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Abstract—Much robotics research explores how robots
can clearly communicate true information. Here, we focus
on the counterpart: communicating false information, or
hiding information altogether – in one word, deception.
Robot deception is useful in conveying intentionality, and
in making games against the robot more engaging. We study
robot deception in goal-directed motion, in which the robot
is concealing its actual goal. We present an analysis of
deceptive motion, starting with how humans would deceive,
moving to a mathematical model that enables the robot to
autonomously generate deceptive motion, and ending with
a study on the implications of deceptive motion for human-
robot interactions.

I. Introduction

Much robotics research explores how robots can com-
municate effectively, via speech [9, 19, 33], gesture [5,
24, 25, 37], or motion [1, 3, 13, 18, 22, 30]. But effective
communication, which clearly conveys truthful informa-
tion, has a natural counterpart: effective deception, which
clearly conveys false information, or hides information
altogether.

Robotic deception has obvious applications in the
military [10], but its uses go far beyond. At its core,
deception conveys intentionality [31], and that the robot
has a theory of mind for the deceived [4] which it can
use to manipulate their beliefs. It makes interactions
with robots more engaging, particularly during game
scenarios [28, 31, 32].

Among numerous channels for deception, we focus
on deception via motion. Deceptive motion is an integral
part of being an opponent in most sports, like squash
[16], soccer [29], or rugby [21]. It can also find uses
outside of competitions, such as tricking patients into
exerting more force during physical therapy [6]. Fur-
thermore, a robot that can generate deceptive motion
also has the ability to quantify an accidental leakage of
deception and therefore avoid deceiving accidentally.

We study deception in goal-directed motion, where a
robot is moving towards one of a few candidate goals
— we refer to this one as the robot’s actual goal. Fig.1
shows an example: the robot is reaching for one of two
bottles on the table. In this context, we introduce the
following definition:

Definition: Deceptive motion is motion that tricks the
observer into believing that the robot is not moving towards
its actual goal.

We present an analysis of deceptive goal-directed
robot motion through a series of five user studies, from
how humans would deceive, to how a robot can plan de-
ceptive motion, to what implications this has for human-
robot interactions. We make the following contributions:
1. Human Deception: We begin by studying what decep-
tion strategies people employ when creating deceptive
motion for a robot (Sec. II).

We focus on a simple, 2D robot character, whose
only channel of expression is its motion. We collect

Fig. 1. Top: Deceptive motions produced by trajectory optimization.
The trajectories on the right correspond to different strategies that
humans adopt. Bottom: A user’s reaction when she first realizes the
robot deceived her about which bottle it was going to grasp.

demonstrations of deceptive motion from novice users,
as well as from a senior animation designer.

We then cluster the demonstrations to reveal common
strategies, and relate the emerging strategies to the
theory of deceptive behavior in humans [36]. We find
both strategies meant to “show the false” (e.g., convey a
different goal), as well as strategies meant to “hide the
truth” (e.g., keep the goal ambiguous until the end).
2. Mathematical Model: Next, we introduce a mathe-
matical model for autonomously generating deceptive
motion (Sec. III), and show how different parameters
lead to the different user strategies revealed in the study.

Our approach is complementary to existing methods
for autonomous deception, which usually lie at the
symbolic level, and are inspired by either game theory
[34, 35] or biology [15, 26].

Fig.1(top) shows three examples generated by our
model: a trajectory that conveys the wrong goal (along
with its higher-dimensional counterpart on the left), one
that switches between conveying either goal, and one
that keeps the goal as ambiguous as possible.
3. Evaluation: We test whether novice users are actually
deceived by the robot, when executing the trajectories
from the model, users, and animator (Sec. IV). We find
that all motions are significantly more deceptive than a
baseline, and that the model performs almost equiva-
lently to the animator trajectory.
4. Generalization: We show how our model generalizes
to higher-DOF robots – manipulator arms (Sec. V). We
verify its ability to deceive in a quantitative user study,
and we compare the output trajectories qualitatively to
the arm motions produced by humans when asked to



deceive.
5. Implications for HRI: Our work investigates deceptive
motion and proposes a model that enables robots to
autonomously generate it. Our final study explores the
implications of the robot’s deception through its motion
to human-robot interaction (Sec. VI, and Fig.1(bottom)).
We focus on whether users realize that the robot is
intentionally deceiving them, and, if so, whether that
impacts their perceptions of the robot, be it positively
or negatively.

Overall, we see that deceptive motion can improve
perceptions about the robot, but can also harm trust,
especially when interpreted as intentional. An additional
pitfall is that some users rationalize the robot’s behavior,
not believing that a robot would be capable of intentional
deception.

On the one hand, our work echoes concerns raised
in prior work about the effects of deception [20]. On
the other hand, deception is human nature. So much so
that even the Turing Test is about deception — we only
consider computers to have achieved human-like intel-
ligence once they can deceive us that they are human.
We are excited to contribute to a better understanding
of this behavior.

II. Study 1: How Do Humans Deceive?
Humans are experts in deception. Thus, we begin our

analysis of deceptive robot motion by looking to humans,
and how they think a robot should deceive through its
motion. We investigated this for the simple case of a 2D
robot character. Without eyes and facial expression, all
this character has available to deceive is its motion. We
asked novice users, as well as an animator – an expert
in designing expressive motion for non-humans – to
provide demonstrations of deceptive motion in various
scenarios.

A. Experimental Setup
Scenarios. We designed our scenarios by manipulating
several factors. We start from a canonical scenario: a
starting position and two candidate equidistant goals,
placed close to each other to make the direct motion
ambiguous, like in Fig.2a.

From this scenario, in order to test how the trajecto-
ries change when different aspects of the environment
change, we manipulate: (1) goal side, by changing which
of the goals is the actual goal; (2) scale, by scaling
the entire scene; (3) distance, by translating both goals
vertically; (4) ambiguity, by translating both goals hori-
zontally; (5) goal symmetry, by shifting one goal up and
one down.

Additionally, we added multiple goals scenarios with
three candidate goals instead of two, like in Fig.3d, and
scenarios in which one goal is in front of the other, for
a total of 11 scenarios.
Procedure. We developed a graphical interface for pro-
viding demonstrations by placing waypoints along the
trajectory. For each scenario, we first asked users to
demonstrate a typical (predictable) trajectory to a goal
(how they would normally expect the robot to move), in
order to check that all users are working with the same
underlying model of the robot motion. All users drew a

(a) Exaggerate !
(Over)!

(b) Exaggerate!
(Under)! (d) Ambiguous!(c) Switching!

(e) Predictable 
to Other Goal!

67%! 14%! 5%! 7%!

Fig. 2. User strategies for deception. The typical strategy exaggerates
in the other direction and avoids the obstacle by going over it. A less
common strategy of going under the obstacle closely matches the result
of the model we use in Sec. III, shown in Fig.6 (red).

(a) Main! (b) Alternative! (c) Unambiguous Scenario! (d) Multiple Goals!

Fig. 3. Animator strategies.

straight line from start to goal (we use this in our model
from Sec. III).

Next, the users demonstrated the deceptive trajectory
and explained their strategy, including how they would
time the motion.

For each user, we randomized the order of the scenar-
ios after the canonical one to avoid ordering biases. We
kept the more complex multi-goal scenarios for the end.
Participants. We recruited 6 participants from the local
community (4 male, 2 female, aged 19-67, with various
educational backgrounds), along with a senior animation
designer who we treat as an expert.

B. Analysis
Main Scenarios. We started from the user comments,
and identified 4 emerging strategies (one with 2 varia-
tions), shown in Fig.2. We then classified each trajectory
as employing one of the strategies, or doing something
different (e.g. moving “as if the robot is broken”). We
tested agreement between two coders with Cohen’s κ
(κ = .8, p < .0001).

By far, the most common strategy (67% of the cases)
was to exaggerate the motion towards another candidate
goal in order to convey the intention to reach that goal
to the observer. This type of behavior closely resembles
decoying in human deception theory [36]: it is a way of
portraying false information (that the robot has a differ-



ent goal from its actual goal) by offering a misleading
alternate option.

Among trajectories that follow this strategy, most
(71%) avoid the other goal by going over the top, like
in Fig.2a. Often, the trajectories circle this goal first
(a behavior some of the users described as simulating
“hovering”), and then move on to the actual goal. The
rest use the more efficient (shorter) strategy of avoiding
the other goal by moving under it, as in Fig.2b.

The other three strategies were drastically less com-
mon. In 14% of the cases, the users were switching
between conveying the actual goal and conveying a
different one, as in Fig.2c. This most closely resembles
deception by dazzling [36], which is hiding the true by
being confusing.

Approximately 5% of trajectories were ambiguous
(Fig.2d), trying to conceal which goal is the actual one
for as long as possible. This “hiding the real” behavior
is known as masking in human deception literature [36],
whereby “all distinctive characteristics” of the motion
are concealed.

Finally, another 7% of the trajectories simply moved to
the other goal, without exaggerating, and then moved to
the actual goal, as in Fig.2e — this can be thought of as
a variation on decoying.
Multiple Goals. When there are multiple goals in the
scene, our main question was whether users would pick
a particular other goal to convey, or whether they will
be ambiguous in the general direction of the other goals.
However, some users surprised us with an unexpected
strategy: conveying one of the other goals first, then
another, and only then moving towards the actual goal.
Aside from this strategy, we found similar patterns as
in the two goal case, predominantly exaggeration and
switching.
Animator Demonstrations. Fig.3 shows the animator
strategies for a few of the scenarios. For the canonical
scenario, the robot first moves horizontally to align
itself with the other goal in order to clearly indicate
its (deceptive) selection, then goes towards it, and then,
when it has almost reached it, moves towards the actual
goal (Fig.3a).

The animator also proposed an alternative (Fig.3b),
which is ambiguous for the majority of the trajectory,
then switches to the wrong goal, then optionally oscil-
lates between the two (conveying that the robot is explor-
ing different options), and only then moves to the correct
one. Although this trajectory is rich in expression, he
deems the first one more deceptive because the observer
will believe in the wrong goal for longer and with higher
confidence.
Changes Between Scenarios. The users were surpris-
ingly inconsistent with their strategies between different
scenarios, but their comments reflect that they took
the opportunity to explore “something new”, and not
that they thought that these different situations require
different strategies.

With the animator, the strategy stays the same with
scale, distance, goal side and symmetry. With less am-
biguous scenarios, like in Fig.3c, the trajectory does not
go as far in the direction of the other goal: the animator
considered it enough to convince the observer that the

(a) Exaggerating ! (b) Switching! (c) Ambiguous!

Fig. 4. Strategies replicated by the model: the typical exaggeration
towards another goal, as well as the switching and ambiguous trajec-
tories. The trajectories in gray show the optimization trace, starting
from the predictable trajectory.
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Fig. 5. The probability of the actual goal along each model trajectory.

robot is targeting the other goal.

III. A Mathematical Model for Deception

The previous section analyzed the different strategies
that humans would employ to enable a robot to deceive.
Here, we introduce a mathematical model for deceptive
motion that (1) enables a robot to autonomously generate
deceptive motion, and (2) gives us more insight into the
human strategies.
Deceptive Motion as Trajectory Optimization. Our
model for deceptive motion is about enabling the robot
to take the observer’s perspective, and compute what
goal they would infer from the motion. Then, the robot
can choose a motion that prevents the observer from
inferring the correct goal.

Based on prior work [11], we model the observer as
expecting the robot to move optimally, optimizing some
efficiency cost functional C : Ξ → R+ defined over
the space of trajectories Ξ. We then approximate the
probability of a candidate goal G being inferred from
an ongoing motion ξS→Q, from the start S to the current
robot configuration Q, as in [12]:

P(G|ξS→Q) =
1
Z

exp
(
−C[ξS→Q]−VG(Q)

)
exp

(
−VG(S)

) P(G) (1)



with Z a normalizer across the set of candidate goals
G and VG(q) = minξ∈Ξq→G C[ξ]. This computes how
costly reaching the goal is through the ongoing trajectory
relative to the optimal way, and matches teleological
reasoning in action interpretation theory [7, 11].

Given this, the robot can be most deceptive along the
trajectory by minimizing the probability that the actual
goal, Gactual , will be inferred:

min
ξ

∫
P(Gactual |ξS→ξ(t))dt (2)

Solution. We solve this trajectory optimization problem
using functional gradient descent, following [13, 38]: we
minimize the first order approximation of the objective
plus a regularization term that keeps the trajectory
smooth.

We avoid collisions with obstacles by adding a con-
straint that penalizes small distances between the robot
and the obstacle. We use the obstacle term from the
CHOMP trajectory optimizer [38], and follow the deriva-
tion from [13] for trust region constraints to keep this
term under a desired threshold.

For the cost C, we use a common choice in trajectory
optimization – the integral over squared velocities [38].
This has been shown to match what users expect for
a 2DOF robot [11], and to have a high degree of pre-
dictability for a 7DOF robot arm as well [14].
Strategies. Using this formalism, we can model the
different user strategies from the previous sections.

The typical user strategy is about selecting another
goal, Gdecoy, and conveying that through the motion. In
our model, this translates to maximizing the probability
of that goal:

ξexaggerate = arg max
ξ

∫
P(Gdecoy|ξS→ξ(t))dt (3)

When there are only two candidate goals, this is
equivalent to (2).

Solving this optimization problem leads to the trajec-
tory in Fig.4a, which qualitatively replicates the strategy
in Fig.2b of exaggerating the motion towards the other
goal.

The predictable-to-other-goal strategy in Fig.2e is similar,
but instead of exaggerating, the robot moves predictably.
However, prior work in conveying goals [11] has shown
exaggeration to be more effective.

The animator’s main demonstration (Fig.3a) follows
an idea similar to exaggeration, except that conveying
the goal is done through alignment – a strategy outside
of the realm that our model can produce. However, in
Sec. IV, we show that the model and animator trajecto-
ries perform similarly in practice.

The switching user trajectory (Fig.2c) alternates be-
tween the goals. If σ : [0, 1] → G is a function mapping
time to which goal to convey at that time, then the
switching trajectory translates in our model to maximiz-
ing the probability of goal σ(t) at every time point:

ξswitching = arg max
ξ

∫
P(σ(t)|ξS→ξ(t))dt (4)

Unlike other strategies, this one depends on the choice
of σ. Optimizing for a default choice of σ ( a piece-wise

function alternating between Gother and Gactual , σ(t) =
Gother for t ∈ [0, .25) ∪ [.5, .75) and σ(t) = Gactual for
t ∈ [.25, .5) ∪ [.75, 1]) leads to the trajectory from Fig.4b,
which alternates between conveying the goal on the right
and the one on the left.

The ambiguous user trajectory (Fig.2d) keeps both goals
as equally likely as possible along the way, which trans-
lates to minimizing the absolute difference between the
probability of the top two goals:

ξambiguous = arg min
ξ

∫
|P(Gactual |ξS→ξ(t))

− P(Gother|ξS→ξ(t)))|dt (5)

Fig.4c is the outcome of this optimization: it keeps both
goals just as likely until the end, when it commits to
one. An alternate way of reaching such a strategy is to
maximize the entropy of the probability distribution over
all goals in the scene.

Using this model, we see that different strategies can
be thought of as optimizing different objectives, which
gives us insight into why exaggeration was so much
more popular: it is the most effective at reducing the probabil-
ity of the actual goal being inferred along the trajectory. Fig.5
plots the P(Gactual) along the way for each strategy: the
lower this is, the more deceptive the strategy. While the
ambiguous strategy keeps the probability distribution as
close to 50-50 as possible, and the switching strategy
conveys the actual goal for parts of the trajectory, the
exaggerate (or decoy) strategy biases the distribution
toward the other goal as much as possible for the entire
trajectory duration: the observer will not only be wrong,
but will be confidently wrong.

IV. Study 2: Are Users Really Deceived?
In this section, we compare the mathematical model

and the user and animator demonstrations in terms of
how deceptive they actually are (how low the proba-
bility assigned to the actual goal is) as measured with
novice users. Of the three strategies in Fig.4, we use
the exaggeration strategy for our comparison for two
reasons: (1) it is by far the most commonly adopted
strategy (69% the user demonstrations, and the main
strategy for the animator); (2) it is the most deceptive
– both mathematically (see Fig.5) and according to the
expert animator (see Sec. II-B); the other two strategies,
although interesting, are optimizing different objectives
– comparing trajectories within these strategies would
require fundamentally different metrics, for ambiguity
and switching/confusion.

A. Experimental Setup
Hypotheses.

H1. All 3 deceptive trajectories (the users’, the animator’s,
and the model’s) are significantly more deceptive than the
predictable baseline.

H2. All 3 deceptive trajectories are equivalently deceptive.
Manipulated Factors. We manipulated two factors: the
type of trajectory used (with 4 levels), and the time point at
which the trajectory is evaluated (with 3 levels), leading
to a total of 12 conditions.

We used the typical user trajectory from Fig.2a, the
main animator trajectory from Fig.3a, the output of the
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Fig. 6. The four trajectories: model, animator, user, and the predictable baseline, along with the comparison from our user study.
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Fig. 7. A comparison of the four trajectories in terms of how deceptive
they are across the three time points.

model from Fig.4a, and the predictable (straight line)
motion as a baseline. Because the situation is somewhat
ambiguous, the predictable trajectory does not give away
the actual goal immediately.

We timed the trajectories such that they all take the
same total time to execute, and followed their designers’
instructions for which parts should be faster or slower.
For the model trajectory, we treated each waypoint as
equally spaced in time.

We selected three critical time points for evaluating the
trajectories that best capture their differences: one close
to the beginning of the trajectory (right after the robot
executing the animator trajectory has finished aligning
with the other goal), one close to the end, after all
trajectories have started moving in the direction of the
actual goal, and one in the mid-part, when the robot
executing the user trajectory has started hovering around
the other goal. We mark these points in Fig.6(left), which
shows the four trajectories side by side.
Dependent Measures. We measured how deceptive the
trajectories are by measuring which goal the users be-
lieve the robot is going toward as the trajectory is un-
folding: the less correct the users are, the more deceptive
the motion.

For each trajectory and time point, we generated a
video of the robot executing the trajectory up to that
time point. We measured incorrectness and confidence. We
asked the users to watch the video, predict which goal
the robot is going towards, and rate their confidence in
the prediction on a 7 point Likert scale. We treat the
confidence as negative for correct predictions (meaning
the trajectory failed to deceive).
Participants. We decided on a between-subjects design,
where each participant would only see one trajectory
snippet, in order to avoid biases arising from having seen
a different condition before.

We recruited a total of 240 users (20 per condition) on
Amazon’s Mechanical Turk, and eliminated users who
failed to answer a control question correctly, leading to
234 users (166 male, 68 female, aged 18-60).

B. Analysis
A factorial ANOVA on incorrectness (considered to be

robust to dichotomous data[8]) revealed significant main
effects for both trajectory (F(3, 222) = 47.78, p < .0001)
and time point (F(2, 222) = 39.87, p < .0001), as well as a
significant interaction effect (F(6, 222) = 5, .5, p < .0001).

The post-hoc analysis with Tukey HSD revealed two
findings. (1) The predictable trajectory was significantly
less deceptive than all other trajectories for all times.
The one exception was the last time point of the model
trajectory, which revealed the correct goal in 65% of the
cases. (2) The beginning and middle time points for all
three strategies were significantly more deceptive than
their last time point (aside from the last time point of
the user trajectory).

Fig.7 echoes these findings: it plots the mean incor-
rectness for all trajectories across the time points. The
predictable trajectory deceives very few users in the
beginning, and makes the actual goal more clear as time
progresses. In line with H1, a Tukey HSD that marginal-
izes over time shows that the predictable trajectory is
significantly less deceptive than the rest, with p < .0001
for all three contrasts.

Comparing the three strategies, we see that all three
perform very well in the middle time point: this is
expected, as by that point the robot would have been
making steady progress towards the other goal. In the
beginning of the trajectory, the model and the user
trajectories are just as convincingly deceiving, but users
actually manage to interpret the animator’s trajectory as
going towards the correct goal, justifying that “it seemed
that the robot was veering back to the right”.

The bigger differences come towards the end. The
model trajectory, being smoother, gives away the actual
goal sooner than the animator. Users recognize in their
comments that “at the last second it turned towards the
right”. Surprisingly, the user “hovering” strategy worked
very well, delaying the time when users catch on to the
actual goal, and making it much more effective than
the animator’s strategy. Users actually used the term
“hover” to describe the behavior, much like the designer
of the trajectory himself.

Therefore, w.r.t. H2, the animator and user trajectories
are not equivalent. However, there is a very small differ-
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Fig. 8. Top: The deceptive trajectory planned by the model. Bottom: a comparison between this trajectory and the predictable baseline.

ence between the model and the animator trajectories,
and a TOST equivalence test deems them as marginally
equivalent for a practical difference threshold of 0.1
(p = .07).

The confidence metric echoes these results as well, and
Fig.6 plots both. A factorial ANOVA for this measure
yields analogous findings.

Overall, we see that the model (which the robot can
use to autonomously generate trajectories) performs al-
most equivalently to the expert demonstration from the
animator, and that creativity paid off for the user’s
“hover” strategy.

V. Generalization to Arm Motion

The previous section revealed that the mathematical
model from Sec. III performs well in practice. But how
well does it generalize beyond a simple 2D robot char-
acter?

In this section, we put this to the test by applying the
model to the 7DOF right arm of a bi-manual mobile
manipulator. Fig.8 (top) shows the resulting deceptive
trajectory, along with a comparison between its end ef-
fector trace and that of the predictable trajectory (bottom
left).

Both trajectories are planned s.t. they minimize cost
and avoid collisions, as explained in Sec. III. The differ-
ence is in the cost functional: the predictable trajectory
minimizes C (Sec. III), while the deceptive one minimizes
the cost from (2). The planning time for either trajectory
is based on CHOMP, and remains under a second.

Fig.1 shows the optimization trace transforming the
predictable into the deceptive trajectory. After a few
iterations, the trajectory shape starts bending to make
progress in the objective, but remains on the constraint
manifold imposed by the obstacle avoidance term.

A. Study 3: Robot Trajectory Evaluation
To evaluate whether this trajectory is really deceptive,

we repeat our evaluation from Sec. IV, now with the

physical robot.
Manipulated Factors and Dependent Measures. We
again manipulate trajectory and time-point, this time with
only two levels for the trajectory factor: the deceptive
and predictable trajectories from Fig.8. This results in
6 conditions. We use the same dependent measures as
before.
Participants. For this study, we recruited 120 participants
(20 per condition; 80 male, 40 female, aged 19-60) on
Amazon’s Mechanical Turk.
Hypothesis. The model deceptive trajectory is more deceptive
than the predictable baseline.
Analysis. In line with our hypothesis, a factorial ANOVA
for correctness did reveal a significant main effect for
trajectory (F(1, 117) = 150.81, p < .0001). No other effects
were significant. Fig.8 plots the results.

The users who were deceived relied on the principle
of rational action [17], commenting that the robot’s ini-
tial motion towards the left “seemed like an inefficient
motion if the robot were reaching for the other bottle”.

When the robot’s trajectory starts moving towards the
other bottle, the users find a way to rationalize it: “I
think that jerking to my left was to adjust it arm to move
right.”, or “It looks as if the robot is going for the bottle
on my right and just trying to get the correct angle and
hand opening”.

As for the features of the motion that people used to
make their decision, the direction of the motion and the
proximity to the target were by far the most prevalent,
though one user quoted hand orientation as a feature as
well.

Not all users were deceived, especially at the end. A
few users guessed correctly from the very beginning,
making (false) arguments about the robot’s kinematics,
e.g. “he moved the arm forward enough so that if he
swung it round he could reach the bottle”.

Overall, our test suggests that the model from Sec.
III can generalize to higher-dimensional spaces. Next,



Fig. 9. A deceptive trajectory for a human arm from one of our participants, qualitatively similar to the robot trajectory from Fig.8.

we run a further user study which indicates that this
was no coincidence: when we ask humans to produce
deceptive motion with their own arm, their motions are
qualitatively similar to that of the robot.

B. Study 4: Human Deception
To see how humans would do deception in higher-

dimensional spaces, we reproduced the study from Sec.
II, but in the physical world: participants reached with
their arms for objects on a table, and we recorded their
trajectories using a motion capture system. We recruited
6 participants (3 male and 3 female, aged 18-41).

The strategies were indeed similar to the 2D case: 3
of the participants exaggerated the motion to the other
object, then changed just before reaching it. Fig.9 shows
one of the trajectories for the canonical scenario along
with the end effector trace, which is qualitatively similar
to the robot trajectory generated by the model: the hand
first goes to the left, beyond the straight line connecting
it to the target object, and then grazes past it to reach
for the object on the right.

One of the participants adopted the animator strategy
of aligning (in this case, the hand) with the other object
first, and then moving straight toward it. Another par-
ticipant used their torso more than their arm motion to
indicate one goal or the other. A last participant used
the strategy of moving predictably to the other goal
(Fig.2e), bringing up a great point that in a game setting,
exaggerating to convey intent would make the opponent
suspicious that they are trying to deceive.

Overall, despite the diversity in approaches, the ma-
jority did match the model’s output.

VI. Study 5: Implications of Deception for HRI

Our studies thus far test that the robot can generate
deceptive motion. Our final study is about what effect
this has on the perceptions and attitudes of people
interacting with the robot.

Although no prior work has investigated deceptive
motion, some studies have looked into deceptive robot
behavior during games. A common pattern is that unless
the behavior is very obviously deceptive, users tend
to perceive being deceived as unintentional: an error
on the side of the robot [23, 28, 32]. In a taxonomy
of robot deception, Shim et al. [27] associate physical
deception with unintentional, and behavioral deception
with intentional. Deceptive motion could be thought of
as either of the two, leading to our main question for
this study:

Do people interpret deceptive motion as intentional?
And, if so, what implications does this have on how

they perceive the robot? Literature on the ethics of
deception cautions about a drop in trust [2, 20], while
work investigating games with cheating robots measures
an increase in engagement [28, 32]. We use these as part
of our dependent measures in the study.

We also measure perceived intelligence, because de-
ception is also associated with the agent having a theory
of mind about the deceived [4].

A. Experimental Setup
Procedure. The participants play a game against the
robot, in which they have to anticipate which bottle (of
the two in front of them) the robot will grab, and steal
it from the robot, like in Fig.10. The faster they do this,
the higher their score in the game.

Before the actual game, in which the robot executes a
deceptive trajectory, they play two practice rounds (one
for each bottle) in which the robot moves predictably.
These are meant to expose them to how the robot can
move, and get them to form a first impression of the
robot.

We chose to play two practice rounds instead of one
for two reasons: (1) to avoid changing the participants’
prior on what bottle is next, and (2) to show participants
that the robot can move directly to either bottle, be it on
the right or left. However, to still leave some suspicion
about how the robot can move, we translate the bottles
to a slightly different position for the deception round.
Dependent Measures. After the deception round, we
first ask the participants whether the robot’s motion
made it seem (initially) like it was going to grab the other
bottle. If they say yes, then we ask them whether they
think that was intentional, and whether they think the
robot is reasoning about what bottle they will think it
would pick up (to test attribution of a theory of mind).

Both before and after the deception round, we ask
participants to rate, on a 7 point Likert scale, how
intelligent, trustworthy, engaging, and good at being an
adversary the robot is.
Participants. We recruited 12 participants from the local
community (9 male, 3 female, aged 20-44).
Hypothesis. The ratings for intelligence, engagement, and
adversary increase after deception, but trust drops.

B. Analysis
The users’ interpretation was surprisingly mixed, in-

dicating that deception in motion can be subtle enough
to be interpreted as accidental.
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Fig. 10. A snapshot of the deception game, along with the adversary and trust ratings: after deception, users rate the robot’s skill as an
adversary higher, and trust in the robot decreases. The difference is larger when they perceive the deception as intentional.

Out of 12 users, 7 thought the robot was intentionally
deceiving them, while 5 thought it was unintentional.
Among those 5, 2 thought that the deceptive motion
was hand-generated by a programmer, and not au-
tonomously generated by the robot by reasoning about
their inference. The other 3 attributed the way the motion
looked to a necessity, rationalizing it based on how they
thought the kinematics of the arm worked, e.g. “it went
in that direction because it had to stretch its arm out”.

Analyzing the data across all 12 users (Fig.10), the
rating of the robot as an adversary increased significantly
(paired t-test, t(11) = 4.60, p < .001), and so did the
rating on how engaging the robot is (t(11) = 2.45,
p = .032), while the robot’s trustworthiness dropped
(t(11) = −3.42, p < .01). The intelligence rating had
a positive trend (increased by .75 on the scale), but it
was not significant (p = .11). With Bonferroni corrections
for multiple comparisons, only adversary and trust re-
main significant, possibly because of our small sample
size. Further studies with larger sample sizes would
be needed to investigate the full extent of the effect of
deceptive motion on the interaction.

We also analyzed the data split by whether deception
was perceived as intentional – this leads to even smaller
sample sizes, meaning these findings are very prelimi-
nary and should be interpreted as such. We see larger
differences in all metrics in the intentional case com-
pared to the unintentional. This is somewhat expected: if
deception is attributed to an accident, it is not a reflection
on the robot’s qualities. The exception is the rating of the
robot as an adversary: both ratings increase significantly
(Fig.10), perhaps because even when the deception was
accidental, it was still effective at winning the game.

There was one user whose trust did not drop, despite
finding deception intentional. He argued that the robot
did nothing against the rules. Other users, however,
commented that even though the robot played by the
rules, they now know that it is capable of tricking them
and thus trust it less.

VII. Discussion

In this work, we analyzed human strategies for decep-
tive motion, introduced a mathematical model that en-
ables the robot to autonomously generate such motions,
and tested users’ reactions to being deceived.
Findings. We found that the model performs on par
with the expert demonstration, and that a creative novice
user’s demonstration performs surprisingly well. We
also showed that the model can generalize to manipula-

tor arms, and that the output for a somewhat anthropo-
morphic arm is similar to human deceptive arm motion.

Finally, we found that users are mixed in perceiving
the deceptive motion as intentional vs. unintentional,
and that deception can increase ratings of engagement,
intelligence, and adversarial standing, but can negatively
impact trust. Even though the robot plays by the rules,
the users become aware of its capability to deceive.
Future Directions. Although our analysis covered many
aspects of deception throughout our five user studies,
much remains unexplored. One of the richest areas of
future work is long-term interactions. Our evaluation
studies only test that users are deceived once, and our
interaction study only tests the immediate user reaction
to being deceived.

However, deceiving repeatedly would entail higher-
level game-theoretic decisions, such as changing strate-
gies. Similarly, people’s reactions after being deceived
repeatedly and in various situations would likely change
as well: those who find it accidental orixginally would
probably realize it to be intentional.

Deception has a counterpart in clear, intent-expressive
communication, but comes with additional burdens, like
the need to change strategies. For two goals, they have
a symmetry: the easier it is to be legible, the more
extra energy it takes to be deceptive. At the same time,
deception has additional flexibility: the choice of which
goal to convey. Depending on the scenario, some goals
will allow for more convincing trajectories, and quickly
finding the best such decoy remains a challenge.

Finally, our model showed that it can express different
strategies, and our studies showed that the geometry of
the path is important for deception. Although impor-
tant, geometry is not everything. An area for further
exploration is modeling more creative strategies, such
as circling an object to express “hovering”, or explicitly
using timing (e.g. pausing to express doubt).

Overall, we are excited to have brought about a better
understanding of deception through the motion channel,
and look forward to exploring these remaining chal-
lenges in our future work.
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