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Abstract
Advances in 3D sensing technologies have made the availability of RGB and Depth

information easier than earlier which can greatly assist in the semantic segmentation of
2D scenes. There are many works in literature that perform semantic segmentation in
such scenes, but few relates to the environment that possesses a high degree of clutter
in general e.g. indoor scenes. In this paper, we explore the use of depth information
along with RGB and deep convolutional network for indoor scene understanding through
semantic labeling. Our work exploits the geocentric encoding of a depth image and uses
a multi-scale deep convolutional neural network architecture that captures high and low-
level features of a scene to generate rich semantic labels. We apply our method on indoor
RGBD images from NYUD2 dataset [1] and achieve a competitive performance of 70.45
% accuracy in labeling four object classes compared with some prior approaches. The
results show our system is capable of generating a pixel-map directly from an input image
where each pixel-value corresponds to a particular class of object.
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1 Introduction
Perception is an integral part in all robotic systems that try to understand the environment.
Scene understanding is a central problem in perception having many different aspects
such as semantic labels describing the identity of various scene regions; affordances cap-
turing interaction information of a robot with the environment; and depth describing the
physical geometry of the scene. Accurate scene understanding can help a robot to learn
about the rich features of its surrounding which can further assist in path planning &
navigation, detecting good grasp to pick up an object, to achieve automation in decision
making and can improve task-relevant 3D perception. Our work is focused on seman-
tic labeling–pixel-wise classification in an image, for scene understanding to aid vision
in robotics. Semantic labeling in a 2D image involves pixel-wise classification among a
possible number of classes of objects chosen in a scene. We consider the use of the RGBD
information for this task. While the RGB data provides the various region proposals of an
object present in an image, the depth data is useful for understanding it’s geometry and
shape. A combination of this information helps our system to identify the various regions
in an image that can possibly belong to a particular class e.g. a wall is always vertical in
shape but can have different colors.

We also explore the necessity of depth information for our scene understanding frame-
work by experimenting with the learning of a ConvNet with two different inputs – RGB
and RGBD. We draw rich representation from the RGBD information of indoor scenes
using the method of [2], [3] in the form of geocentric encoding of depth images and train
our proposed deep ConvNets inspired from [4] to create a benchmark in learning that can
generate a pixel-map containing semantic labels of the object visible at each pixel. Our
approach uses a multi-scale deep convolutional neural network architecture and generates
a pixel-map directly from an input image. We demonstrate the results of our experimenta-
tions with deep ConvNets on the NYUD2 dataset introduced in [1] that contains more than
a thousand of annotated indoor scenes. We believe such advances in scene understanding
will foster the research in the field of perception in robotics.

2 Related Work
Convolutional neural networks have been used recently for a number of applications such
as image and video recognition [5], [6], bounding box object detection [7], key point
prediction [8], and large-scale image classification task [4], [9], [10]. A Hypercolumn of
activated features for each pixel in all the CNN units in an architecture can be used as a
descriptor for simultaneous detection and segmentation task [11]. The works of authors
in [12], [13] use deep learning CNN for the simultaneous classification of objects and
finding good grasp for a robotic hand. The process of 3D object recognition devised by
[14] uses a transfer learning approach to train CNNs on four separate data sets formed
using RGBD information (splitting into R, G, B, D separate channels) and fuses their
results to make a final prediction.

In recent years, there has been a significant use of convolutional neural network frame-
work in the area of scene understanding by semantic labeling. Semantic segmentation
is one of the important cues for scene understanding in [15], [16], [7]. Fully convolu-
tional network architectures by Long et al. [17] for this task shows a state of the art

1



results on PASCAL VOC and NYUD2 datasets, adapting some contemporary classifica-
tion networks. The multi-scale convolutional network architecture proposed in [18] uses
the information from both shallow and coarse layers to predict surface normals, depth,
and semantic labels. Also, some super-pixel based methods have been used for object
recognition and segmentation of indoor RGBD scenes. In the work of [19], the authors
formulate this task as a binary object-background segmentation and use an informative
set of features and grouping cues for small regular super-pixels. Currently, most of the
works in literature have achieved semantic segmentation in 2D RGBD scenes which can
be transferred into a 3D reconstruction using Bayesian updates [20] and dense Conditional
Random Fields (CRFs) [21] as proposed in [22].

Advances in 3D sensing and availability of low-cost 3D sensors like Kinect have made
it possible to record depth information along with RGB images. As a result, the use of
RGBD data for semantic segmentation task has received tremendous attention during past
couple of years as depth provides an extra feature in the form of the geometry of the
scene. Depth information has been used as an additional channel with RGB in works of
[23], [19], [24], [22], [3] and [2]. Socher et al. proposed a combination of CNN (Con-
volutional Neural Net) and RNN (Recursive Neural Net) in [25] for learning features on
RGBD images for 3D object classification. There have been various approaches to rep-
resent a depth image. The HHA encoding of depth image proposed in [3], [2] is used as
geocentric features in combination with contour cues to achieve contour detection and se-
mantic segmentation. On the other hand Hoft et al. in [24], use a simplified version of the
histogram of oriented gradients (HOG) descriptors to create a histogram of oriented depth
(HOD [26]) to represent depth channel from RGBD scenes. The current dataset bench-
mark suites like NYUD2 are limited in size presenting a critical bottleneck for further
advancement in scene understanding including semantic segmentation, context reasoning
[27], surface orientation and room layout estimation [28], [29]. SUN RGBD benchmark
suite introduced by Song et al. [15] attempts to overcome this bottleneck.

3 Approach
Our scene understanding framework performs pixel-wise semantic classification of im-
ages from NYUD2 dataset according to four classes - “furniture”, “floor”, “structure”,
and “props”. The input to this framework is RGBD (encoded form) data and expected
output is the corresponding labeled 4-class ground truth image. We first describe our
chosen way to represent the depth images as per [3] in Section-3.1 and then our proposed
deep ConvNet architecture for this task inspired from [4] in Section-3.2. We further report
the training, evaluation and implementation details of our scene understanding framework
in Section-3.3–3.4.

3.1 HHA Encoding of Depth
Depth images taken from 3D sensing devices contain the information about the geometry
of a scene. Geocentric encoding of depth images in three-dimensional form is analogous
to RGB channels, providing more rich representation about a scene geometry than simply
using depth images. Such encoding is based on the fact that direction of gravity affects
the shape of objects around us and hence it’s position in the scene from the floor. We
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Figure 1: Geocentric encoding-HHA components of a depth image

adapt the method of [2] to obtain geocentric features, where each pixel in depth image is
encoded with three channels namely – H-horizontal disparity, H-height above the ground,
and A-angle the pixel’s local surface normal makes with the calculated gravity direction at
the pixel. Horizontal disparity helps to understand the closeness of an object from camera,
height above the ground tells the possible positions of an object in the scene with respect
to the ground plane and A-quantify the shape of an object in the scene. This way from a
single depth image we are able to obtain 3-geocentric features. All channels are linearly
scaled to map the obtained values across 0 to 255 range. In order to calculate A-channel
we first use the following algorithm as proposed in [3] to calculate the direction of gravity.
The algorithm starts with an initial estimate of gravity vector along Y-axis and iteratively
improves the estimates via following 2 steps.

1. Using current estimate of gravity direction gi−1, make hard-assignments of local
surface normals in aligned set N|| and orthogonal set N⊥ such that

N|| = {n : Θ(n,gi−1) < d or Θ(n,gi−1) > 180◦ − d}
N⊥ = {n : 90◦ − d Θ(n,gi−1) < 90◦ + d}

where N|| contains normals from points on floor and furniture tops, N⊥ contains
normals from points on walls and d is threshold angle made by local surface normals
with gi−1. Stack the vectors in N|| and N⊥ to form matrix N|| and N⊥ respectively.

2. Estimation of new gravity vector gi which is as aligned to normals in N|| set and
as orthogonal to normals in N⊥ set as possible which corresponds to solving op-
timization problem of finding eigen-vector with the smallest eigen value of 3 × 3
matrix, N⊥N⊥t −N||N||t.
The algorithm is run for first 5 iterations with d = 45◦ followed by another 5 itera-
tions with d = 15◦ to obtain final value of gravity vector gf .
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Once the gravity vector is computed the angle between gf and local surface normal for
each pixel is calculated. For calculating height above the ground, the lowest point in im-
age is considered at the level of supporting the ground plane and height of each pixel above
the ground is computed. Horizontal disparity is calculated using conventional method as
difference between the images taken from left and right camera.

3.2 Architecture Development
Deep Convolutional Neural Networks of [10], [9], [4] have achieved a state of the art
results on image classification task in Imagenet Challenge that contains around thousands
of classes of objects. The VGG net of [4] has outperformed other ConvNets entries in
Imagenet Challenge 2014 in localization task. There are few works in literature that
use deep convolutional neural networks for semantic segmentation like those of [17],
[18] and [30]. We adapt VGG16 (having 16 weight layers) ConvNet a variant of VGG
ConvNet, proposed by Simonyan & Zisserman in [4] for our purpose. Since this deep
ConvNet is trained for image classification task, so we modified it for our semantic scene
segmentation task in a two-step process. First we remove the last fully connected layers
from VGG16 to make a network that we call - VGG16-FC presented in Section-3.2.1 and
lastly we modified this VGG16-FC architecture to obtain another network that we call -
VGGM ConvNet presented in Section-3.2.2.

3.2.1 VGG16-FC architecture

In order to obtain VGG16-FC, we replaced all the last fully connected layers of VGG16
net with a single convolution layer that is based on “Network in Network” architecture of
Lin et al. [31]. This layer performs convolution over an area of size 1× 1 and has a total
number of four filters which corresponds to four possible classes for each pixel - this is
represented by the output layer in the architecture. We kept the filter parameters of the rest
of convolutional layers unchanged. Each stack of convolutional layer like - Conv(3,64) |
Conv(3,64), is followed by a pooling layer, not shown in the figure. We use max-pooling
over a 2×2 window, with stride 2. The notation Conv(3,64) - means a convolutional layer
with filter-size - 3 × 3 and number of filters - 64. This architecture is presented in the
Figure 2.

3.2.2 VGG-M architecture

This architecture is a modification of VGG16-FC. Similar to the works of [18], [32], we
employ a multiscale deep ConvNet which first predicts a coarse global output using the
VGG16-FC net, then refines it using a finer-scale local network. We first upsample the
coarse prediction output of Scale-2 to double the final output resolution of network and
concatenate it with low-level predictions from shallow network of scale-1 to get both high
and low-level features – lastly we refine this prediction using a stack of three convolutional
layers – each having filter-size - 3 × 3 and number of filters - 64. This is is our proposed
architecture that we call VGG-M. As shown in [18] such network architecture is capable
of learning more robust features. This architecture is shown in Figure 3.
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Figure 2: VGG16-FC ConvNet Configureations. Pooling layers not shown for brevity.

3.3 Training and Evaluation
Dataset
We have used NYUD2 dataset for training and evaluation of our proposed architecture. It
has 1449 RGBD images taken from a Microsoft Kinect, containing pixel-wise annotated
ground truth image sets with 4, 13 and 40 labels. We perform 4-class segmentation task
that uses high level category labels namely - “floor”, “furniture”, “structure” and “props”.
The results on the standard split of 795 training images and 654 testing images are re-
ported.
Training
We compute the mean value of pixels in RGB and HHA over the training set images and
subtract it from each image as pre-processing operation. Since the number of images in
NYUD2 dataset is very less, so the weight of convolutional layers were initialized with
the weights from VGG16 ImageNet model that has been trained on millions of images.
The weights of the layer in Scale-1 of VGG-M was randomly initialized with biases set to
zero initially. The images in the dataset were scaled to obtain a fixed-size 320× 320 and
a stack of RGB and HHA (calculated from depth image) components of an image con-
catenated in pixel-space were given as input along with ground truth provided as a target.
Standard SGD (Stochastic Gradient Descent) is used for generating losses. It is carried
out by using the method which optimizes the multinomial logistic regression objective
with mini-batch gradient descent with momentum (based on back-propagation algorithm
of [33]). The batch size was set to 10 and momentum to 0.9. The training was regularized
by weight decay, using L2 penalty multiplier set to 5× 10−4. The learning rate was ini-
tially set to 10−3 and then decreased by a factor of 10 when the test set accuracy stopped
improving. Overall, the learning rate was decreased 2 times, and the learning was stopped
after 120 epochs. We also apply some random data transforms on input and ground truth
to augment the training data.
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Figure 3: VGG-M ConvNet Configureations. Pooling layers not shown for brevity.

Evaluation
After training the network, the evaluation is performed on the standard 654 testing images
of the dataset. First, these test images are scaled to match the fixed input size of ConvNet,
then RGB and HHA components of each image are calculated and then given as input to
the network in the form of a stack by concatenating them in pixel-space. This way the
network is applied to obtain a final output image having dimension as per the network
architecture being evaluated and having 4-class semantic labels.

3.4 Implementation Details
Our implementation is performed using publicly available Python library for deep learn-
ing Theano [34]. Caffe was used to read VGG16 Imagenet model. The three-dimensional
HHA encoding of depth images is calculated using publicly available source code with
slight modification to suit our need. On a system equipped with NVIDIA Tesla K40c, the
training of the ConvNet VGG-M took 2-3 days.

4 Performance Experiments
We report the performance of our proposed architecture VGG-M on semantic labeling.

4.1 Accuracy Analysis
Pixel accuracy is calculated on the test set of NYUD2 dataset. During evaluation process,
the predicted output of the network is compared with the corresponding ground truth
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image and the number of correctly classified pixels is enumerated to generate an accuracy
score given by

Accuracy Score =
No. of correctly classified pixels

Total No. of pixels in ground truth

This way accuracy score for all the 654 testing images is calculated and then averaged to
obtain an average accuracy score. Further, we use a multiplier-100 to convert it into the
percentage.

4.2 Semantic Labels
We finally apply our method - VGG-M architecture to semantic segmentation problem
on the NYUD2 dataset. Since this data provide us with depth channel we use RGB and
encoded Depth as input as described in Section-3.3. We evaluate our method for 4-Class
segmentation task that uses high category labels – “floor”, “structure ”,“furniture” and
“props” as described in [16]. We also compare our method with recent prior proposed
methods using the pixel accuracy metric as shown in Table-1. We outperform the prior
methods of Couprie et al. and Khan et al.. In our future work, we hope to improve the
system to bring its performance competitive to Gupta et al. and Eigen et al. Qualitative
results are shown in Figure-4.

Figure 4: Semantic labeling results: For each half - we have rows with each row having
Input, 4-Class ground truth, and 4-class labeling result. Note we use our proposed VGG-
M architecture with RGB+D(HHA) as input.
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4-Class Semantic Segmentation
Pixel Accuracy %

Couprie et al. [35] 64.5
Khan et al. [36] 69.2
Ours (VGG-M) 70.45
Gupta et al. [3] 78
Eigen et al. [18] 80.6

Table 1: Semantic Labeling on NYUD2 with 4 classes

5 Probe Experiments

5.1 Effect of Depth Input
The fact that only RGB image can be used as input to a network to learn semantic labels
leads to the question: How important is the depth input with relative to RGB in semantic
labeling task? To study this, we perform our experimentation with a shallow convolutional
neural network as shown in Figure 5 having few numbers of convolutional layers. The
network takes 320 × 320 dimensional input and gives output of shape 32 × 32. We train
and evaluate this network for 4-class semantic labeling task as per the outline described in
Section-3.3 (we don not initialize with any Imagenet weights) - 1)With RGB as input and
2) With RGBD as input, concatenating the depth with RGB in pixel space. We observed

Figure 5: ConvNet to study the effect on the performance of a network when depth is used
in input.

from Figure 6, while using only RGB data as input training loss of the network saturates
at a value > 1.0 on the other hand when we introduce depth as an additional channel with
RGB as input, it saturates at a value < 1.0, resulting in an appreciable decrease in losses.
Also, the performance of the network improves by a significant margin on accuracy scale
this is shown in Table-2. This implies that ConvNet is able to learn a more accurate
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representation of indoor scenes in the form of correct semantic labels when we use depth
information as an additional channel along with RGB, as depth provides an extra feature
in the form of geometric representation of the scene.

Figure 6: Training loss analysis when the input is 1) RGB and then 2)RGB+D. Note we
use the network architecture of Figure-5.

Effect of Depth Input
Input Accuracy %
RGB only 62.29
RGB+Depth 65.02

Table 2: Comparison of performance of the network shown in Figure-5 with different sets
of inputs for 4-class semantic labeling task.

5.2 Contribution of Scale
In order to study the contribution of scale-1 to the performance of our proposed archi-
tecture VGG-M, we compare the performance of both the models - VGG16-FC (contains
scale-2 only) and VGG-M (contains scale-1 and scale-2). We train and evaluate both net-
works for 4-class semantic labeling task as per the outline described in Section-3.3 with
RGB + D(HHA) given as input. While comparing the training losses of both the architec-
tures we observe a progressive improvement in the decrease of losses as it plunges from
always a value > 0.7 in the case of VGG16-FC to a value < 0.2 in the case of VGG-
M and also the latter took less number of epochs to converge. This is shown in Figure
7. Performance measurement on accuracy metric highlights that VGG-M outperforms
VGG16-FC with approximately 4.5% improvement in prediction accuracy, refer Table 3.
We infer the introduction of another scale-1 in the case of VGG-M serves two purpose
– 1)It captures low-level features from the image providing a global view which is com-
bined with high-level features from the scale-2 output and 2)It also helps to double the
resolution of the final output of the model providing a more fine-tuned labels.
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Figure 7: Training loss analysis of ConvNet VGG16-FC (having scale-2 only) &
VGGM (having scale-1 and scale-2) to study the contribution of scale-1. Note input
is RGB+D(HHA).

Contribution of Scale
Architecture Accuracy %
VGG16-FC (scale-2 only) 66.07
VGG-M (scale-1 + scale-2) 70.45

Table 3: Comparison of models having different scales for 4-class semantic labeling task.

6 Conclusion
We have proposed a multi-scale deep ConvNet - VGGM for our scene understanding
task which performs semantic segmentation of indoor scenes from NYUD2 dataset. This
multi-scale network can accurately predict semantic labels directly when a single RGB
image along with it’s recorded depth information are given as input. We exploit the geo-
centric encoding of a depth image (HHA) that splits the depth image into three geocentric
feature map - providing a rich geometric view of a scene. This helps our model to learn
more robust features about the scene aiding the semantic labeling task. We also studied
that use of depth information along with RGB data greatly improves the training process
as well as overall performance of a model. Also, a multi-scale architecture approach in
our task certainly improves the prediction of semantic labels by providing a global view
of image. Overall we infer that our findings aids the scene understanding. One drawback
of our approach is that it is more prone to giving erroneous output when there is too much
clutter in scene as shown in results in Figure 4 (b), (d). We hope to overcome this in our
future work.

7 Future Work
Since our current architecture fails in scenes having very high clutter, so in our future
work we aim to remove this bottleneck and also improve the accuracy of predictions to
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get more accurate labels. We plan to use the architecture as shown in Figure 8 with the
hypotheses that HHA encoding of a depth image have enough similar structures with
RGB, and we hope to learn some unique features from RGB & HHA separately and fuse
them to form a coarse prediction with further refinement with a local network.

Figure 8: Architecture of future interest
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