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Abstract— Lightweight RGB-D cameras that can provide rich
2D visual and 3D point cloud information are well suited to
the motion estimation of indoor micro aerial vehicles (MAVs).
In recent years, several RGB-D visual odometry methods
which process data from the sensor in different ways have
been proposed . However, it is unclear which methods are
preferable for online odometry estimation on a computation-
limited, fast moving MAV in practical indoor environments.
This paper presents a detailed analysis and comparison of
several state-of-the-art real-time odometry estimation methods
in a variety of challenging scenarios, with a special emphasis
on the trade-off among accuracy, robustness and computation
speed. An experimental comparison is conducted using public
available benchmark datasets and author-collected datasets
including long corridors, illumination changing environments
and fast motion scenarios. Experimental results present both
quantitative and qualitative differences among these methods
and provide some guidelines on choosing the "right" algorithm
for an indoor MAV according to the quality of the RGB-D data
and environment characteristics.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) have numerous potential
applications in military and civil fields, such as surveillance,
monitoring, exploration and rescue. Stable and precise con-
trol of an autonomous MAV demands fast and accurate esti-
mates of the vehicle’s pose and velocity. Especially, MAVs
operating in cluttered indoor environments need pose updates
at high rates with little latency for position control. At the
same time they are only capable to carry a limited payload of
sensors and processors. The lightweight commodity RGB-D
cameras that have become available in recent years are well
suited for such application scenarios.

RGB-D cameras can provide rich 2D and 3D information
that help solve the motion estimation problem. In the past few
years, several visual odometry [1]–[4] estimation methods
using RGB-D cameras have been proposed. Existing RGB-
D visual odometry methods have shown promising results
with high accuracy if well-registered depth information is
provided. However, reliability is still an issue that prevents
these methods from being used for on-board guidance of a
fully autonomous MAV. The methods may fail in different
types of challenging scenarios as they process the sensor
data differently. Understanding accuracy changes/reductions
of these methods with respect to different challenges is
important, and helps us design a robust motion estimation
method for guiding an autonomous MAV.
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This paper experimentally compares several existing real-
time RGB-D visual odometry methods including libviso2 [3],
fovis [2], DVO [4], FastICP [5], GICP [6] and 3D-NDT [7].
The reasons why these six methods are selected are: First,
they represent six different ways of processing RGB-D data
to estimate odometry; Second, they all can run in real-time
on a single CPU, which means they can be potentially used
on a computation-limited indoor MAV. The study of this
paper focuses on motion estimation using data from RGB-
D cameras only. Further comparison including inertial-aided
methods is not yet considered. The performances of these
methods are studied in a variety of challenging scenarios
such as in long corridors, low-light environments and fast
motion scenarios. These scenarios involve low-quality fea-
tures or featureless moments, which the existing method may
or may not be able to handle. Experimental comparison of
the aforementioned methods shows that the performance of
each odometry estimation method depends on the quality of
RGB-D data as well as environment characteristics. Though
some of these methods can get very good estimation in
certain environments, none of them can perform very well
in all environments. The experiment results provide some
guidelines on how to use different visual odometry methods
according to the quality of RGB-D data and environment
characteristics.

The rest of this paper is organized as follows. In section II,
we discuss the related work. Section III describes the selected
representative odometry estimation methods. We validate the
performance of each method by using real datasets in section
IV and we conclude in section V.

II. RELATED WORK

In the past few years, several odometry estimation methods
have been proposed by using visual data and/or depth data.
These methods can be roughly divided into three categories
according to what kind of data is used.

The first category is image based methods which usually
depend on a lot of information from RGB images. There
are three different kinds of algorithms that are widely used.
The first kind is sparse visual feature based methods [1],
[3]. These methods usually extract sparse visual features
first and then find the feature correspondences by matching
the descriptors of each feature. After that, they usually
use RANSAC-based methods to reject the outliers. Then,
the 3D information of each feature is calculated through
triangulation. Finally, the transformation matrix is calculated
by minimizing the re-projection errors. The second kind
is still sparse feature based methods but combines depth
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information and visual information [2] [8]. These methods
also detect and extract visual features using different kind
of feature detectors (such as SIFT, FAST, SURF), and then
find the feature correspondences. But they don’t triangulate
the features to get depth information, instead they use the
depth information from the RGB-D’s depth image directly.
And finally, the transformation matrix is also calculated
through minimizing the re-projection error. The third kind is
called dense feature based methods [4], [9] which are quite
different from sparse visual feature based methods because
they use the whole image to estimate the transformation.
These methods assume a world point p observed by two
cameras is assumed to yield the same brightness in both
images. The goal is to find the camera motion that best
satisfies the photo-consistency constraint over all pixels.

The second category is depth based methods which
usually depend on much information from depth images.
There are also several different kinds of methods. The first
kind is 3D feature based methods [10], [11], which can be
seen as an extension of the 2D cases. In these methods, 3D
features like point, line or plane features will be detected
and extracted. Then, the feature correspondences will be
found using different kinds of matching methods. After that,
the transformation matrix can be calculated by minimizing
the distance error function of the feature correspondences.
These methods usually are widely used in registration of 3D
laser point cloud. However, it’s worth noting that the point
clouds from 3D laser scanners usually have less noise than
RGB-D cameras and the long measurement range also helps
them find more 3D features in a single scan. Unfortunately,
commodity-level RGB-D cameras have very limited mea-
surement range and their data are also very noisy compared
to laser scanners. Therefore, usually 3D feature registration
methods don’t work very well for RGB-D cameras. Besides,
most of them cannot run in real-time. The second kind is
Normal Distribution Transform (NDT) based methods [12],
[13]. These methods consider a point cloud as a distribution.
They use the Normal Distribution Transform to map a point
cloud to a smooth surface representation, described as a
set of local probability density functions, each of which
describes the shape of a section of the surface. Then, they
can find the relative transformation between two point clouds
by finding the optimal point-to-distribution or distribution-to-
distribution matching. NDT is a very good solution for 3D
point cloud registration, however it is sensitive to segmen-
tation because large spatial cells filter out relevant details,
whereas small cells augment the computational cost. Besides,
it is also sensitive to initial guess and not very fast. The third
kind is using the point cloud directly [5]. These methods
usually use ICP based methods which are widely used in
3D registration area. The advantage of these methods is that
they can get very accurate estimation results using dense
point cloud. The disadvantage is that it is time consuming.
But in recent years, researchers begin to propose fast ICP
based registration methods.

The third category is based on both image and depth
data [14]–[19]. For example, the Adaptive Iterative Closest

Keypoint algorithm exploits both point position and visual
appearance information [15]. It calculates the initial regis-
tration based on appearance and refines the final registration
using 3D points. Leishman et al. [16] proposes a switching
strategy which can switch to 2D laser odometry, 3D visual
odometry and 2D visual odometry automatically according to
the quality of RGB and depth images. Whelan et al. [17] in-
tegrates fovis and dense visual odometry with ICP for dense
RGB-D mapping on a powerful CPU and GPU. Dryanovski
[18] proposes a two-stage incremental registration algorithm
for RGB-D images. In the first stage, edge features are
detected from color and depth images, then these edge points
are fed into ICP to calculate the initial motion estimation. In
the second stage, the initial guess is refined by applying the
GICP algorithm on the frame-to-frame dense point cloud.
Herry [19] also proposes a two-stage RGB-D ICP using
sparse features and ICP. Andreasson [7] proposes to use 2D
image features and NDT to get a more robust and faster
estimation. The key idea is to detect 2D visual features and
find corresponding regions from previous frame to current
frame and then use RANSAC to find a consistent alignment.
After that, the geometrical information around the selected
features is utilized as an input to a fast 3D-NDT distribution-
to-distribution method to refine the transformation.

III. EXAMINED ODOMETRY ESTIMATION METHODS

As described in Section II, existing visual odometry meth-
ods can be divided into three categories according to what
kind of sensor data is used. Here, we select six representative
real-time odometry estimation methods and compare them
by using the real datasets. Note that there are also some
excellent methods [11], [17] that can estimate the camera
motion accurately, but we don’t select them because either
they are too slow or they depend on a powerful GPU, which
are unable to be applied on MAVs. The selected methods are
shown in Table I. In the following, the selected methods are
briefly described.

A. Image Based Methods

Many odometry estimation methods proposed in the past
several years are based on visual information. Here, we
select 3 representative methods since they use the image
information in different ways. RGB-D cameras like the
Kinect are monocular vision systems. If one wants to use
them to estimate the motion by using image data only, it is
necessary to know external information to solve the unknown
scale problem. Actually, the selected methods here, they all
use depth information. But since they depend much on image
information, we call them image based methods.

1) Libviso2: Libviso2 [3] is a fast algorithm for comput-
ing the 6 DOF motion of a moving mono/stereo camera. For
the stereo version of libviso2, the key idea is to extract robust
sparse features, find the feature correspondences, get the
depth information through triangulation and finally minimize
the reprojection error of sparse feature matches to get the
transformation. For the monocular version, it assumes that
the camera is moving at a known and fixed height over
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TABLE I

SELECTED METHODS AND THEIR COMPUTATIONAL PERFORMANCE ON THE TEST2 DATASET

Category Method Data type Features Algorithm Runtime(ms) Avg CPU UsageMean Min Max StdDev

Image Based
Libviso2

RGB+Depth
2D Visual Features 39.5 18.9 180.2 18.9 29.8%

Fovis 2D Visual Features & Depth 20.3 10.8 47.9 4.5 13.5%
DVO 2D Image Intensity & Depth 52.4 20.1 242.8 11.2 22.6%

Depth Based
FastICP

Point Cloud
3D Point Cloud 50.3 13.3 350.0 34.0 26.1%

GICP 3D Geometric Features & Cloud 87.8 16.7 281.4 20.8 35.5%

Image & Depth NDT RGB+Point Cloud 2D Visual Features & Cloud 29.9 11.5 133.6 11.8 21.9%

ground and uses this constraint to estimate the unknown
scale. In order to use libviso2 with RGB-D cameras, we
actually change the RGB-D camera into a virtual stereo
camera using the depth information. We create a virtual
camera using the depth information of each pixel with a
fixed baseline as the Xtion RGB-D camera. If the RGB pixels
don’t have depth information, we just discard them. Then,
we feed both RGB images of real camera and virtual camera
into libviso2 to calculate the odometry.

2) Fovis: Fovis [2] is a visual odometry method that
estimates the 3D motion of a camera using a source of depth
information for each pixel. It first detects FAST features in
each image. Then, the depth corresponding to each feature
is extracted from the depth image. Features that do not have
an associated depth are discarded. After that, each feature
is assigned an 80-byte descriptor. Features are then matched
across frames by comparing their feature descriptor values
using a mutual-consistency check. And then, the inliers are
detected by computing a graph of consistent feature matches
and using a greedy algorithm to approximate the maximal
clique in the graph. Finally, the motion estimate is computed
from the matched features in three steps. Fovis uses a
keyframe technique to reduce short-scale drift.

3) DVO: In contrast to sparse feature based methods,
dense visual odometry [4] methods want to fully exploit both
the intensity and the depth information provided by RGB-D
sensors. Dense visual odometry uses all color information of
the two images and the depth information of the first image.
This approach is based on the photo-consistency assumption,
which means a world point p observed by two cameras is
assumed to yield the same brightness in both images.

I1(X) = I2(τ(ξ,X)) (1)

where τ(ξ,X) is the warping function that maps a pixel
coordinate X ∈ ℜ2 from the first image to a coordinate in
the second image given the camera motion ξ ∈ ℜ6. The
goal is to find the camera motion ξ that best satisfies the
photo-consistency constraint over all pixels.

B. Depth Based Methods

There are also many people working on motion estimation
using only depth data. Actually, this is widely studied in
computer graphics area where it is necessary to register
different views of scans to reconstruct an object or envi-
ronment. Many excellent registration algorithms have been

proposed in the past decades, such as 3D point based method
[20], plane based method [11] and 3D Normal Distribution
Transform [12]. Most of these registration algorithms are
very accurate, but usually are slow and computationally
expensive. Therefore, most of them can not be used on
computation-limited MAVs. Here, we select two methods
which can be potentially used on MAVs. One is FastICP
method which mainly uses only the point cloud for motion
estimation. The other one is based on GICP [6], which can
be seen as a method using 3D features of the point cloud for
motion estimation.

1) FastICP: The Iterative Closet Points (ICP) algorithm
was proposed by Besl and McKay in 1992 [21] to solve
the 3D rigid shape registration problem. The classical pair-
wise rigid registration problem can be described as: given
a set of source points X = {xi, i = 1, ..., n} and Y =
{yi, i = 1, ..., n}, we want to find the optimal transformation
by minimizing the energy function as:

argmin
R,t,Y

Np∑

i=1

ϕ(Rxi + t, yi) (2)

where R is a rotation matrix, t is a translation vector, ϕ is
the error metric function.

The key concept of the standard ICP algorithm can be
summarized in two steps: 1) the alignment is fixed, a set of
closest corresponding points Y is computed. 2) the 3D point
correspondences are fixed, compute a transformation which
minimizes distance between corresponding points. Iteratively
repeating these two steps typically results in convergence to
the desired transformation. According to [22], the following
six steps influence the performance of ICP:

1. Select a subset of points in one or both point clouds.
2. Match these points to samples in the other point cloud.
3. Weigh the corresponding pairs appropriately.
4. Reject certain pairs by some strategies.
5. Assign an error metric.
6. Minimize the error metric.
In this paper, ethzasl-icp-mapping [5] developed by

Pomerleau is chosen for comparison because it mainly
focuses on robotic applications. This fast ICP follows the
standard ICP pipeline as described in [22].

2) Generalized ICP: 3D features in point cloud such as
corners or planes are very useful for registration. Several
registration methods based on 3D point features or planes
have been proposed in the past few years [10], [11], [20].
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However, most of these methods are too slow to be used on
a computation-limited MAV. Here, we implement a simple
3D feature based odometry estimation method which uses
the local surface normals and plane features.

The method is based on Generalized ICP (GICP) [6].
Generalized ICP combines the iterative closest point algo-
rithm and "point-to-plane" metric into a single probabilistic
framework. Generalized-ICP is based on attaching a proba-
bilistic model to the minimization step of standard ICP. In
order to improve performance and increase the symmetry
of the model, the generalized-ICP algorithm models locally
planar surface features from both scans instead of just the
"model" scan. Therefore, it can be thought as "plane-to-
plane" method.

Assuming that the closest point correspondences have been
found in two point clouds, A = {ai}i=1,...,N and B =
{bi}i=1,...,N are indexed according to their correspondences.
In the probabilistic model, it is assumed that there exist an
underlying set of points, Â = âi and B̂ = b̂i, which generate
A and B according to ai ∼ N(âi, C

A
i ) and bi ∼ N(b̂i, C

B
i ).

Here, CA
i and CB

i are covariance matrices associated with
the measured points. For an arbitrary rigid transformation T,
define d(T)

i = bi−Tai, the generalized ICP wants to optimize
the following function:

T = argmin
T

∑

i

(d
(T)T

i (CB
i + TCA

i TT )−1d
(T)
i ) (3)

This method can be considered as a kind of method
using 3D features for odometry estimation. In this method,
salient 3D geometric features in current point cloud are firstly
selected using the surface normals. Then, the transformation
between the selected 3D points and the local point cloud
map is calculated by using GICP algorithm which actually
uses local planar features of both scans to minimize the error
function. This method is implemented by using the ROS [23]
and PCL [24] GICP library. The following two issues are
considered in our implementation:

Selecting the points with the most constraints: When a
MAV is in a long corridor, usually the RGB-D camera
cannot detect the wall at the end of the corridor because
the maximum measurement range of our depth camera is
less than 7 meters. Therefore, small objects on the wall and
the door frames are vital to determine the translation. If one
uses all the points, usually the algorithm will fail to estimate
the translation since the points on the wall dominate the
estimation. In order to select the most constrained points,
we use a normal space sampling method [22]. The idea is
to choose points such that the distribution of normals among
the selected points is as large as possible. By doing so, some
small objects on the wall and door frame will be selected
while only few points on the wall will be selected, which is
important for estimating the translation.

Constructing a local map: Frame to frame methods are
widely used in odometry estimation. However, it is not robust
in practice. Another option is frame to key frames method.
We can calculate the overlap ratio of two point clouds, and

if the overlap is lower than a given threshold, then the
key frame is updated. The relative transformation is always
calculated between the current frame and key frames. This
method is much better than a frame-to-frame method, but
it is still not very good in our experiments. Here, we use a
local map based method, where we construct a local point
cloud map and calculate the relative transformation between
the current frame and the local map. This method is more
robust and accurate than the previous two methods.

C. Methods Based on Both Image and Depth

Odometry estimation methods based on both image and
depth information have become very popular in recent years.
The most commonly used idea is using 2D image features
to get a initial guess and then use point registration methods
(such as ICP, NDT) to refine the estimation. Also, there are
some people try to combine image based error metric and
depth based error metric into one integrated error metric,
then optimize the integrated error function to find the optimal
transform [17]. However, these methods depend on a pow-
erful computer for complex optimization. Here, we choose
a real-time local visual feature boosted NDT method [7] for
comparison.

1) Real-time 3D NDT: The key idea is to detect 2D visual
features and find corresponding regions from previous frame
to current frame and then use RANSAC to find a consistent
alignment. After that, the geometrical information around
the selected features is efficiently utilized as an input to a
fast 3D-NDT-D2D method [12] to refine the transformation.
Instead of computing the 3D-NDT representation of the full
depth images, this method only considers the immediate local
neighbourhoods of each of the detected local visual features
points. By doing so, the number of Gaussian components
can be decreased substantially. Thus, the whole estimation
process can be calculated in real-time.

IV. EXPERIMENTS AND ANALYSIS

In this part, we first compare the accuracy of each method
by using the TUM RGB-D dataset 1 which has accurate
ground truth for evaluation [25]. Then, in order to evaluate
the robustness, we also record some datasets by carrying
our MAV and simulating practical flight in very challenging
environments, such as long clear corridors, structured and
cluttered environments, dramatic illumination changing en-
vironment, etc. Then, we validate the performance of each
algorithm on an Asus UX31E Ultrabook (Quad-core 1.7GHz
CPU and 4GB Memory) running ROS fuerte and PCL1.7.
The RGB-D sensor is Asus Xtion Pro Live which records
the RGB-D image at 15Hz with 640× 480 resolution.

It should be noted that all the methods evaluated in this pa-
per are sensitive to choice of parameters that might influence
the final accuracy and timing results. From our experiments,
for a certain dataset, better result may be achieved for a
method if parameters are carefully tuned according to that
specific dataset. However, this same set of parameters may

1http://vision.in.tum.de/data/datasets/rgbd-dataset/
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work undesirably for another dataset. Since we want to get
a general comparison of these methods, here we choose the
default parameters for each method.

A. Accuracy Comparison using Benchmark Dataset

In this section, we use TUM RGB-D datasets to test the
estimation accuracy of each method. The dataset contains
the color and depth images along with the ground-truth
trajectory. The data is recorded at full frame rate (30 Hz) and
sensor resolution (640× 480). The ground-truth trajectory is
obtained from a high-accuracy motion-capture system with
eight high-speed tracking cameras (100 Hz). Here, we choose
2 datasets to evaluate the accuracy of each method. The
experimental results are shown in Table II.

We use the relative pose error metric [25] to measure the
drift of visual odometry system. We calculate the ratio of
pixels in the image that contain a valid depth compared to
the total number of pixels in the image to estimate the quality
of the point cloud. We compute the average and standard
deviation of the grayscale-pixel values of the RGB image as
a measurement of the amount of light available in the image,
which is a simple way to estimate the quality of an image.

The first dataset is freiburg2/desk. For this sequence, the
RGB-D data is recorded in a typical office scene with
two desks, a computer monitor, chairs, etc. The Kinect is
moved around two tables so that the loop is closed. The
average translational and angular velocity are 0.193m/s and
6.338deg/s respectively. The mean intensity changes from
73.1 to 153.8, and the standard deviation changes from 76.1
to 42.1. However, the depth coverage changes from 85.3%
to 53.9%. Therefore, the RGB information is good while the
depth information is not very good. The mean and median
relative pose error of each method is shown in Table II. From
the results, it is clear that if the RGB image is good, visual
information based method can get more accurate estimation.
Since the quality of the point cloud in this dataset is not
very good, the accuracy of depth information based methods
is lower than visual information based methods. The reason
why visual information based methods are good is that
they can accurately and robustly detect and match feature
correspondences since the RGB information is very good
and the motion is relatively slow in this dataset.

The second dataset is freiburg1 room. In this dataset, the
sequence is filmed along a trajectory through a typical office.
It starts with the four desks but continues around the wall
of the room until the loop is closed. The depth coverage
changes from 83.8% to 54.9%. The mean intensity changes
from 169.5 to 77.8 and standard deviation changes from
101.6 to 41.8. The experiment results are also shown in
Table II. In this dataset, there are some fast rotations. The
average translational velocity is 0.334 m/s and the average
angular velocity is 29.882 deg/s, which is much faster than
freiburg2/desk dataset. Therefore, it is a little bit difficult for
sparse feature based methods. The advantage of the visual
feature based method is not that obvious, as you can see the
mean translation and rotation error of depth based methods
are similar to visual information based method.

B. Robustness Validation in Challenging Environments

In this part, we collect some datasets in different kinds of
environments to test the robustness of each method. Since it
is very hard to get ground truth in large indoor environments,
the camera is started and finished at the same position.
Therefore, we can use loop-closing error to evaluate the
estimation performance of each method to some extent. We
define the loop-closing error as the gap between the two
ends of a trajectory output compared to the total length of
the trajectory. The loop-closing errors of each method are
shown in Table III. Note that in Fig. 1−Fig. 4, the trajectory
is projected onto x− y plane. Therefore, if the x, y errors in
the figure are very small but the loop-closing error is very
big, that means there is a big drift in z coordinate.

TABLE III

LOOP-CLOSING ERROR

Methods
Loop-closing error

Test1 Test2 Test3 Test4
length:40m length:73m length:25m length:8.5m

Libviso 3.77% 1.45% failed 13.6%
Fovis 7.41% 1.12% failed 7.79%
DVO 2.00% 7.26% 16.86% 6.72%

FastICP 6.91% 4.58% 7.03% 3.16%
GICP 2.88% 4.17% 3.59% 4.05%
NDT 5.83% 5.74% failed 5.13%

Test 1: long corridor environment. Very clear long cor-
ridors usually pose big challenges for visual odometry
methods. In this experiment, the mean intensity of images
changes from 164.5 to 59.4 and the depth coverage ratio
changes from 90.9% to 79.3%. It seems that both RGB
and depth information are very good. However, in this long
corridor, the floors and walls are very smooth. There are
many places where only small objects on the wall or door
frames can be used to estimate the translation. Therefore,
this environment is very challenging for both visual and
depth based method since there are only few visual features
and geometry features. Fig. 1 shows the experimental results
of different methods. As you can see, in this environment,
DVO has the best result, while Fovis fails before the robot
enters into the last corridor section. The reason why DVO
can succeed is that it depends on the whole image other
than sparse features which are difficult to detect in this
environment. Fovis’s failure is due to many repetitive textures
around the corner of the last corridor section, as shown in
the top right picture in Fig. 1, where Fovis fails to detect and
track features when there is a quick turn around that corner.
But, Libviso2 can still track the features here. It seems
Libviso2’s feature tracking method is more robust than Fovis.
Depth based methods can achieve similar performance. GICP
based method is better than FastICP which completely fails
to estimate the translation in the last corridor section. The
reason why GICP can succeed is that points with most
constraints are used instead of the whole point cloud.

Test 2: structured and cluttered environment: The second
experiment is in a more complex environment. In this envi-
ronment, sometimes there are very long corridors, sometimes
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TABLE II

MEAN AND STANDARD DEVIATION OF TRANSLATIONAL AND ROTATIONAL ERRORS OF EACH METHOD

Methods
fr2/desk fr1/room

x̄(m) σ θ̄(deg) σ x̄(m) σ θ̄(deg) σ

Libviso 0.036 0.031 1.516 0.735 0.063 0.051 2.431 1.432

Fovis 0.012 0.007 0.526 0.307 0.056 0.035 2.377 1.328

DVO 0.024 0.012 0.982 0.512 0.058 0.045 2.396 1.539

FastICP 0.022 0.022 0.942 0.618 0.066 0.103 3.012 2.704

GICP 0.056 0.045 2.464 1.948 0.062 0.032 3.134 1.498

NDT 0.024 0.015 1.228 0.735 0.065 0.032 2.851 1.412

X(m)

Y
(m

)
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Fig. 1. Test 1: Long Corridor Environment

there are cluttered rooms and sometimes there are very
spacious rooms. We use this environment to check whether
all the methods can adapt to the changes of environment
structure. The mean intensity of images changes from 173
to 47 and the depth coverage ratio changes from 88.7%
to 47.0%. As you can see, the quality of both image and
depth changes much bigger than the first experiment. Fig. 2
shows the experiment results. From the experiment results,
you can see that Fovis has the smallest loop-closing error.
GICP works very well until there is a quick turn on the left
side where all methods begin to become poor. The reason is
that the quick turn happened at a place very close to a wall,
where Xtion RGB-D camera can’t get good RGB and depth
data since the fast motion and the minimum measurement
range of Xtion is 80cm. Therefore, it is very difficult for all
the methods to estimate the transform accurately.

Test 3: Illumination changing environment. The third ex-
periment is a conference room where there is a big desk
and many chairs. In this experiment, dramatic illumination
changes occur when the robot enters into and goes out of the
conference room. The mean intensity changes from 169.2
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Y
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)

 

 

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

6

8

10
Libviso2
Fovis
DVO
FastICP
GICP
NDT

Fig. 2. Test 2: Complex Environment

to 3.5. And the conference room is very dark where the
intensity is just about 3.5 ∼ 30, which is very challenging
for visual based methods. Fortunately, we can still get a good
point cloud in this environment, where the depth coverage
ratio changes from 71.5% to 90.1%. The experiment result
is shown in Fig. 3. It is no doubt that depth based methods
will be better than visual based methods in this environment.
In our experiment, we found that sparse visual feature
based methods failed completely, while GICP based method
achieves best performance. To our surprise, dense visual
odometry can still work almost all the time except in very
dark area (the mean intensity is less than 10). It seems that
dvo is much more robust than sparse feature based methods
in this test.

Test 4: Fast motion scenario. This dataset is recorded in
a typical office environment where there are many tables,
desks and computers. Therefore, this environment has lots
of very good geometric and texture features for motion
estimation. When recording the data, we keep rotating our
robot with a relatively fast speed. The experimental result
is shown in Fig. 4. As you can see from the RGB images,
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there is an obvious motion blur. The loop-closing error of
each method is shown in Table III. From the results, we
can see that for relative fast motion, depth based method
are better than visual based method. The reason is that fast
motion can cause motion blur which is very bad for feature
detecting and matching while the point cloud is not too
bad. Besides, NDT’s performance against fast motion is also
better than visual information based methods. The reason
is that the selected NDT method is a two-stage method
that combines image and depth information. Though the fast
motion decreases the estimation accuracy of the first stage,
the second stage can refine the estimation of the first stage
by using NDT registration on dense point clouds.

C. Speed and CPU Usage Comparison

Since we are interested in comparing visual odometry
methods that can be potentially used on indoor MAVs, the
computational performance of each method is also very
important. The faster the speed and the lower the CPU usage,
the better for a MAV’s on-board computing. We test the
speed and CPU usage of each method on an Asus UX31E
Ultrabook (Quad-core 1.7GHz CPU, 4GB Memory). The
experimental results are shown in Table I. In our experiment,
Fovis has the best speed and the lowest CPU usage, while
depth based methods are much slower than image based
methods. Though we haven’t compared all these methods
on our MAV onboard embedded computer (Quad-core 1.7GB
CPU, 2GB memory) yet, the experiment results from running
on a laptop computer indicate relative computation cost of
the evaluated methods.

D. Analysis and Discussion

From the experiment results, it is clear that though some
of the examined methods can get good results in specific
environments, none of them can perform very well in all
kinds of environments. They all have their own advantages
and disadvantages.

For visual information based methods, the advantage is
that they are faster and more accurate than point cloud
based methods. But they have following disadvantages. First,
the environments must have enough illumination. Second,
the environments must have good texture features to be
detected. Third, most of them discard the feature points
that don’t have depth information. Therefore, for spacious
environments where depth information is not sufficient, they
also cannot get good estimation.

For depth information based methods, the advantage is
that they can be used in very dark environments. However,
they also have some shortcomings. First, the effective mea-
surement range of RGB-D camera is very limited. Therefore,
there are often no enough points with constraints in spacious
areas like atrium and long hallway. Second, the depth data
of the consumer-level depth camera is very noisy. But we
still need to downsample it to reduce the computation time.
Therefore, the estimation accuracy of point cloud based
method is not as accurate as visual information based meth-
ods in most cases.

For methods which use both image and depth information,
usually they take advantages of both information. However,
the method selected in this paper which is a two-stage coarse
to fine estimation method. The initial guess is very important
for the second stage. Therefore, if the first stage fails, usually
the total estimation is not very good. A more robust way may
be using a switch or joint optimization strategy to combine
them together.

By analysing the characteristics of each method and the
RGB-D data, we can get some ideas on how to use the RGB-
D camera for robust and accurate odometry estimation. If
the RGB and depth information are both available and good.
We think we should use both kinds of information as much
as possible for robustness consideration. If the RGB image
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has abundant features but very few depth information, we
should still consider how to use those features that don’t
have depth information. If the depth image has abundant
geometric features but the RGB information is bad, we can
depend on depth information based methods. If both RGB
and depth information are unavailable, we can only use other
sensor information for short time prediction, for example
fusing visual odometry with IMU. Besides, for fast motion
scenarios, IMU information can be considered for finding
feature correspondences since IMU information is almost
always available on MAVs.

V. CONCLUSIONS

In this paper, a detailed analysis and comparison of
several visual odometry methods using RGB-D cameras has
been presented. Representative approaches were compared
on real data from public available datasets and author-
collected datasets in several challenging environments. As
the experimental results shown, the performance of each
odometry estimation method depends on the quality of RGB-
D data and the environment characteristics. The experiment
results provide some guidelines on how to use different visual
odometry methods according to the quality of RGB-D data
and environment characteristics.

If the image has good grey value or visual features, we
should consider image based methods first since they are
faster and more accurate than depth based methods. But for
featureless or dark environment, depth based methods are
the best choices. More specifically, in environments with
abundant texture features, if the image grey value is also
good, fovis is the best choice for accuracy and speed. If
the illumination is relatively dark, DVO is the best choice
since it works much better than sparse feature based methods
in bad illumination environment. If the illumination is very
bad (Mean grey value is smaller than 10) or in featureless
environments, then FastICP and GICP are the best choices.
In environments with abundant geometric features, usually
both FastICP and GICP can get good estimation. But, if
there are only few geometric features in the environments,
the accuracy of GICP developed in this paper is better than
FastICP. The choice of the best algorithm depends on the
quality of RGB-D data and the characteristics of the practical
environment.
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