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Abstract
Visual odometry is an important sensor modality for robot control and navigation

in environments when no external reference system, e.g. GPS, is available. Especially
micro aerial vehicles operating in cluttered indoor environments need pose updates at
high rates for position control. At the same time they are only capable to carry sen-
sors and processors with limited weight and power consumption. Thus a need arises to
compare and modify state-of-the-art methods so that the appropriate one can be identi-
fied. When these MAVs are used for as tools for inspection and damage assessment, the
need to navigate in challenging and degraded indoor environments becomes essential.

The work addresses the problem of odometry failure in unfavourable conditions
of fire and smoke. The reasons for odometry failure are identified and various image
enhancement techniques are implemented and compared. The case of contrast en-
hancement using image depth maps is inspected closely in particular since 3D depth
data is available for use. Apart from visually enhancing the hazy image, the method
also shows improvement in feature extraction, feature matching and inlier detection, all
of which are essential components of visual odometry methods. Two visual odometry
methods SVO to Fovis are then compared using various benchmarking and evaluation
methods with the purpose of determining the more efficient and accurate method.
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1 Introduction

1.1 Visual Odometry

Figure 1: [13]

Micro Aerial Vehicles (MAVs) will soon play a major role in disaster man-
agement, industrial inspection and environment conservation. For such operations,
navigating based on GPS information only is not sufficient. Precise fully autonomous
operation requires MAVs to rely on alternative localization systems to obtain knowl-
edge of the surrounding 3D environment for the purpose of navigation. In other words,
the MAV needs to estimate its current position and orientation in the environment by
relying on sensors such as cameras. RGB-D cameras capture RGB color images aug-
mented with depth data at each pixel.

1.2 Odometry in Degraded Environments
The environment under consideration consists of passageways of a ship under un-

favourable conditions of fire and smoke. This requires the construction of a small and
light aerial vehicle which can navigate the narrow corridors of a ship. These conditions
impose sever restrictions on visual odomoetry methods.

Construction of a suitable MAV requires limited use of hardware which means a re-
striction of computing capacity available. Odometry methods require significant CPU
resources and hence the need arises to find a method that minimizes CPU consumption.

Introduction of smoke occluded vision introduces significant complications. Cam-
era based odometry rely heavily on information extracted from captured sequence of
images, which is contained in the form of features. These features present in consec-
utive image sequences are compared to estimate position and orientation of the MAV
(matching). Introduction of smoke severely degrades image quality thus affecting the
number of usable features and extent of matching that can be performed. However
since RGB-D cameras illuminate a scene with an structured light pattern, they can es-
timate depth even in areas with poor visual texture. Thus a need arises to enhance the
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image with the objective of improving feature extraction and matching.

1.3 Image Dehazing
The process of enhancing the image occluded by smoke/fog/haze is commonly

referred to as image de-hazing. Due to smoke/haze the irradiance or reflected light
received by the camera gets attenuated along its line of site. Further, incoming light is
reflected by suspended particles of the smoke or haze, creating a component of light
called airlight. The degraded image loses contrast and color precision and saturation.
The amount of scattering depends on the distance of the scene from the camera and
hence the image degradation is spatial-variant, in other words depending on the dis-
tance. Classical contrast enhancement techniques are space-invariant, that is they act
on the image as a whole, by applying the same operation for every pixel, without con-
sidering the actual distance of the scene from the observer. Thus these are not reliable
solutions to the dehazing problem. Hence the need arises for dedicated image enhance-
ment techniques. The spatial dependence also hints at utilization of depth data obtained
from RGBD cameras for image enhancement.
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2 Problem Statement
Prescence of smoke in the environment loss of color contrast, precision and saturation
and hence visual odometry algorithms are unable to find distinguishing features in the
image. In Figure 2(a) the colored dots represent detected features in the image. It
can be seen from Figure 2(a) that features are identified only in haze free regions of
the image. In Figure 2(b), X-axis represents the frame number in the captured video
sequence while the Y-axis represents the number of features detected in the frame. The
starting point of the sequence is the frame show in Figure 2(a) and as frame number
increases, the camera moves closer to the haze areas. It is observed from Figure 2(b)
that the number of extracted features decrease drastically as the camera moves into the
haze areas.

(a) (b)

Figure 2: Variation in number of features

Figure 3: Illumination model in a haze environment [17]

Image dehazing can be represented physically by [3, 9, 10, 15]

I(x) = t(x)J(x) + (1− t(x))A (1)
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where I(x) is the input image, J(x) is the scene radiance or albedo, i.e., the light
reflected from its surfaces, and x = (x, y) denotes the pixel coordinates. The direct
transmission of the scene radiance, t(x)J(x), corresponds to the light reflected by the
surfaces in the scene and reaching the camera directly, without being scattered. The
airlight, (1 − t(x))A, corresponds to the ambient light that causes a shift in the un-
scattered scene radiance. The atmospheric light vector A describes the intensity of the
ambient light. For a homogeneous atmosphere, the transmission t(x) can be expressed
as:

t(x) = e−βd(x) (2)

where d(x) is the distance from the observer.
The image dehazing problem can be thought of as recovering J .
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3 Related Work

3.1 Image Dehazing

Existing image dehazing techniques can be divided into the following categories:

1. Multiple Images: The dynamic nature of smoke that allows areas of the image to
be partially visible has been utilized [1] to construct a mosaic of different images
of the same scene. The image is divided into regions and for each region the
clearest frame is identified. The resulting image is a mosaic of all such clear
frames.

2. Single Image: Intensity of haze present in an image is dependant on the distance
from the observer. Hence haze removal is an underconstrained problem if only a
single image is given without any depth information. Thus single haze removal
methods can be classified into two groups depending on whether they use rough
depth information from available 3D models or not.

(a) Model Based: Scattering models that describe the colors and contrasts of
a scene under haze conditions alongside depth information [12, 11] can be
used to dehaze images. Depth information however is recovered through
existing models [8] or through user input[12]. Required depth informa-
tion need not be precise, accuracy upto a certain scale is observed to be
sufficient. The methods can be used for both color and gray-scale images.

(b) Contrast Enhancement: These methods rely only on single images. The
success of these methods lies in using a stronger prior or assumption. These
approaches impose constraints on the scene albedo and treat scene depth
as a by-product of the estimation process. In other words, some methods
can also recover a depth map from the varying intensity of the haze in the
image. Tan [16] imposes a locally constant constraint on the albedo values
(the original colors in the image) to increase the contrast in local block
regions of the image. Tarel and Hautiere [18] estimate the atmospheric
veil,” an image of the scattered airlight, by using combinations of min,
max, and median filters to enforce piecewise constant, and use the estimate
to obtain a contrast enhanced image of the scene. Fattal [3] assumes that the
surface Lambertian shading factor and the scene transmission are locally
independent in order to separate the haze from the scene, and then uses a
Gaussian-Markov random field to smooth the transmission values.

(c) Dark Channel : A more recent method [6] which uses statistical properties
of the original image for dehazing. It is observed that haze-free images
have atleast some pixels referred to as dark pixels have very low intensity
in atleast one channel (rgb). However in a haze image intensity values of
these pixels is due to airlight and this difference is used to estimate the haze
transmission and also recover a depth map of the scene.
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3.2 Odometry Methods
The standard odometry approach is to extract a set of salient image features in each
image and match them in successive frames using invariant feature descriptors; re-
cover both camera motion and structure using epipolar geometry; refine the pose and
structure through reprojection error minimization. Other methods estimate the motion
directly from image intensity values and are sometimes more accurate even in case
of poor image quality. Fast semi-direct monocular visual odometry [5] combines the
advantages of both methods. The monocular version uses feature extraction to select
keyframes or frames that are significantly different and store them in a map. This is
done in the mapping thread responsible for maintaining and creating a 3D map of the
environment. At each keyframe selection, a probabilistic depth-filter for each 2D fea-
ture is initialized. The 3D depth of this feature is not known. The filters converge using
a Bayesian update step in a separate computation thread and after convergence the
depth estimate is stored alongside its feature. Now this 3D scene information is used
by the motion estimation thread which consists of sparse model-based image align-
ment, feature alignment and pose and structure refinement.

Fovis [7] is a visual odometry method designed for RGBD cameras and is simi-
lar in execution to SVO up until feature extraction. However unlike Svo, after feature
extraction Svo follows the conventional feature matching process to detect candidate
points that can be used for motion estimation. These points are further filtered through
an inlier detection step which uses geometric verification to remove the outliers. Here
the fact that 3D distance between two points does not change substantially after a rigid
body motion is used to determine the fact that the two points actually correspond to the
same point in the image. This step is crucial as it directly determines the capibility of
fovis to track efficiently in a given environment.

3.3 Odometry Comparison
In [14] a complete benchmark that can be used to evaluate visual SLAM and odometry
systems on RGB-D data is provided. The dataset consists of sequences recorded in two
different indoor environments. Each sequence contains the color and depth images, as
well as the ground truth trajectory data collected using a motion capture system. The
work and [2] discuss evaluation techniques and metrics that can be used to compare
accuracy of visual odometry systems.
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4 Approach
The problem is approached in two steps. First image dehazing methods are compared
and evaluated and the most suited methods are selected to construct an image dehazing
pipeline. Then the visual odometry methods are compared, first on datasets without
any dehazing and then on the same datasets with dehazing methods integrated. Section
4.1 and 4.2 describe the dehazing and odometry approaches used.

4.1 Image Dehazing Pipeline
In single image dehazing without using any depth-models [16, 18] recovering J in
Equation 1 is done by first estimating the transmission, t(x) and the airlight vector A.
The estimated transmission is further used to recover the depth map.
Rearranging Equation 1

J(x) = [I(x)− (1− t(x))A]t(x)
−1 (3)

Narasimhan [11] replaces the airlight vector A by I(x)∞, which for the case of atmo-
spheric hazing referes to the sky brightness.

For the purpose of this work, both I(x)∞ andA determined by varying their values
against the number of SIFT features present in the corresponding dehazed image.

The dehazing methods used in the pipeline are selected after rigorous comparison
between available dehazing methods (Section 5.1). As shown in Figure 4, a combi-
nation of contrast enhancement [18] and depth based image enhancement [11] is used
to enhance the overall image. Since we have depth data available from the RGBD
camera, [11] is an obvious choice as it makes direct use of available depth data. A
median filter is used to smooth out the depth artificats in the depth data available. Con-
trast enhancement [18] enhances image areas for which depth data is unavailable. In
place of contast enhancement, RGB based enhancement [6] can also be used if RGB
input/dataset is available.

Figure 4: Image Dehazing Pipeline

4.2 Visual Odometry
The image dehazing pipeline is integrated with two representative visual odometry
methods - fovis [7] and svo [5]. Comparison between odometry methods is per-
formed by using TUM RGBD Benchmarking tools [14] by calculating relative pose
error which measures the local accuracy of the trajectory over a fixed time interval.
It corresponds to the drift in the trajectory and the automated script evaluation avail-
able allows for easy evaluation using trajectory and pose data exported from ROS. The
absolute trajectory error measures deviation from the ground truth available for TUM
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datasets and is used to construct the plots. For shadwell datasets, localization data is
used as ground truth.

4.2.1 Svo using RGBD

The monocular version of svo fails for cases when there’s a challenging scene (e.g.
motion blur, darkness, lack of keypoints). This happens at the map reprojection and
feature alignment step where the code is unable to find enough matching features af-
ter reprojection. When the algorithm loses track of the position it tries to relocalize
by locating the closest matching keyframe in the map to the current frame and then it
can’t relocalize either because in our case the algorithm isn’t revisiting older places,
just going new ones. Thus the algorithm has to be modified to work with RGBD data.

There are two pipelines used by svo. One is the mapping pipeline, which estimates
the depth of 2D features in the image. This depth is then used in the monocular mo-
tion estimation pipeline which then estimates motion using 3D scene data. In the rgbd
modified version the monocular pipeline from the code is used as it is and instead of
using the mapping pipeline, depth information from the camera is provided directly.
Following major modifications need to be made:

• Removing depth filter: Depth-filter is removed completely and instead new 3d
points are initialized directly from the depth data obtained from the camera. Thus
as each keyframe is added, instead of initializing new depth-filters, features are
extracted and corresponding depths are stored alongside directly.

• Modifying map initialization: svo creates an initial 3D map of the scene by
taking two keyframes and triangulating the 3D distances. This is no longer need
in the RGBD version as the 3D map can be initialized directly from the first
frame data itself.

• Modifying keyframe selection: It is based on relative euclidean distance to
the previous frame. A keyframe is selected if the Euclidean distance of the new
frame relative to all keyframes exceeds 12% of the average scene depth. However
keyframe selection should also be based on how much the frame has rotated
relative to the prior one. So if the frame has moved (euclidean) or rotated a lot,
there should be a new keyframe.
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5 Experimental Results
In order to find a suitable image dehazing and visual odometry approach, we first be-
gin by comparing image dehazing methods. Dehazed datasets are constructed using
different methods, which are then further used for comparison of odometry methods.
Odometry methods are also analyzed using haze-free datasets to evaluate and compare
their perfomance in an ideal setting.

5.1 Image Dehazing Comparison
• Multiple Image Based [Donate2006] [1] This method requires multiple views

of the same smoke occluded scene. Different areas of the image are partially vis-
ible accross these views. A mosaic is constructed by combining different views,
the images to be combined to enhance a certain area are selected by using color
saturation and high frequency content as a metric to determine smoke occluded
image quality.

• Contrast Enhancement Based [Fattal2014] [4] This method uses the color
lines property of an RGB image to enhance contrast. Color lines are one di-
mensional distributions of pixels in RGB space. Variations in color lines are
used to estimate the scene transmission.

Figure 5: Comparison of original and dehazed image [Fattal2014]

• Contrast Enhancement Based [Tarel2009] [18] A combination of median fil-
ters is used to enhance the overall image contrast. However the method is slow
for real time application.

• RGB Based [He2010] [6] This method as shown in Figure 8, is effective for
RGB images. It uses the fact that haze free images have dark pixels that have
low intensity in atleast one channel. It is used to estimate transmission from a
haze image and also recover an approximate depth map which is then used for
dehazing. The method is not suitable for grayscale images and leads to darkening
of overall image as seen in Figure 7
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Figure 6: Comparison of original and dehazed image [Tarel2009]

Figure 7: Comparison of original and dehazed image using RGB Based method
[He2010]

• Depth Model Based [Narasimhan2003] [11] From Figure 9 it can be seen that
significant enhancement is observed for areas for which depth information is
available. Scattering coefficient β in Equation 2 is selected as 41 and I∞ in
Equation 3 is set as 77. Parameter values are selected by plotting SIFT features
in the image against the parameters individually and then selecting the parameter
for which maximum features are present.

• Image Dehazing Pipeline Figure 10 shows the improvement resulting from the
application of the image dehazing piepline explained in Figure 4 on a Shadwell
dataset containing haze. The second figure in the three figure image represents
the image dehazed using depth model based enhancement and then median fil-
tered to reduce artifacts. The last image represents the final image after applica-
tion of contrast based enhancement.
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Figure 8: Comparison of original and dehazed image using RGB Based method
[He2010]

Figure 9: Comparison of original and dehazed image [Narasimhan2003]

5.2 Haze-free Odometry Comparison

The first comparison under haze-free conditions is performed using benchmarks datsets
and tools presented in [14]. The dataset used fr2/desk is a relatively ideal dataset with
image frames containing sufficient number of features. TUM datasets are provided
along with ground truth information. Table 1 show the calculated relative pose errors.
The relative pose error measures local accuracy across consecutive frames relative to
the ground truth. It is a root mean square error that gives an indication of drift of
trajectory. Thus a higher error means more tendency to drift over time.

Columns 1 to 4 in Table 1 show the calculated relative pose errors for TUM Datasets
[14]. The less magnitude of RMSE error values suggests that both fovis and svo fol-
low the ground truth trajectory closely. It can also be seen that the difference in error
values of fovis and svo is negligible, indicating that performance difference is min-
imal in conditions where sufficient image features are available. Figure 11 shows the
odometry obtained from the TUM datasets plotted against the ground truth. Figure 11
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Figure 10: Dehazing using the dehazing pipeline

(a) shows odometry obtained using svo while Figure 11 (b) shows odometry obtained
using fovis. Figure 11 (a) and (b) again establish that both fovis and svo follow the
ground truth trajectory closely. Columns 5 to 8 show the relative pose errors calcu-
lated using Shadwell 03 level2 dataset. The localization data has been used as ground
truth for the calculation. The translational error for svo at 0.0435 is considerably more
than fovis at 0.0105 suggesting that fovis follows the ground truth trajectory more
closely, while svo has a tendency to drift over time. This is also established from Fig-
ure 12 (a) and (b) which show the trajectory plot for svo and fovis respectively using
the Shadwell 03 level2 dataset.

A comparison of computational efficiency showed that both svo and fovis con-
sume upto 25% of CPU or approximately an entire core of a quad-core Odroid board.
However svo is signficantly faster with a runtime of 4 ms as compared to fovis with
a runtime of 23ms.

Table 1: Comparison of odometry methods under haze-free conditions

fr2/desk shadwell/03 level2

Method
Translational

(RMSE)
Translational

(Standard dev)
Rotational
(RMSE)

Rotational
(Standard dev)

Translational
(RMSE)

Translational
(Standard dev)

Rotational
(RMSE)

Rotational
(Standard dev)

fovis 0.0116 0.0048 0.58 0.29 0.0178 0.0105 1.435 0.946
svo 0.0139 0.008 0.69 0.35 0.0435 0.0288 1.417 0.944

(a) (b)

Figure 11: (a)svo against ground trajectory on TUM dataset (b)fovis against ground
trajectory on TUM dataset

12



(a) (b)

Figure 12: (a)svo against ground trajectory on Shadwell dataset (b)fovis against
ground trajectory on Shadwell dataset

5.3 Integrated Image Dehazing and Visual Odometry
As explained before fovis uses feature matching followed by inlier detection to

determine candidate points that can be used for motion estimation. Thus the average
number of matches and inliers detected across frames is a good indication of the per-
formance of fovis. Hence we compute the average number of matches and inliers in
datasets with haze and then in datasets dehazed using the image dehazing pipeline in
Figure 4. The corresponding comparison is presented in Figure 13. Figure 13(a) and
(b) show the number of matches and the number of inliers on the Y-axis respectively,
calculated across image frames in the dataset. The red line represents dehazed dataset
while blue line represents datasets with haze. It can be seen that number of matches as
well as number of inliers detected has improved after when fovis is run on the dehazed
dataset. Figure 13 (c) is plotted by computing average number of inliers for every 10
frames. It can be seen that the red marks representing the dehazed dataset lie above the
blue ones represting datasets with haze, indicating an increase in the number of inliers
detected and hence an improvement in performance of fovis.

Feature extraction is also performed by svo and hence the number of features ex-
tracted are an indication of svo performance. Figure 14 (b) represents features ex-
tracted by svo in a dehazed dataset and the same dataset with haze, represented by red
and blue lines respectively. It can be seen that the number of features extracted in a
dataset with haze are negligible and the number of features extracted have significantly
increased in the case of dehazed dataset. This is also established from Figure 14(a)
which shows features are extracted only in dehazed regions of the image. Another in-
dicator of svo performance is the number of reprojection matches, that is the number
of matches obtained by reprojecting current frame onto the map. Figure 14(c) shows
the number of reprojection matches for dehazed dataset and dataset with haze. The fig-
ure shows significant improvement in number of matches detected when the dehazed
dataset is used.
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(a) (b)

(c)

Figure 13: Improvements in fovis (a) Number of matches across frames (b) Number
of inliers across frames (c) Average inliers every ten frames

(a)

(b) (c)

Figure 14: Improvements in svo (a) Feature detection by svo in a dehazed image (b)
Number of features across frames (c) Number of reprojection matches across frames
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6 Conclusion
It can be concluded that svo and fovis are both suitable odometry methods for a light
MAV, fovis being the more suitable candidate if more accuracy is desired and svo if
speed. For smoke occluded environments a combination of depth and contrast based
dehazing can enhance input image and hence significantly improve performance of
semi-direct odometry methods such as svo. Improvement in feature based methods
such as fovis may not be as significant.
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7 Future Work
The image dehazing pipleline in Figure 4 can be altered by using a colored smoke
dataset and thus replacing the contrast enhancement step by RGB based enhancement.
For the depth based enhancement step in the pipeline, automatic selection of parameters
according to the environment can be included. Also recording of more ideal smoke
datasets will enable evaluation of more dehazing methods.
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