

vector machines with a reject option. In NIPS, pages 537–544, 2009.

[28] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and

B. Schölkopf. Covariate shift by kernel mean matching. Dataset shift

in machine learning, 3(4):5, 2009.

[29] I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang. Robust visual domain

adaptation with low-rank reconstruction. In CVPR, 2012.

[30] R. Khemchandani, S. Chandra, et al. Twin support vector machines

for pattern classification. TPAMI, 29(5):905–910, 2007.

[31] S. Kumano, K. Otsuka, J. Yamato, E. Maeda, and Y. Sato. Pose-

invariant facial expression recognition using variable-intensity tem-

plates. IJCV, 83(2):178–194, 2009.

[32] Y. Li, J. Chen, Y. Zhao, and Q. Ji. Data-free prior model for fa-

cial action unit recognition. IEEE Trans. on Affective Computing,

4(2):127–141, 2013.

[33] M. Liu, S. Shan, R. Wang, and X. Chen. Learning expressionlets on

spatio-temporal manifold for dynamic facial expression recognition.

In CVPR, 2014.

[34] W. Liu, J. Wang, and S.-F. Chang. Robust and scalable graph-based

semi-supervised learning. Proceedings of the IEEE, 100(9):2624–

2638, 2012.

[35] S. Mavadati, M. Mahoor, K. Bartlett, P. Trinh, and J. Cohn. Disfa: A

spontaneous facial action intensity database. IEEE Trans. on Affec-

tive Computing, 4(2):151–160, April 2013.

[36] S. Melacci and M. Belkin. Laplacian support vector machines trained

in the primal. Journal of Machine Learning Research, 12:1149–

1184, 2011.

[37] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization

via invariant feature representation. In ICML, 2013.

[38] T. Pfister, X. Li, G. Zhao, and M. Pietikainen. Recognising sponta-

neous facial micro-expressions. In ICCV, 2011.

[39] O. Rudovic, V. Pavlovic, and M. Pantic. Context-sensitive dynamic

ordinal regression for intensity estimation of facial action units.

TPAMI, 2015.

[40] E. Sangineto, G. Zen, E. Ricci, and N. Sebe. We are not all equal:

Personalizing models for facial expression analysis with transductive

parameter transfer. 2014.

[41] L. Shang and K.-P. Chan. Nonparametric discriminant hmm and ap-

plication to facial expression recognition. In CVPR, 2009.

[42] Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye. A two-stage

weighting framework for multi-source domain adaptation. In NIPS,

2011.

[43] S.-J. Wang, W.-J. Yan, G. Zhao, X. Fu, and C.-G. Zhou. Micro-

expression recognition using robust principal component analysis

and local spatiotemporal directional features. In ECCV Workshops.

2014.

[44] J. Whitehill, M. S. Bartlett, and J. R. Movellan. Social Emotions in

Nature and Artifact, chapter Automatic facial expression recognition.

2014.

[45] J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept

detection using adaptive SVMs. In ACM MM, 2007.

[46] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale, A. Horowitz, and

P. Liu. A high-resolution spontaneous 3d dynamic facial expression

database. In Automatic Face and Gesture Recognition, 2013.

[47] K. Zhao, W.-S. Chu, F. De la Torre Frade, J. Cohn, and H. Zhang.

Joint patch and multi-label learning for facial action unit detection.

In CVPR, 2015.

[48] X. Zhu. Semi-supervised learning. In C. Sammut and G. Webb,

editors, Encyclopedia of Machine Learning, pages 892–897. 2010.

[49] Y. Zhu, F. De la Torre, J. F. Cohn, and Y.-J. Zhang. Dynamic cascades

with bidirectional bootstrapping for spontaneous facial action unit

detection. IEEE Trans. on Affective Computing, 2:79–91, 2011.


