
Learning Positive Functions in a Hilbert Space

J. Andrew Bagnell
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

dbagnell@ri.cmu.edu

Amir-massoud Farahmand
Mitsubishi Electric Research Laboratories

Cambridge, MA, USA
farahmand@merl.com

Abstract

We develop a method for learning positive functions by optimizing over SoSK, a
reproducing kernel Hilbert space subject to a Sum-of-Squares (SoS) constraint.
This constraint ensures that only nonnegative functions are learned. We estab-
lish a new representer theorem that demonstrates that the regularized convex loss
minimization subject to the SoS constraint has a unique solution and moreover,
its solution lies on a finite dimensional subspace of an RKHS that is defined by
data. Furthermore, we show how this optimization problem can be formulated as
a semidefinite program. We conclude with examples of learning such functions.

1 Introduction

The goal of this paper is to introduce a new framework for learning functions that fits data by min-
imizing a convex loss while guaranteeing that the estimated function is positive (or nonnegative, to
be more precise). Even though there are many methods for learning a function under a convex loss
criteria in the machine learning and statistics literature, they do not guarantee the positiveness of the
estimate as a built-in feature of the method. Of course one can always truncated the estimator’s out-
put to make it nonnegative, but one may argue that this is not an elegant approach: the positiveness
condition is not an intrinsic part of the method.

To design an estimator that guarantees the positivity of its output, we bring together two different
family of concepts and tools. The first one is the concept of Sum of Squares (SoS) and positive
polynomials, cf. Nesterov [8], Parrilo [9], Lasserre [5], Parrilo [10], Ghasemi [3]. SoS has already
several applications, e.g., in control theory [9], but as far as we know it has rarely used for ma-
chine learning problems (one exception is by Magnani et al. [7], who use SoS polynomials to fit
a convex polynomial to a set of data points). The second one is the concept of reproducing ker-
nel Hilbert spaces (RKHS), which is quite familiar to a machine learning audience, e.g., Aronszajn
[1], Schölkopf and Smola [13], Steinwart and Christmann [15].

To understand the basic concept behind SoS, we briefly review the positive semidefinite (PSD) (or
nonnegative) polynomials, and its relation to SoS. Consider a univariate real polynomial p(x) with
x ∈ R. It is called positive semidefinite or nonnegative if p(x) ≥ 0 for all x in its domain. This
polynomial is a sum of squares if there exist some other polynomials q1(x), q2(x), . . . such that
p(x) =

∑
i q

2
i (x). For the univariate polynomials the condition of being a PSD polynomial is

equivalent to the condition of being an SoS polynomial. More generally for multivariate polyno-
mials, being an SoS implies that the polynomial is PSD. The converse, however, is not generally
true as there are PSD polynomials that do not have an SoS representation (Hilbert characterizes
the conditions when a PSD polynomial can be written as an SoS polynomial; cf. Ghasemi [3] for
a review). Nevertheless, SoS polynomials define an important subset of PSD polynomials. One
particular reason is that verifying that a polynomial is an SoS is computationally feasible as it can
be done by solving a semidefinite program (SDP), but verifying the positivity of a polynomial is
NP-hard. Furthermore, there are also some results regarding the denseness of the space of SoS poly-

1

nomials within the space of PSD polynomials, e.g., cf. Lasserre and Netzer [6], Ghasemi [3], which
may justify them as a rich enough subset of positive polynomials.

To make the connection of the PSD polynomials and SoS more concrete, suppose that p(x) is of
degree 2d, so p(x) =

∑2d
i=0 wix

i (this discussion is borrowed from the lecture notes of Parrilo [11]).
Define the vector of monomials φ(x) =

[
1, x, . . . , xd

]>
. Let p(x) have the SoS representation of

p(x) =
∑m
i=1 q

2
i (x). We can write

q̄(x) =

 q1(x)
...

qm(x)

 = V φ(x),

with V being an m× (d+ 1) matrix whose i-th row corresponds to the coefficients of qi. Therefore,
p(x) =

∑m
i=1 q

2
i (x) = q̄>(x)q̄(x) = φ>(x)V >V φ(x). Let us define Q = V >V , which is d +

1 × d + 1 matrix. By construction, Q is a PSD matrix. Conversely for a PSD Q � 0, one can
decompose it as Q = V >V and obtain an SoS representation. Therefore, for a polynomial p(x) =
φ>(x)Qφ(x), having Q � 0 is a sufficient condition to ensure that the polynomial is nonnegative
(but it is not a necessary condition).

The previous discussion focused on polynomials. This is common in the discussion of SoS in the
algebraic geometry context as polynomials define a communicative ring, so one can use algebraic
tools to study and analyze them. For our problem of learning a positive function from data, we do
not want to be limited to the space of polynomials. In fact, the vector of features φ, defined above,
does not need to be a vector consisting of monomials. One can see φ as a feature of x, for which the
set of monomials is a particular case. It is easy to see that no matter what φ we choose, the condition
on Q � 0 leads to a function p(x), not necessarily a polynomial anymore, be nonnegative.

Seeing φ as features opens up the possibility of using a variety of features, which is a common
practice in machine learning. But this also leads to the problem of how to choose a proper set of
features such that the target function can be represented well enough. Our approach is to consider
φ as the feature from x to a reproducing kernel Hilbert space (RKHS). Thanks to the reproducing
property of an RKHS, we have a representer theorem for an RKHS that allows us to design efficient
algorithms that do not need an explicit representation for φ. Unfortunately the usual representer
theorems for RKHS (e.g., Schölkopf et al. [14], Steinwart and Christmann [15]) are not suitable for
our problem of learning with the additional constraint of being an SoS function.

In this paper we formulate learning with positive functions in an RKHS with SoS constraint. We
prove that the optimization problem required for learning a PSD function from data has a unique
solution. We also present a representer theorem stating that the optimal solution has a finite repre-
sentation that depends on data (Section 2.3). We also show that the optimization problem can be
cast as a semidefinite program, so it can be solved efficiently (Section 3). Finally we illustrate the
algorithm on a simple problem (Section 4).

2 Learning Positive Functions in an RKHS

2.1 Losses

We review a few standard definitions from Chapter 2 of Steinwart and Christmann [15]. Let X be
the input space and Y be the output space. Denote the pointwise loss function by l : X × Y × R→
[0,∞). A pointwise loss function is called (strictly) convex if l(x, y, ·) : R→ R is (strictly) convex
for all x ∈ X and y ∈ Y . Let µ ∈ M(X × Y) be a probability distribution on X × Y . For a
measurable function f : X → R, we define the expected loss as L(f) = Eµ [l(X,Y, f(X))] =∫
X×Y l(x, y, f(x)) dµ(x, y). Given a dataset Dn = {(Xi, Yi)}ni=1 with (Xi, Yi) ∼ µ, the empirical

loss is defined as Ln(f) = 1
n

∑n
i=1 l(Xi, Yi, f(Xi)). It is easy to see that the convexity of l as a

function of its third argument implies the convexity of L(·) and Ln(·).

The problem of learning a positive function that fits data well can be formulated as the following
optimization problem:

f̂ ← argmin
f∈F,f≥0

Ln(f) + λJ(f), (1)

2

in which F is a function space and J(f) is a properly defined regularizer (penalty) that controls the
complexity of the estimate in the function space F . From the statistical point of view, the goal can
be seen as ensuring that the estimate f̂ has a small excess loss L(f̂)−minf∈F,f≥0 L(f). The proper
choices of F and J can lead to such a guarantee, but we do not discuss the statistical properties any
further in this paper.

We have to specify F and J . We focus on the choice of F that is closely related to an RKHS with
kernel K.

2.2 Kernels, RKHS, and the Space of Sum of Squares functions in an RKHS

We consider a bounded measurable kernel K : X × X → R and its corresponding RKHS H. This
RKHS has an associated feature map φ : X → H, defined as φ(x) = (φi(x))i∈I with φi : X → R
with I being an index set, e.g., I = {1, 2, 3, . . . }. We set d = |I| with the understanding that the
index set might be countably infinite, in which case we set d =∞.

The space of Sum of Squares (SoS) w.r.t. φ is defined as

S ,
{
x 7→ φ>(x)Qφ(x) : Q � 0

}
.

HereQ � 0 means that the matrixQ is positive semidefinite (PSD). Evidently, any function f ∈ S is
nonnegative. We may use Sφ or SK to make the connection to the feature map or the kernel explicit.

For further development, we would like to have the RKHS machinery at our disposal. But notice
that S is not a subspace of H. We may, however, define another RKHS in which S is a subspace.
We start by defining a new feature map ψ : X → H′0 as

ψ(x) = (φi(x) · φj(x))i,j∈I .

Given this feature map, we define a kernel K′ : X × X → R as usual:

K′(x, y) , 〈ψ(x) , ψ(y) 〉H′
0

=
∑
i,j∈I

φi(x)φj(x) φi(y)φj(y) =

=
∑
i∈I

φi(x)φi(y)
∑
j∈I

φj(x)φj(y) = 〈φ(x) , φ(y) 〉2 = K2(x, y).

(2)

Therefore there exists a unique RKHS H′ for which K′ is a reproducing kernel. In tensor notation,
H′ = H⊗H.

Let I(i, j) be the mapping from I × I to the corresponding index of ψ, that is, ψI(i,j) = φiφj . We
then have

S =
{
x 7→ φ>(x)Qφ(x) : Q � 0

}
=

x 7→
∑
i,j∈I

Qijφi(x)φj(x) : Q � 0


=

x 7→
∑
i,j∈I

QijψI(i,j)(x) : Q � 0


⊂

x 7→
∑
i,j∈I

QijψI(i,j)(x) : Q ∈ Rd×d
 = H′. (3)

The function space S is the space of SoS functions defined using the feature map φ corresponding
to the RKHS K, and is a subset ofH′. We call it a Kernel SoS space. Therefore, we state our goal of
solving the optimization problem (1) as this particular instance of that general optimization:

f̂ ← argmin
f∈S

Ln(f) + λ ‖f‖2H′ . (4)

When d is moderately small, we can explicitly construct S as it is a subset of d2-dimensional linear
space defined by features ψ. When d is large, however, we use a representer theorem, to be proved
in the next section, to provide a computationally feasible algorithm.

3

2.3 Representer Theorem for Kernel SoS

In this section we state a representer theorem for Kernel SoS. Let us first define some function
spaces. For a particular set {Xi}ni=1, we defineHn,H′n and Sn:

Hn =

{
x 7→

n∑
l=1

αlK(x,Xi) : α ∈ Rn
}
,

H′n =

{
x 7→

n∑
l=1

αlK
′(x,Xi) : α ∈ Rn

}
,

Sn = H′n ∩ S.

The following result is similar in spirit to Theorem 5.5 (Representer Theorem) of Steinwart and
Christmann [15], but is modified for Kernel SoS. Its proof requires appropriate modifications of
Lemma 5.1, Theorem 5.2, and Theorem 5.5 of Steinwart and Christmann [15].
Theorem 1 (Representer Theorem). Let Ln be a convex empirical loss function as defined before.
Then for all λ > 0, there exists a unique solution f̂ ∈ S satisfying

Ln(f̂) + λ
∥∥∥f̂∥∥∥2

H′
= inf
f∈S

Ln(f) + λ ‖f‖2H′ .

Moreover, f̂ ∈ Sn.

Proof. (Existence) By a argument similar to the first paragraph of the proof of Theorem 5.2 of Stein-
wart and Christmann [15], one can show that the mapping f 7→ gf , Ln(f) + λ ‖f‖2H is convex
and continuous.

Define the set

A =

 f ∈ S : Ln(f) + λ ‖f‖2H′ ≤ Ln(0) + λ ‖0‖2H′︸ ︷︷ ︸
=Ln(0)

 .

Because of the continuity of the mapping gf , the set A is closed. (Moreover, S is a convex cone

and
{
f ∈ H′ : Ln(f) + λ ‖f‖2H′ ≤ Ln(0)

}
is a convex set, so their intersection, which is A, is

convex too. Also f = 0 ∈ A (the zero function belongs to S), so A is non-empty.

From the definition of this set, we have that for any f ∈ A, it holds that ‖f‖2H′ ≤ Ln(0)
λ . Therefore,

A is a subset of a closed ball in H′ with radius
√

Ln(0)
λ , i.e., A ⊂ BH′

(√
Ln(0)
λ

)
. Clearly this

ball is bounded. To summarize, A is a closed, convex, non-empty, and bounded set.

As 0 ∈ S, we can benefit from the optimizer property to have

inf
f∈S

Ln(f) + λ ‖f‖2H′ ≤ Ln(0) + λ ‖0‖2H′ = Ln(0).

The right-hand side (RHS) is the same as the upper bound constraint in the definition of A. So
restricting the search for the infimum from S to its intersection with A, that is S ∩A = A, does not
change the value of the infimum. Therefore,

inf
f∈S

Ln(f) + λ ‖f‖2H′ = inf
f∈A

Ln(f) + λ ‖f‖2H′ . (5)

As A is a non-empty closed bounded convex set, by Theorem 8.4 of Rockafellar [12], the recession
cone 0+A consists of zero vector only.

The mapping gf is a closed (because it is continuous, cf. p. 52 of Rockafellar [12]) proper convex
function. As the direction of recession of A is only zero, Theorem 27.3 of Rockafellar [12] shows
that inff∈A Ln(f) + λ ‖f‖2H′ attains its infimum over A. Let us call it f̂ ∈ A. The equality (5)
indicates that f̂ is an infimum of gf over S too, so we have proven the existence of a solution.

4

We can also defineAn =
{
f ∈ Sn : Ln(f) + λ ‖f‖2H′ ≤ Ln(0)

}
and follow the same arguments

to show that inff∈Sn Ln(f) + λ ‖f‖2H has a solution that is attained in An.

(Uniqueness) Suppose that there exist f1, f2 ∈ S that are two distinct minimizers of inff∈S Ln(f)+

λ ‖f‖2H′ . Define f̄ = 1
2 (f1 + f2). Note that all f1, f2, f̄ ∈ H′. By Lemma A.5.9 of Steinwart and

Christmann [15], it holds that

1

2
(‖f1‖2H′ + ‖f2‖2H′) =

∥∥∥∥f1 + f2
2

∥∥∥∥2
H′

+

∥∥∥∥f1 − f22

∥∥∥∥2
H′
.

As f1 6= f2, by the property of the norm it holds that ‖ f1−f22 ‖2H′ > 0, so

∥∥f̄∥∥2H′ <
1

2

[
‖f1‖2H′ + ‖f2‖2H′

]
. (6)

By the convexity of the loss Ln, we also have

Ln(f̄) ≤ 1

2
[Ln(f1) + Ln(f2)]. (7)

Moreover, as S is convex, f̄ is in S too, so f̄ can be a minimizer. If that is the case, by (6) and (7)
we have

Ln(f̄) + λ
∥∥f̄∥∥2H′ <

1

2
[Ln(f1) + Ln(f2)] +

1

2

[
‖f1‖2H′ + ‖f2‖2H′

]
= Ln(f1) + ‖f1‖2H′ ,

which is a contrary to the fact that f1 is a minimizer. Therefore, there cannot be more than one
minimizer.

(Finite Representation) Let ΠSn : S → Sn be the projection operator from S to Sn w.r.t. the norm
ofH. First we show that for any f ∈ S, we have Ln(f) = Ln(ΠSnf).

For any f ∈ S ⊂ H′, we can decompose it as f = f1 + f2 with f1 ∈ H′n and f2 ∈ H′⊥n , the
orthogonal complement ofH′n inH′.
For any Xl ∈ {X1, . . . , Xn}, by the reproducing property ofH′, we have

f2(Xl) = 〈 f2 , K′(·, Xl) 〉 = 0. (8)

The terms contributing to Ln(f) are in the form of l(·, f(Xl)) = l(·, f1(Xl) + f2(Xl)) =
l(·, f1(Xl)), so only functions in the span of {K′(Xl, ·)}nl=1 contribute to the loss Ln.

By construction of S (3), any function f ∈ S has a representation v>Qv for some v ∈ H and
Q � 0. The projection operator ΠH′

n
: H′ → H′n = Hn ⊗ Hn takes w ∈ H′ = H ⊗ H and

returns a wn = vn ⊗ vn ∈ Hn ⊗ Hn. Since vn is the projection of v onto Hn, one may write
it as vn = Pv for an appropriate projection operator P : H → Hn. So after projection of f , we
have ΠH′

n
f = v>nQvn = v>P>QPv. Since Q � 0, the n × n matrix P>QP is also PSD, so the

projection ΠH′
n
f also belongs to the PSD cone Sn = H′n ∩ S.

One can see that fn = ΠH′
n
f is the same as f ′n = ΠSnf . We just showed that fn belongs to Sn.

Also by definition, f ′n belongs to Sn too. Suppose that fn 6= f ′n. Since ΠH′
n

is the orthogonal
projection onto H′n, the value of ‖fn − f‖H′ is minimal. If f ′n 6= fn, due to the uniqueness of
orthogonal projection onto a linear subspace, we would have ‖f ′n − f‖H′ > ‖fn − f‖H′ , which
would contradict the assumption that f ′n is the projection of f onto Sn.

Therefore for any f ∈ S , ΠSnf = ΠH′
n
f . This alongside the fact that functions in the orthogonal

complement ofH′n do not contribute to the loss Ln (8) show that

Ln(ΠSnf) = Ln(ΠH′
n
f) = Ln(f). (9)

Since for any f ∈ S we have ΠSnf = ΠH′
n
f and because the projection ontoH′n does not increase

the norm (i.e., ‖ΠH′
n
f‖H′ ≤ ‖f‖H′), we have

‖ΠSnf‖H′ ≤ ‖f‖H′ . (10)

5

Therefore, we get

inf
f∈S

Ln(f) + λ ‖f‖2H′ ≤ inf
f∈Sn

Ln(f) + λ ‖f‖2H′ = inf
f∈S

Ln(ΠSnf) + λ ‖ΠSnf‖
2
H′

≤ inf
f∈S

Ln(f) + λ ‖f‖2H′ .

The first inequality is because the infimum in Sn cannot be smaller than the infimum in S as Sn ⊂ S.
The first equality is due to the definition of the projection operator. The second inequality is the result
of (9) and (10).

Since the left-hand side (LHS) is the same as the RHS, it must be inff∈S Ln(f) + λ ‖f‖2H′ =

inff∈Sn Ln(f) + λ ‖f‖2H′ , as desired.

3 Algorithm

In this section we develop a computationally efficient approach to solve (4). From Theorem 1, we
know that the solution can be written as f(x) =

∑n
l=1 αlK

′(Xi, x) under the condition that the
function has an SoS representation, that is, f(x) = φ(x)>Qφ(x) for some Q � 0. We have

n∑
l=1

αlK
′(Xi, x) =

n∑
l=1

αl 〈Ψ(Xl) , Ψ(x) 〉 =

n∑
l=1

αl
∑
i,j∈I

φi(Xl)φj(Xl) φi(x)φj(x)

=
∑
i,j∈I

φi(x)φj(x)

n∑
l=1

αlφi(Xl)φj(Xl) =
∑
i,j∈I

Qijφi(x)φj(x),

with Qij =
∑n
l=1 αl φi(Xl)φj(Xl). We require that Q, which is a function of α, to be PSD.

The matrix Q = [Q]ij is d × d, so the explicit computation of Q might not be feasible. The rank
of Q, however, is at most n, the number of data points used in the optimization. We shortly see that
one can enforce the same condition by requiring the positive semi-definiteness of a potentially much
smaller n× n matrix.

Define a d×n matrix Φ = [φ(X1) · · ·φ(Xn)] and an n×n diagonal matrix A = diag(α1, . . . , αn).
The matrix Q, defined above, can be written as Q = ΦAΦ>. The condition of Q being PSD is that
all its eigenvalues should be nonnegative. For a square matrix B, denote eig(B) as the set of its
non-zero eigenvalues. Because eig(BB>) = eig(B>B), we have

eig(Q) = eig(ΦAΦ>) = eig(Φ
√
A
√
AΦ>) = eig(

√
AΦ>Φ︸ ︷︷ ︸

,G

√
A) = eig(GA).

Here G = Φ>Φ is the Grammian matrix. We have Φij =
∑
k∈I φk(Xi)φk(Xj) =

〈φ(Xi) , φ(Xj) 〉H = K(Xi, Xj). This means that even if the features are infinite dimensional,
as long as we know their corresponding kernel function K, we can construct G.

Also note that for f =
∑n
l=1 αlK

′(Xi, x), we have ‖f‖2H′ = α>K ′α with K ′ij = K′(Xi,Kj) =

K2(Xi, Xj) (2). In other words, K ′ = G�G, in which� indicates entrywise (or Hadamard) matrix
product. Therefore we get that

inf
f∈S

Ln(f) + λ ‖f‖2H′ = inf
α∈Rn

Ln

(
n∑
l=1

K′(Xl, ·)αl

)
+ λα>K ′α.

s.t. G diag(α) � 0

We next show how to formulate this optimization problem as a semidefinite program (SDP) (e.g.,
cf. Vandenberghe and Boyd [16]) when the loss function is the squared loss. If we denote the vector
of target values by Y = [Y1, . . . , Yn]>, we can write the optimization as

inf
α∈Rn

(K ′α− Y)>(K ′α− Y) + λα>K ′α

s.t. G diag(α) � 0

6

First note that G diag(α) is not symmetric. To convert this condition to the standard SDP formu-
lation, which requires that the semi-definiteness condition to be imposed on symmetric matrices,
note that eig(GA) = eig(A>G>), and since both A and G are symmetric, it is equal to eig(AG).
Therefore, GA � 0 if and only if GA+AG � 0.

Let us write the objective as α>Mα + 2α>N with M = K ′>K ′ + λK ′ and N = −2K ′>Y (we
ignore the Y >Y term, which does not affect the minimizer). Let L be such that L>L = M , e.g., its
Cholesky factorization. Note that minα α

>Mα+ 2α>N is equivalent to

min
t,α∈Rn

t

s.t. α>Mα+ 2α>N − t ≤ 0.

Moreover, having t + 2α>N − α>Mα ≥ 0, by the Schur complement condition, is equivalent to
requiring the positive semi-definiteness of[

In×n Lα
α>L> t+ 2α>N

]
.

Altogether we obtain the following SDP:

min
t,α∈Rn

t

s.t.

 In×n Lα 0n×n
α>L> t+ 2α>K ′>Y 01×n
0n×n 0n×1 G diag(α) + diag(α)G


2n+1×2n+1

� 0. (11)

4 Illustrations

We illustrate the proposed algorithm through some simple illustrations. To solve the SDP formula-
tion (11), we use CVX, a package for solving convex programs [2, 4].

We choose the function fc(x) = sin(x) + cos(3x) − (x2)2 + c defined on X = [−5,+5] with the
value of c to be specified. For the input of the training data, we use a uniform grid of 50 data points
on X . For its output, we first consider the noiseless case, i.e., Yi = fc(Xi). Later we study the effect
of noise too.

We first study learning a positive function using noiseless samples (Figure 1). By the choice of
c = 8, the function f8(x) is positive on its domain. We choose the kernel function to be the mixture
of squared exponential (or Gaussian) with the bandwidth of σ and the Dirac’s delta function:1

K(x1, x2) = exp

(
−|x1 − x2|

2

2σ2

)
+ 0.01δ(x1 − x2).

We present the results with σ ∈ {0.25, 0.75}. These values are chosen to show two different types
of behaviour; they are not chosen to optimize the loss. In all presented results, the regularization
coefficient is λ = 0.01. One can see from Figure 1 that the estimator with σ = 0.25 closely overlaps
the target function. On the other hand, the estimator with σ = 0.75 is slightly oversmoothing.

We also tried smaller values of σ. When σ becomes too small (smaller than the minimum distance
between two adjacent points, which is 0.2 in our experiments), the estimator severely overfits to data
points. This is reflected by having a Grammian matrix with off-diagonal terms that are much smaller
than the diagonal terms. Of course this is expected from kernel-based methods.

Figure 2 shows the result of learning function f3, which takes both positive and negative values
in its domain. As before, the output data is noiseless. The learned functions are regularized L2-
projection of the target function onto SoSK spaces. They approximate the positive parts of f3, but
fade away whenever f3 becomes negative. Noticeably the shapes of the learned functions are not

1The main reason for having the delta function in the used kernel was numerical stability. The squared
exponential kernels with large value of σ (even σ ≈ 0.5 in our experiments) lead to Grammian matrices that
are too ill-conditioned for CVX to converge.

7

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

y

0

1

2

3

4

5

6

7

8

9

10
SoS (σ = 0.25)
SoS (σ = 0.75)
Target function
Data points

Figure 1: Learning a positive function from 50 noiseless samples. The estimator that uses SoSK with
σ = 0.25 (blue curve) almost overlaps the target function (red curve). The estimator with σ = 0.75
is oversmoothed.

the same as those learned in the previous illustration (with the shifting down and truncation at the
level of 0). This difference is more prominent for σ = 0.75. Whereas the estimator with the kernel
parameter σ = 0.75 in Figure 1 is oversmoothed only slightly, the same kernel parameter leads to
gross oversmoothing in this case.

Figure 3 depicts the result of learning f3 with noisy output data. In this experiment, Yi = f3(Xi)+εi
with εi being an i.i.d. sample from a zero-mean normal distribution with standard deviation of 0.5.
We can see that as in the previous illustration, the estimator with σ = 0.75 is oversmoothed, while
the estimator with σ = 0.25 is slightly overfitting. One can perform some kind of model selection
to choose the best value of σ and λ.

5 Future Work

Several interesting questions remain to be answered. One of them is studying function approxima-
tion properties of Kernel SoS. We know that RKHS with universal kernels are dense in the space
of continuous function w.r.t. the supremum norm. Can we show a similar result for Kernel SoS in
the space of positive functions? We have not studies the statistical properties of such an estimator.
Proving an estimation error upper bound is a future research topic. Designing more computationally
efficient algorithms to solve (11) than using a generic SDP solver is necessary to make this algorithm
practical.

References
[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical

Society, 68(3):337 – 404, May 1950. 1

[2] CVX Research, Inc. CVX: Matlab software for disciplined convex programming, version 2.0.
http://cvxr.com/cvx, August 2012. 7

8

http://cvxr.com/cvx

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

y

-5

-4

-3

-2

-1

0

1

2

3

4

5
SoS (σ = 0.25)
SoS (σ = 0.75)
Target function
Data points

Figure 2: Learning a function that has both positive and negative regions from 50 noiseless samples.

[3] Mehdi Ghasemi. Polynomial Optimization and the Moment Problem. PhD thesis, Department
of Mathematics and Statistics, University of Saskatchewan, 2012. 1, 2

[4] Michael C. Grant and Stephen P. Boyd. Graph implementations for nonsmooth convex pro-
grams. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and
Control, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag
Limited, 2008. 7

[5] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001. 1

[6] Jean B Lasserre and Tim Netzer. SOS approximations of nonnegative polynomials via simple
high degree perturbations. Mathematische Zeitschrift, 256(1):99–112, 2007. 2

[7] Alessandro Magnani, Sanjay Lall, and Stephen Boyd. Tractable fitting with convex polynomi-
als via sum-of-squares. In IEEE Conference on Decision and Control (CDC) and European
Control Conference (ECC), pages 1672–1677. IEEE, 2005. 1

[8] Yurii Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000. 1

[9] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, California Institute of Technology, 2000. 1

[10] Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathe-
matical programming, 96(2):293–320, 2003. 1

[11] Pablo A. Parrilo. MIT 6.256 - algebraic techniques and semidefinite optimization. Course
Notes, March 2014. 2

[12] R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1997. 4

[13] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002. 1

[14] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem.
In COLT ’01/EuroCOLT ’01: Proceedings of the 14th Annual Conference on Computational

9

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

y

-5

-4

-3

-2

-1

0

1

2

3

4

5
SoS (σ = 0.25)
SoS (σ = 0.75)
Target function
Data points

Figure 3: Learning a function that takes both positive and negative values from 50 noisy samples.

Learning Theory and and 5th European Conference on Computational Learning Theory, pages
416–426. Springer-Verlag, 2001. 2

[15] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008. 1, 2, 4, 5
[16] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review, 38(1):

49–95, 1996. 6

10

	Introduction
	Learning Positive Functions in an RKHS
	Losses
	Kernels, RKHS, and the Space of Sum of Squares functions in an RKHS
	Representer Theorem for Kernel SoS

	Algorithm
	Illustrations
	Future Work

