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Abstract

The performance of a motion planning algorithm is intrinsically linked with
applications that respect the assumptions being made. However, the mapping
of these assumptions to actual environments is not always transparent. For
example, a gradient descent algorithm is capable of tackling a complex opti-
mization problem if some assurance of absence of bad local minimas can be
ensured - however detecting the local minimas beforehand is very challenging.
The state of the art technique relies on an expert to analyze the application,
deduce assumptions that the planner can leverage and subsequently make key
design decisions.

In this work, we make an attempt to learn a mapping from environments
to specific planning assumptions. This paper presents a diverse ensemble of
planners that exploit very different aspects of the planning problem. A classifier
is then trained to approximate the mapping from environment to performance
difference between a pair of planners. Preliminary results hints at the role played
by convexity, whilst also demonstrating the difficulty of the classification task
at hand.
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1 Introduction

The general motion planning problem is to find a dynamically feasible collision
free path from start to goal. While this problem statement might vary with
changing applications, this statement alone has led to a diverse set of solution
strategies. At a very high level, strategies can be categorized as discrete grid
search, randomized sampling and gradient based methods. Each of the above
strategies branch out further and further to create a planning strategy tree. Ev-
ery node of this tree represents an unique planning configuration that leverages
a set of assumptions that allow it to dominate in a specific application domain.

The genesis of these assumptions usually occurs when a particular planning
problem configuration presents itself. An expert in the field analyzes the prob-
lem, searches for patterns in the objective function or constraints that can be
exploited and then makes key design decisions to engineer a planning strategy.
For example, if the environment has sparse clutter, an optimization approach
is a natural choice because the local minima of the value function about the
nominal path is most likely to be the global minima (even if guaranteeing such
a claim maybe impossible).

A truly autonomous adaptive system must be able to make these decisions
by observing the environment. In other words, we require the mapping from
the environment to the validity of the assumptions. How to effectively take
advantage of the mapping is another problem of interest.

In this paper, we conduct a preliminary investigation of the problem by
looking at the niche sub-problem of learning the mapping of environment to
performance difference between a pair of planners using different strategies.
The idea is that any performance difference between the two is indicative of the
validity of the different assumptions that they are making.

There has not been a significant amount of work in learning motion planning
assumptions. Recent work by Abbeel et al. [7] has focused on applying machine
learning to intialize an optimization procedure. Previous work by Dey et al. [4]
attempts to learn a good ordering of initialization that an optimization routine
tries sequentially. It is interesting to note that [7] raises similar questions in
feature selections as we do in this paper. Another related work, [5], is about
trajectory prediction where learning algorithms are used to predict a good path
in a new environment from a database of demonstrated trajectories.

In this paper we present preliminary results of the classification problem.
While results indicate that the classification problem for planning performance is
indeed very hard as compared to other domains, they do hint at the importance
of convexity as a feature. A key challenge that we encounter in this work is
to find features that can suitably encode the properties of an environment that
affect the planning problem.
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2 Problem Statement

The problem statement is composed of two parts - the motion planning problem
and the classification problem.

Let X ⊂ Rn be the configuration space of the system. Let Xobs ⊂ X
be invalid configurations that result in collision with obstacle. The dynamics
of the system is specified as a dynamics constraint g(x, dxdt , . . . ,

drx
dtr ) ≤ 0, x ∈

X, where r is the relative degree. Let the trajectory ξ : [0, 1] → X be a
smooth mapping from time to configuration. The planning problem is to find
the shortest dynamically feasible trajectory from start x0 to the goal xf that is
collision free. This is expressed as follows:

minimize
x(t)

1∫
0

‖ẋ(t)‖dt

subject to x(0) = x0

x(1) = xf

g(x,
dx

dt
, . . . ,

drx

dtr
) ≤ 0

x(t) ∈ X \Xobs, t ∈ [0, 1]

(1)

Let P be an ensemble of planning strategies designed to solve the motion
planning problem. Each algorithm is allocated a constant computation budget
Tcomp. For the scope of this work, the only results of interest is whether planner
Pi is able to solve the problem within Tcomp.

Let environments E be drawn from the distribution Γ(E). A pair of planners
Pi,Pj is selected for comparison. The classification problem of interest is a 4-
class problem defined by the distribution Pi,j over X × Y, where X is some
environment and Y = {1, . . . , 4} is the label space. The labels correspond to
the possible permutations of success and failures of Pi and Pj . The goal is to
find a classifier ci,j : X→ Y minimizing the classification loss on Pi,j given by

e(ci,j ,Pi,j) = Pr(x,y)∼Pi,j
[ci,j(x) 6= y] (2)

3 An Ensemble of Planning Approaches

The ensemble of motion planning strategies P is applied on a collection of
environment E1, . . . , EN to solve Eq 1. At the end of the computation time
budget Tcomp, the binary success or failure of a planner Pi is assigned as a
label.

In order for to have meaningful Pi,j , the planner ensemble is designed to have
diverse planning strategies that leverage fundamentally different assumptions.
For the scope of this work, 3 such planners are selected - Heuristic Guided
RRT*, Focussed RRT* and CHOMP. The following subsections goes into detail
about the planning strategies and highlights the assumptions they make.
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3.1 Heuristic Guided RRT*

RRT* [6] is an asymptotically optimal motion planning algorithm that relies
on random sampling in the configuration space and maintaining a search tree
that is optimal in the limit. An attractive property of this approach is that
it can arrive at globally optimal answers without the requirement of excessive
parameter design. On the other hand, a significant disadvantage is the compu-
tation run-time of the approach. As a standalone approach, the RRT* makes
minimal assumptions about the problem - as a consequence it fails to achieve a
significant performance benefit over other approaches. It is popular to augment
different functions in the RRT* with speedup techniques that are suitable for
the application being considered [2].

The heuristic guided RRT* is a variant that augments the sampling function
of RRT*. To compute an admissable ”cost to go” and simplify heuristic compu-
tation, the constraint g(x, dxdt , . . . ,

drx
dtr ) ≤ 0 is removed from Eq 1. This reduced

holonomic motion planning problem can be solved using Dijkstra or Fast March-
ing Method on a grid of dimension n. During the growth of the RRT* tree, the
sampling distribution is a Gaussian centred around the leaf node that has the
least value - sum of the cost from parent and the heuristic cost. Algorithm 1
shows the outline of the approach.

The implicit assumption of this approach is that the solution of the reduced
motion planning problem lies in the same proximity as the solution to the orig-
inal problem. This assumption is violated in scenarios where obstacles create
a bottleneck - in such scenarios the sampling misguides the tree growth into
regions where a solution cannot exist.

Algorithm 1 Heuristic Guided RRT*

1: Parameters
2: ∆ : Grid resolution for dijkstra
3: σb : Sampling variance around best leaf

4: Variables
5: D : A grid storing cost to go
6: xbest : The leaf node with least cost + heuristic

7: procedure Heuristic Guided RRT*(x0, xf )
8: V ← {x0}, E ← ∅
9: D ← Dijkstra(x0, xf , Xobs,∆)

10: xbest ← x0
11: while TimeLeft(Tcomp) do
12: G← (V,E)
13: xsample = SampleGaussian(xbest, σb)
14: (V,E)← Extend(G, xsample))
15: if Cost(xsample) +D(xsample) < Cost(xbest) +D(xbest) then
16: xbest ← xsample

17: end procedure
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(a) (b)

Figure 1: (a) Heuristic guided RRT* grows the search tree along the direction
of heuristic function. The heuristic is shown in grayscale with brightness pro-
portional to value. The leaf vertex xbest is the vertex with the smallest sum of
cost to come from parent and heuristic cost to go. A random sample xsample

is drawn from a radius around this point (b) Focussed RRT* grows the search
tree in a tunnel around the nominal path. The nominal path is the analyti-
cally optimal path in absence of obstacles. xsample is drawn from a Gaussian of
variance r.

3.2 Focussed RRT*

The focussed RRT* is a variant of RRT* where the sampling is biased around
the solution that arises by ignoring Xobs. The optimal trajectory ξ0 is solved for
in the absence of Xobs. During the RRT* execution, the sampling is focussed
in a tunnel around ξ. The tunnel is a Gaussian whose variance is the ”radius”
of the tunnel R. Algorithm 2 explains the steps in detail.

The approach assumes that an optimal solution exists within a proximity of
a solution that ignores obstacles. This assumption is broken when dense clutter
exists around the trajectory that the planner is biased towards.

3.3 CHOMP

CHOMP [9] is a very commonly used gradient-based trajectory optimizer be-
cause of it’s efficient design of objective function and invariance to parametriza-
tion artefacts. The vanilla version of CHOMP optimizes a smoothness and
obstacle objective while being constrained at two endpoints. To apply to Eq 1,
the smoothness penalty term is scaled till the constraints g(x, dxdt , . . . ,

drx
dtr ) ≤ 0

is met.

The advantage of the optimization approach is that if a good local min-
ima exists around the initial guess, the optimization can find it much faster
than sampling based approaches. The failure cases are when bad local minima
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Algorithm 2 Focussed RRT*

1: Parameters
2: R : The radius of the tunnel
3: Variables
4: ξ0 : The optimal trajectory ignoring Xobs

5: procedure Focussed RRT*(x0, xf )
6: V ← {x0}, E ← ∅
7: ξ0 ← OptimizeTrajectory(x0, xf )
8: while TimeLeft(Tcomp) do
9: G← (V,E)

10: xsample = SampleTunnel(ξ0, R)
11: (V,E)← Extend(G, xsample))

12: end procedure

appear.

4 Learning Framework

4.1 Features

The workspace Xw ⊂ R2 for the scope of this paper is considered to be 2D.
The features used in this paper do not attempt to characterize the dynamics
constraints - thus the target function being approximated implicitly captures
this.

The feature vector is expected to encode the obstacle distribution and density
of the environment. Any intuition about the assumptions that the planners
exploit should be injected into this process to create an appropriate basis.

We draw features from 2 inspiration sources - the planning literature and
image classification literature. From a planning perspective - convexity and ob-
stacle density around the nominal trajectory play a key role. On the other hand,
the environment can also be viewed as an image - features such as histogram of
oriented gradients (HOG) and downsampled pixels appropriately characterize
the high-pass and low-pass features.

4.1.1 Convexity Features

Convexity of the environment plays an important role in the performance of
sampling based approaches to make connections across the configuration space.

The environment is discretized into a grid of fixed resolution. Each cell
is assigned a value of 2,1,-1 corresponding to whether the goal is not directly
visible from the cell, is visible or if the cell is in obstacle. The concatenation of
these values is the convexity feature vector. Figure 2(a) shows an illustration.
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Figure 2: (a) Convexity feature vectory represents visibility to goal. The en-
vironment is discretized. Every cell is assigned a number 2,1,-1 corresponding
to goal not visible, visible or cell in obstacle. (b) Tunnel density feature vector
represents occupancy around the nominal trajectory. The volume around the
nominal trajectory is discretized and obstacle density for each cell is computed.

4.1.2 Obstacle Density in a Tunnel around Nominal Trajectory

The obstacle density around the nominal path (the optimal path in absence
of obstacles) encodes artifacts such as bad local minimas for gradient descent
approaches and pitfalls for methods that focus search around the nominal.

A tunnel around the nominal path is discretized and the average density in
every bin is used to create a feature vector. Figure 2(b) shows an illustration.

4.1.3 Histogram of Oriented Gradients

Histogram of oriented gradients [3] have historically had great success in image
classification. It encodes gradient orientation in localized portions of an im-
age (in our case, the binary image of the environment) thus characterizing the
relative shape of obstacles.

4.1.4 Downsampled Pixels

To complement the high frequency character of HOG, a feature representing
the overall density distribution of obstacles is required. This is achieved by
downsampling the rasterized environment roughly to the resolution of other
features.

4.2 Classification

In this work, we use Random Forests [1], an ensemble learning method popularly
used for classification. It uses an ensemble of decision trees constructed at
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training time and outputs the class that is the mode of the classes output by
individual trees. Random Forests are apt for the classification in our approach
as only a subset of the whole set of features is useful to distinguish a pair of
planners.

5 Results

5.1 Experiment Setup

The planning problem is set for a 2 dimensional curvature constrained system.
The configuration space X is a bounding box [0, 50] × [0, 50] with x0 = (2, 2)

and xf = (48, 48). The constraint is set as |ẋÿ−ẋÿ|
(ẋ2+ẏ2)

3
2
≤ 1

2 . The environment is a

poisson forest composed of random obstacles generated by using basic primitives
like circles and polygons. The poisson density is varied uniformly from 0.005 to
0.01. In total 12000 environments were generated. 10000 are used for training
and 2000 are set aside for testing.

5.2 Implementation Details

The motion planners have been implemented using Open motion planning li-
brary (OMPL), [10]. The RRT* implementation was augmented with the sam-
pling procedure to create Heuristic Guided RRT* and Focussed RRT*. CHOMP
is separately implemented adhering to the OMPL standards. The Heuristic
Guided RRT* uses a resolution of 2 and the Focussed RRT* uses a tunnel
variance of 5. CHOMP uses 500 waypoints with a regularization term of 0.01.

For feature extraction, a downsampling of scale 0.2 is used, the tunnel width
considered is 2 and HOG features are extracted for every 10×10 block. For the
Random Forest classifier, we have used Scikit-learn, a python machine learning
package, [8].

5.3 Classification Performance

For brevity, the planner names are condensed to : HG-RRT* (Heuristic Guided),
F-RRT* (Focussed RRT*). Table 1 shows the percentage accuracy obtained by
various pairwise classifiers using different set of features on the collection of test
environments. Note that the classifier predicts one of the four possible outcomes
when two planners are run on the same environment. Observe that convexity
features i.e. zc play an important role in the classification of F-RRT* vs CHOMP
and CHOMP vs HG-RRT* classifiers when compared to other standalone fea-
tures. The degree of convexity of the environment depicts the effectiveness of
a sampling based motion planner in such an environment. The two classifiers
have a sampling based planner and an optimization based planner of which the
sampling based is greatly affected by the convexity, hence convexity features
display such an accuracy in these classifiers. Another interesting observation is
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Classifier zd zt zc zh zd+t zd+t+c zd+t+c+h zt+c

HG-RRT*
vs

F-RRT*
48.3 42.1 45.7 41.7 52.4 53.8 51.1 49.3

F-RRT*
vs

CHOMP
46.6 45.2 49.0 44.5 49.7 54.0 52.6 50.1

HG-RRT*
vs

CHOMP
44.3 48.8 48.2 45.6 49.1 50.3 53.2 51.3

Table 1: Accuracy of the classifier in percentage using different set of features

zd Downsampling features
zt Tunnel features
zc Convexity features
zh HOG features

that tunnel features i.e. zt have the highest accuracy in the CHOMP vs HG-
RRT* classifier among other standalone features. This can be explained by the
fact that CHOMP is an optimization based planner that optimizes around the
initial trajectory and the initial trajectory chosen in our approach is the nominal
path. Thus, the clutter in the tunnel around nominal path greatly affects the
performance of CHOMP when compared to its effect on HG-RRT*, which is not
significant. Hence, we see a high accuracy for tunnel features in this classifier.

5.4 Case Studies

In this section, we highlight a few examples that illustrate situations where
assumptions of different planner failed. Examining these cases will provide vital
clues about feature selection. In the following scenarios, if a sampling based
planner is unable to find a path, the best leaf vertex and its path from root
is shown. For CHOMP, the path with the least cost (even if its going through
obstacles) is shown.

Figure 3 shows an example which highlights the pitfall of the heuristic. The
heurisitic Dijkstra plans through a narrow opening which makes it very difficult
for the RRT* to plan a feasible path through. The other planners fare better
because they search around the nominal which is relatively collision free.

Figure 4 shows an example where heuristic guided RRT* is the only planner
to solve the scenario. CHOMP’s initial guess gets stuck in a bad local minima.
Focussed RRT* has too tight a tunnel to maneuver around the obstacle.

Figure 5 shows an example where CHOMP is able to adjust its path to fit into
narrow passages. Although it finds a suboptimal path in comparison to focussed
RRT*, this example is indicative of the effect of the obstacle cost function and
its gradient. Similar to Figure 3, the heuristic guided RRT* follows the heuristic
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CHOMP
HG-RRT*
F-RRT*

Figure 3: Heuristic Guided RRT* gets trapped as a result of ignoring dynamics
constraints. Focussed RRT* is able to find a feasible path due to relatively clear
tunnel. CHOMP finds a path as well, albeit more suboptimal.

CHOMP
HG-RRT*
F-RRT*

Figure 4: Only heuristic guided RRT* computes the best path. CHOMP gets
stuck in a poor local minima. Focussed RRT* doesnt land samples that help it
to maneuver around the obstacle.
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CHOMP
HG-RRT*
F-RRT*

Figure 5: CHOMP is able to adjust to the shape of narrow passages. This is the
effect of the obstacle cost and its gradients. Focussed RRT* grazes the obstacles
due to its sampling based nature. Heuristic guided RRT* is led down a passage
by the heuristic that the dynamics cannot pass through

into an area that the dynamics constraints prevent it from navigating through.

6 Conclusion

In this work, we have conducted a preliminary investigation on the mapping
between assumptions made by a motion planning strategy and the environment
configuration. Results indicate the role played by convexity and nominal path
occlusion is significant in choosing the correct planning strategy. This make
sense intuitively as well. Sampling based motion planning succeeds if it is able
to make large connections across the configuration space which is measured
by convexity. Optimization algorithms perform well when the shape of the
value function around the optimization point has a good local minima which is
indicated by the occlusion of the nominal path.

At the same time, the results fail to find out artifacts that seem obvious
to the expert planner designer - presence of local minima and likely pitfalls
of ignoring dynamics. These along with other factors lower the predicition
accuracy of the classifier. Standard features that are well applicable to fields of
image classification do not perform well in this paradigm. This is indicative of
the larger problem of obtaining features that encode key aspects of the overall
value function, which is intractable to compute given the large dimensionality
of the problem.
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